summaryrefslogtreecommitdiffstats
path: root/js/src/jit/x64/Assembler-x64.h
blob: b1020350d5772f55b68c252b596a436ce317dee6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jit_x64_Assembler_x64_h
#define jit_x64_Assembler_x64_h

#include <iterator>

#include "jit/JitCode.h"
#include "jit/shared/Assembler-shared.h"

namespace js {
namespace jit {

static constexpr Register rax{X86Encoding::rax};
static constexpr Register rbx{X86Encoding::rbx};
static constexpr Register rcx{X86Encoding::rcx};
static constexpr Register rdx{X86Encoding::rdx};
static constexpr Register rsi{X86Encoding::rsi};
static constexpr Register rdi{X86Encoding::rdi};
static constexpr Register rbp{X86Encoding::rbp};
static constexpr Register r8{X86Encoding::r8};
static constexpr Register r9{X86Encoding::r9};
static constexpr Register r10{X86Encoding::r10};
static constexpr Register r11{X86Encoding::r11};
static constexpr Register r12{X86Encoding::r12};
static constexpr Register r13{X86Encoding::r13};
static constexpr Register r14{X86Encoding::r14};
static constexpr Register r15{X86Encoding::r15};
static constexpr Register rsp{X86Encoding::rsp};

static constexpr FloatRegister xmm0 =
    FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static constexpr FloatRegister xmm1 =
    FloatRegister(X86Encoding::xmm1, FloatRegisters::Double);
static constexpr FloatRegister xmm2 =
    FloatRegister(X86Encoding::xmm2, FloatRegisters::Double);
static constexpr FloatRegister xmm3 =
    FloatRegister(X86Encoding::xmm3, FloatRegisters::Double);
static constexpr FloatRegister xmm4 =
    FloatRegister(X86Encoding::xmm4, FloatRegisters::Double);
static constexpr FloatRegister xmm5 =
    FloatRegister(X86Encoding::xmm5, FloatRegisters::Double);
static constexpr FloatRegister xmm6 =
    FloatRegister(X86Encoding::xmm6, FloatRegisters::Double);
static constexpr FloatRegister xmm7 =
    FloatRegister(X86Encoding::xmm7, FloatRegisters::Double);
static constexpr FloatRegister xmm8 =
    FloatRegister(X86Encoding::xmm8, FloatRegisters::Double);
static constexpr FloatRegister xmm9 =
    FloatRegister(X86Encoding::xmm9, FloatRegisters::Double);
static constexpr FloatRegister xmm10 =
    FloatRegister(X86Encoding::xmm10, FloatRegisters::Double);
static constexpr FloatRegister xmm11 =
    FloatRegister(X86Encoding::xmm11, FloatRegisters::Double);
static constexpr FloatRegister xmm12 =
    FloatRegister(X86Encoding::xmm12, FloatRegisters::Double);
static constexpr FloatRegister xmm13 =
    FloatRegister(X86Encoding::xmm13, FloatRegisters::Double);
static constexpr FloatRegister xmm14 =
    FloatRegister(X86Encoding::xmm14, FloatRegisters::Double);
static constexpr FloatRegister xmm15 =
    FloatRegister(X86Encoding::xmm15, FloatRegisters::Double);

// Vector registers fixed for use with some instructions, e.g. PBLENDVB.
static constexpr FloatRegister vmm0 =
    FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128);

// X86-common synonyms.
static constexpr Register eax = rax;
static constexpr Register ebx = rbx;
static constexpr Register ecx = rcx;
static constexpr Register edx = rdx;
static constexpr Register esi = rsi;
static constexpr Register edi = rdi;
static constexpr Register ebp = rbp;
static constexpr Register esp = rsp;

static constexpr Register InvalidReg{X86Encoding::invalid_reg};
static constexpr FloatRegister InvalidFloatReg = FloatRegister();

static constexpr Register StackPointer = rsp;
static constexpr Register FramePointer = rbp;
static constexpr Register JSReturnReg = rcx;
// Avoid, except for assertions.
static constexpr Register JSReturnReg_Type = JSReturnReg;
static constexpr Register JSReturnReg_Data = JSReturnReg;

static constexpr Register ScratchReg = r11;

// Helper class for ScratchRegister usage. Asserts that only one piece
// of code thinks it has exclusive ownership of the scratch register.
struct ScratchRegisterScope : public AutoRegisterScope {
  explicit ScratchRegisterScope(MacroAssembler& masm)
      : AutoRegisterScope(masm, ScratchReg) {}
};

static constexpr Register ReturnReg = rax;
static constexpr Register HeapReg = r15;
static constexpr Register64 ReturnReg64(rax);
static constexpr FloatRegister ReturnFloat32Reg =
    FloatRegister(X86Encoding::xmm0, FloatRegisters::Single);
static constexpr FloatRegister ReturnDoubleReg =
    FloatRegister(X86Encoding::xmm0, FloatRegisters::Double);
static constexpr FloatRegister ReturnSimd128Reg =
    FloatRegister(X86Encoding::xmm0, FloatRegisters::Simd128);
static constexpr FloatRegister ScratchFloat32Reg_ =
    FloatRegister(X86Encoding::xmm15, FloatRegisters::Single);
static constexpr FloatRegister ScratchDoubleReg_ =
    FloatRegister(X86Encoding::xmm15, FloatRegisters::Double);
static constexpr FloatRegister ScratchSimd128Reg =
    FloatRegister(X86Encoding::xmm15, FloatRegisters::Simd128);

// Avoid rbp, which is the FramePointer, which is unavailable in some modes.
static constexpr Register CallTempReg0 = rax;
static constexpr Register CallTempReg1 = rdi;
static constexpr Register CallTempReg2 = rbx;
static constexpr Register CallTempReg3 = rcx;
static constexpr Register CallTempReg4 = rsi;
static constexpr Register CallTempReg5 = rdx;

// Different argument registers for WIN64
#if defined(_WIN64)
static constexpr Register IntArgReg0 = rcx;
static constexpr Register IntArgReg1 = rdx;
static constexpr Register IntArgReg2 = r8;
static constexpr Register IntArgReg3 = r9;
static constexpr uint32_t NumIntArgRegs = 4;
static constexpr Register IntArgRegs[NumIntArgRegs] = {rcx, rdx, r8, r9};

static constexpr Register CallTempNonArgRegs[] = {rax, rdi, rbx, rsi};
static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);

static constexpr FloatRegister FloatArgReg0 = xmm0;
static constexpr FloatRegister FloatArgReg1 = xmm1;
static constexpr FloatRegister FloatArgReg2 = xmm2;
static constexpr FloatRegister FloatArgReg3 = xmm3;
static constexpr uint32_t NumFloatArgRegs = 4;
static constexpr FloatRegister FloatArgRegs[NumFloatArgRegs] = {xmm0, xmm1,
                                                                xmm2, xmm3};
#else
static constexpr Register IntArgReg0 = rdi;
static constexpr Register IntArgReg1 = rsi;
static constexpr Register IntArgReg2 = rdx;
static constexpr Register IntArgReg3 = rcx;
static constexpr Register IntArgReg4 = r8;
static constexpr Register IntArgReg5 = r9;
static constexpr uint32_t NumIntArgRegs = 6;
static constexpr Register IntArgRegs[NumIntArgRegs] = {rdi, rsi, rdx,
                                                       rcx, r8,  r9};

static constexpr Register CallTempNonArgRegs[] = {rax, rbx};
static constexpr uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);

static constexpr FloatRegister FloatArgReg0 = xmm0;
static constexpr FloatRegister FloatArgReg1 = xmm1;
static constexpr FloatRegister FloatArgReg2 = xmm2;
static constexpr FloatRegister FloatArgReg3 = xmm3;
static constexpr FloatRegister FloatArgReg4 = xmm4;
static constexpr FloatRegister FloatArgReg5 = xmm5;
static constexpr FloatRegister FloatArgReg6 = xmm6;
static constexpr FloatRegister FloatArgReg7 = xmm7;
static constexpr uint32_t NumFloatArgRegs = 8;
static constexpr FloatRegister FloatArgRegs[NumFloatArgRegs] = {
    xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7};
#endif

// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
// JSReturnOperand).
static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
static constexpr Register RegExpMatcherStringReg = CallTempReg1;
static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;

// Registers used by RegExpExecTest stub (do not use ReturnReg).
static constexpr Register RegExpExecTestRegExpReg = CallTempReg1;
static constexpr Register RegExpExecTestStringReg = CallTempReg2;

// Registers used by RegExpSearcher stub (do not use ReturnReg).
static constexpr Register RegExpSearcherRegExpReg = CallTempReg1;
static constexpr Register RegExpSearcherStringReg = CallTempReg2;
static constexpr Register RegExpSearcherLastIndexReg = CallTempReg3;

class ABIArgGenerator {
#if defined(XP_WIN)
  unsigned regIndex_;
#else
  unsigned intRegIndex_;
  unsigned floatRegIndex_;
#endif
  uint32_t stackOffset_;
  ABIArg current_;

 public:
  ABIArgGenerator();
  ABIArg next(MIRType argType);
  ABIArg& current() { return current_; }
  uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
  void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
};

// These registers may be volatile or nonvolatile.
// Avoid r11, which is the MacroAssembler's ScratchReg.
static constexpr Register ABINonArgReg0 = rax;
static constexpr Register ABINonArgReg1 = rbx;
static constexpr Register ABINonArgReg2 = r10;
static constexpr Register ABINonArgReg3 = r12;

// This register may be volatile or nonvolatile. Avoid xmm15 which is the
// ScratchDoubleReg.
static constexpr FloatRegister ABINonArgDoubleReg =
    FloatRegister(X86Encoding::xmm8, FloatRegisters::Double);

// These registers may be volatile or nonvolatile.
// Note: these three registers are all guaranteed to be different
static constexpr Register ABINonArgReturnReg0 = r10;
static constexpr Register ABINonArgReturnReg1 = r12;
static constexpr Register ABINonVolatileReg = r13;

// This register is guaranteed to be clobberable during the prologue and
// epilogue of an ABI call which must preserve both ABI argument, return
// and non-volatile registers.
static constexpr Register ABINonArgReturnVolatileReg = r10;

// Instance pointer argument register for WebAssembly functions. This must not
// alias any other register used for passing function arguments or return
// values. Preserved by WebAssembly functions.
static constexpr Register InstanceReg = r14;

// Registers used for asm.js/wasm table calls. These registers must be disjoint
// from the ABI argument registers, InstanceReg and each other.
static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;

// Registers used for ref calls.
static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
static constexpr Register WasmCallRefReg = ABINonArgReg3;

// Registers used for wasm tail calls operations.
static constexpr Register WasmTailCallInstanceScratchReg = ABINonArgReg1;
static constexpr Register WasmTailCallRAScratchReg = ABINonArgReg2;
static constexpr Register WasmTailCallFPScratchReg = ABINonArgReg3;

// Register used as a scratch along the return path in the fast js -> wasm stub
// code.  This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
// It must be a volatile register.
static constexpr Register WasmJitEntryReturnScratch = rbx;

static constexpr Register OsrFrameReg = IntArgReg3;

static constexpr Register PreBarrierReg = rdx;

static constexpr Register InterpreterPCReg = r14;

static constexpr uint32_t ABIStackAlignment = 16;
static constexpr uint32_t CodeAlignment = 16;
static constexpr uint32_t JitStackAlignment = 16;

static constexpr uint32_t JitStackValueAlignment =
    JitStackAlignment / sizeof(Value);
static_assert(JitStackAlignment % sizeof(Value) == 0 &&
                  JitStackValueAlignment >= 1,
              "Stack alignment should be a non-zero multiple of sizeof(Value)");

static constexpr uint32_t SimdMemoryAlignment = 16;

static_assert(CodeAlignment % SimdMemoryAlignment == 0,
              "Code alignment should be larger than any of the alignments "
              "which are used for "
              "the constant sections of the code buffer.  Thus it should be "
              "larger than the "
              "alignment for SIMD constants.");

static_assert(JitStackAlignment % SimdMemoryAlignment == 0,
              "Stack alignment should be larger than any of the alignments "
              "which are used for "
              "spilled values.  Thus it should be larger than the alignment "
              "for SIMD accesses.");

static constexpr uint32_t WasmStackAlignment = SimdMemoryAlignment;
static constexpr uint32_t WasmTrapInstructionLength = 2;

// See comments in wasm::GenerateFunctionPrologue.  The difference between these
// is the size of the largest callable prologue on the platform.
static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;

static constexpr Scale ScalePointer = TimesEight;

}  // namespace jit
}  // namespace js

#include "jit/x86-shared/Assembler-x86-shared.h"

namespace js {
namespace jit {

// Return operand from a JS -> JS call.
static constexpr ValueOperand JSReturnOperand = ValueOperand(JSReturnReg);

class Assembler : public AssemblerX86Shared {
  // x64 jumps may need extra bits of relocation, because a jump may extend
  // beyond the signed 32-bit range. To account for this we add an extended
  // jump table at the bottom of the instruction stream, and if a jump
  // overflows its range, it will redirect here.
  //
  // Each entry in this table is a jmp [rip], followed by a ud2 to hint to the
  // hardware branch predictor that there is no fallthrough, followed by the
  // eight bytes containing an immediate address. This comes out to 16 bytes.
  //    +1 byte for opcode
  //    +1 byte for mod r/m
  //    +4 bytes for rip-relative offset (2)
  //    +2 bytes for ud2 instruction
  //    +8 bytes for 64-bit address
  //
  static const uint32_t SizeOfExtendedJump = 1 + 1 + 4 + 2 + 8;
  static const uint32_t SizeOfJumpTableEntry = 16;

  // Two kinds of jumps on x64:
  //
  // * codeJumps_ tracks jumps with target within the executable code region
  //   for the process. These jumps don't need entries in the extended jump
  //   table because source and target must be within 2 GB of each other.
  //
  // * extendedJumps_ tracks jumps with target outside the executable code
  //   region. These jumps need entries in the extended jump table described
  //   above.
  using PendingJumpVector = Vector<RelativePatch, 8, SystemAllocPolicy>;
  PendingJumpVector codeJumps_;
  PendingJumpVector extendedJumps_;

  uint32_t extendedJumpTable_;

  static JitCode* CodeFromJump(JitCode* code, uint8_t* jump);

 private:
  void addPendingJump(JmpSrc src, ImmPtr target, RelocationKind reloc);

 public:
  using AssemblerX86Shared::j;
  using AssemblerX86Shared::jmp;
  using AssemblerX86Shared::pop;
  using AssemblerX86Shared::push;
  using AssemblerX86Shared::vmovq;

  Assembler() : extendedJumpTable_(0) {}

  static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
                                   CompactBufferReader& reader);

  // The buffer is about to be linked, make sure any constant pools or excess
  // bookkeeping has been flushed to the instruction stream.
  void finish();

  // Copy the assembly code to the given buffer, and perform any pending
  // relocations relying on the target address.
  void executableCopy(uint8_t* buffer);

  void assertNoGCThings() const {
#ifdef DEBUG
    MOZ_ASSERT(dataRelocations_.length() == 0);
    for (auto& j : codeJumps_) {
      MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
    }
    for (auto& j : extendedJumps_) {
      MOZ_ASSERT(j.kind == RelocationKind::HARDCODED);
    }
#endif
  }

  // Actual assembly emitting functions.

  void push(const ImmGCPtr ptr) {
    movq(ptr, ScratchReg);
    push(ScratchReg);
  }
  void push(const ImmWord ptr) {
    // We often end up with ImmWords that actually fit into int32.
    // Be aware of the sign extension behavior.
    if (ptr.value <= INT32_MAX) {
      push(Imm32(ptr.value));
    } else {
      movq(ptr, ScratchReg);
      push(ScratchReg);
    }
  }
  void push(ImmPtr imm) { push(ImmWord(uintptr_t(imm.value))); }
  void push(FloatRegister src) {
    subq(Imm32(sizeof(double)), StackPointer);
    vmovsd(src, Address(StackPointer, 0));
  }
  CodeOffset pushWithPatch(ImmWord word) {
    CodeOffset label = movWithPatch(word, ScratchReg);
    push(ScratchReg);
    return label;
  }

  void pop(FloatRegister src) {
    vmovsd(Address(StackPointer, 0), src);
    addq(Imm32(sizeof(double)), StackPointer);
  }

  CodeOffset movWithPatch(ImmWord word, Register dest) {
    masm.movq_i64r(word.value, dest.encoding());
    return CodeOffset(masm.currentOffset());
  }
  CodeOffset movWithPatch(ImmPtr imm, Register dest) {
    return movWithPatch(ImmWord(uintptr_t(imm.value)), dest);
  }

  // This is for patching during code generation, not after.
  void patchAddq(CodeOffset offset, int32_t n) {
    unsigned char* code = masm.data();
    X86Encoding::SetInt32(code + offset.offset(), n);
  }

  // Load an ImmWord value into a register. Note that this instruction will
  // attempt to optimize its immediate field size. When a full 64-bit
  // immediate is needed for a relocation, use movWithPatch.
  void movq(ImmWord word, Register dest) {
    // Load a 64-bit immediate into a register. If the value falls into
    // certain ranges, we can use specialized instructions which have
    // smaller encodings.
    if (word.value <= UINT32_MAX) {
      // movl has a 32-bit unsigned (effectively) immediate field.
      masm.movl_i32r((uint32_t)word.value, dest.encoding());
    } else if ((intptr_t)word.value >= INT32_MIN &&
               (intptr_t)word.value <= INT32_MAX) {
      // movq has a 32-bit signed immediate field.
      masm.movq_i32r((int32_t)(intptr_t)word.value, dest.encoding());
    } else {
      // Otherwise use movabs.
      masm.movq_i64r(word.value, dest.encoding());
    }
  }
  void movq(ImmPtr imm, Register dest) {
    movq(ImmWord(uintptr_t(imm.value)), dest);
  }
  void movq(ImmGCPtr ptr, Register dest) {
    masm.movq_i64r(uintptr_t(ptr.value), dest.encoding());
    writeDataRelocation(ptr);
  }
  void movq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.movq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.movq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.movq_mr(src.disp(), src.base(), src.index(), src.scale(),
                     dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.movq_mr(src.address(), dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void movq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.movq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.movq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.movq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                     dest.scale());
        break;
      case Operand::MEM_ADDRESS32:
        masm.movq_rm(src.encoding(), dest.address());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void movq(Imm32 imm32, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.movl_i32r(imm32.value, dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.movq_i32m(imm32.value, dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.movq_i32m(imm32.value, dest.disp(), dest.base(), dest.index(),
                       dest.scale());
        break;
      case Operand::MEM_ADDRESS32:
        masm.movq_i32m(imm32.value, dest.address());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void vmovq(Register src, FloatRegister dest) {
    masm.vmovq_rr(src.encoding(), dest.encoding());
  }
  void vmovq(FloatRegister src, Register dest) {
    masm.vmovq_rr(src.encoding(), dest.encoding());
  }
  void movq(Register src, Register dest) {
    masm.movq_rr(src.encoding(), dest.encoding());
  }

  void cmovCCq(Condition cond, const Operand& src, Register dest) {
    X86Encoding::Condition cc = static_cast<X86Encoding::Condition>(cond);
    switch (src.kind()) {
      case Operand::REG:
        masm.cmovCCq_rr(cc, src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.cmovCCq_mr(cc, src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.cmovCCq_mr(cc, src.disp(), src.base(), src.index(), src.scale(),
                        dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void cmovCCq(Condition cond, Register src, Register dest) {
    X86Encoding::Condition cc = static_cast<X86Encoding::Condition>(cond);
    masm.cmovCCq_rr(cc, src.encoding(), dest.encoding());
  }

  void cmovzq(const Operand& src, Register dest) {
    cmovCCq(Condition::Zero, src, dest);
  }
  void cmovnzq(const Operand& src, Register dest) {
    cmovCCq(Condition::NonZero, src, dest);
  }

  template <typename T>
  void lock_addq(T src, const Operand& op) {
    masm.prefix_lock();
    addq(src, op);
  }
  template <typename T>
  void lock_subq(T src, const Operand& op) {
    masm.prefix_lock();
    subq(src, op);
  }
  template <typename T>
  void lock_andq(T src, const Operand& op) {
    masm.prefix_lock();
    andq(src, op);
  }
  template <typename T>
  void lock_orq(T src, const Operand& op) {
    masm.prefix_lock();
    orq(src, op);
  }
  template <typename T>
  void lock_xorq(T src, const Operand& op) {
    masm.prefix_lock();
    xorq(src, op);
  }

  void lock_cmpxchgq(Register src, const Operand& mem) {
    masm.prefix_lock();
    switch (mem.kind()) {
      case Operand::MEM_REG_DISP:
        masm.cmpxchgq(src.encoding(), mem.disp(), mem.base());
        break;
      case Operand::MEM_SCALE:
        masm.cmpxchgq(src.encoding(), mem.disp(), mem.base(), mem.index(),
                      mem.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void xchgq(Register src, Register dest) {
    masm.xchgq_rr(src.encoding(), dest.encoding());
  }

  void xchgq(Register src, const Operand& mem) {
    switch (mem.kind()) {
      case Operand::MEM_REG_DISP:
        masm.xchgq_rm(src.encoding(), mem.disp(), mem.base());
        break;
      case Operand::MEM_SCALE:
        masm.xchgq_rm(src.encoding(), mem.disp(), mem.base(), mem.index(),
                      mem.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void lock_xaddq(Register srcdest, const Operand& mem) {
    switch (mem.kind()) {
      case Operand::MEM_REG_DISP:
        masm.lock_xaddq_rm(srcdest.encoding(), mem.disp(), mem.base());
        break;
      case Operand::MEM_SCALE:
        masm.lock_xaddq_rm(srcdest.encoding(), mem.disp(), mem.base(),
                           mem.index(), mem.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void movsbq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.movsbq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.movsbq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.movsbq_mr(src.disp(), src.base(), src.index(), src.scale(),
                       dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void movzbq(const Operand& src, Register dest) {
    // movzbl zero-extends to 64 bits and is one byte smaller, so use that
    // instead.
    movzbl(src, dest);
  }

  void movswq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.movswq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.movswq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.movswq_mr(src.disp(), src.base(), src.index(), src.scale(),
                       dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void movzwq(const Operand& src, Register dest) {
    // movzwl zero-extends to 64 bits and is one byte smaller, so use that
    // instead.
    movzwl(src, dest);
  }

  void movslq(Register src, Register dest) {
    masm.movslq_rr(src.encoding(), dest.encoding());
  }
  void movslq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.movslq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.movslq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.movslq_mr(src.disp(), src.base(), src.index(), src.scale(),
                       dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void andq(Register src, Register dest) {
    masm.andq_rr(src.encoding(), dest.encoding());
  }
  void andq(Imm32 imm, Register dest) {
    masm.andq_ir(imm.value, dest.encoding());
  }
  void andq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.andq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.andq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.andq_mr(src.disp(), src.base(), src.index(), src.scale(),
                     dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.andq_mr(src.address(), dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void andq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.andq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.andq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.andq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                     dest.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void addq(Imm32 imm, Register dest) {
    masm.addq_ir(imm.value, dest.encoding());
  }
  CodeOffset addqWithPatch(Imm32 imm, Register dest) {
    masm.addq_i32r(imm.value, dest.encoding());
    return CodeOffset(masm.currentOffset());
  }
  void addq(Imm32 imm, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.addq_ir(imm.value, dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.addq_im(imm.value, dest.disp(), dest.base());
        break;
      case Operand::MEM_ADDRESS32:
        masm.addq_im(imm.value, dest.address());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void addq(Register src, Register dest) {
    masm.addq_rr(src.encoding(), dest.encoding());
  }
  void addq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.addq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.addq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.addq_mr(src.address(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.addq_mr(src.disp(), src.base(), src.index(), src.scale(),
                     dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void addq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.addq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.addq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.addq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                     dest.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void subq(Imm32 imm, Register dest) {
    masm.subq_ir(imm.value, dest.encoding());
  }
  void subq(Register src, Register dest) {
    masm.subq_rr(src.encoding(), dest.encoding());
  }
  void subq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.subq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.subq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.subq_mr(src.address(), dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void subq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.subq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.subq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.subq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                     dest.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void shlq(Imm32 imm, Register dest) {
    masm.shlq_ir(imm.value, dest.encoding());
  }
  void shrq(Imm32 imm, Register dest) {
    masm.shrq_ir(imm.value, dest.encoding());
  }
  void sarq(Imm32 imm, Register dest) {
    masm.sarq_ir(imm.value, dest.encoding());
  }
  void shlq_cl(Register dest) { masm.shlq_CLr(dest.encoding()); }
  void shrq_cl(Register dest) { masm.shrq_CLr(dest.encoding()); }
  void sarq_cl(Register dest) { masm.sarq_CLr(dest.encoding()); }
  void sarxq(Register src, Register shift, Register dest) {
    MOZ_ASSERT(HasBMI2());
    masm.sarxq_rrr(src.encoding(), shift.encoding(), dest.encoding());
  }
  void shlxq(Register src, Register shift, Register dest) {
    MOZ_ASSERT(HasBMI2());
    masm.shlxq_rrr(src.encoding(), shift.encoding(), dest.encoding());
  }
  void shrxq(Register src, Register shift, Register dest) {
    MOZ_ASSERT(HasBMI2());
    masm.shrxq_rrr(src.encoding(), shift.encoding(), dest.encoding());
  }
  void rolq(Imm32 imm, Register dest) {
    masm.rolq_ir(imm.value, dest.encoding());
  }
  void rolq_cl(Register dest) { masm.rolq_CLr(dest.encoding()); }
  void rorq(Imm32 imm, Register dest) {
    masm.rorq_ir(imm.value, dest.encoding());
  }
  void rorq_cl(Register dest) { masm.rorq_CLr(dest.encoding()); }
  void orq(Imm32 imm, Register dest) {
    masm.orq_ir(imm.value, dest.encoding());
  }
  void orq(Register src, Register dest) {
    masm.orq_rr(src.encoding(), dest.encoding());
  }
  void orq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.orq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.orq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.orq_mr(src.address(), dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void orq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.orq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.orq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.orq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                    dest.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void xorq(Register src, Register dest) {
    masm.xorq_rr(src.encoding(), dest.encoding());
  }
  void xorq(Imm32 imm, Register dest) {
    masm.xorq_ir(imm.value, dest.encoding());
  }
  void xorq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.xorq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.xorq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.xorq_mr(src.disp(), src.base(), src.index(), src.scale(),
                     dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        masm.xorq_mr(src.address(), dest.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void xorq(Register src, const Operand& dest) {
    switch (dest.kind()) {
      case Operand::REG:
        masm.xorq_rr(src.encoding(), dest.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.xorq_rm(src.encoding(), dest.disp(), dest.base());
        break;
      case Operand::MEM_SCALE:
        masm.xorq_rm(src.encoding(), dest.disp(), dest.base(), dest.index(),
                     dest.scale());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void bsrq(const Register& src, const Register& dest) {
    masm.bsrq_rr(src.encoding(), dest.encoding());
  }
  void bsfq(const Register& src, const Register& dest) {
    masm.bsfq_rr(src.encoding(), dest.encoding());
  }
  void bswapq(const Register& reg) { masm.bswapq_r(reg.encoding()); }
  void lzcntq(const Register& src, const Register& dest) {
    masm.lzcntq_rr(src.encoding(), dest.encoding());
  }
  void tzcntq(const Register& src, const Register& dest) {
    masm.tzcntq_rr(src.encoding(), dest.encoding());
  }
  void popcntq(const Register& src, const Register& dest) {
    masm.popcntq_rr(src.encoding(), dest.encoding());
  }

  void imulq(Imm32 imm, Register src, Register dest) {
    masm.imulq_ir(imm.value, src.encoding(), dest.encoding());
  }
  void imulq(Register src, Register dest) {
    masm.imulq_rr(src.encoding(), dest.encoding());
  }
  void imulq(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::REG:
        masm.imulq_rr(src.reg(), dest.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.imulq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_ADDRESS32:
        MOZ_CRASH("NYI");
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void cqo() { masm.cqo(); }
  void idivq(Register divisor) { masm.idivq_r(divisor.encoding()); }
  void udivq(Register divisor) { masm.divq_r(divisor.encoding()); }

  void vcvtsi2sdq(Register src, FloatRegister dest) {
    masm.vcvtsi2sdq_rr(src.encoding(), dest.encoding());
  }

  void vpextrq(unsigned lane, FloatRegister src, Register dest) {
    MOZ_ASSERT(HasSSE41());
    masm.vpextrq_irr(lane, src.encoding(), dest.encoding());
  }

  void vpinsrq(unsigned lane, Register src1, FloatRegister src0,
               FloatRegister dest) {
    MOZ_ASSERT(HasSSE41());
    masm.vpinsrq_irr(lane, src1.encoding(), src0.encoding(), dest.encoding());
  }

  void negq(Register reg) { masm.negq_r(reg.encoding()); }

  void notq(Register reg) { masm.notq_r(reg.encoding()); }

  void mov(ImmWord word, Register dest) {
    // Use xor for setting registers to zero, as it is specially optimized
    // for this purpose on modern hardware. Note that it does clobber FLAGS
    // though. Use xorl instead of xorq since they are functionally
    // equivalent (32-bit instructions zero-extend their results to 64 bits)
    // and xorl has a smaller encoding.
    if (word.value == 0) {
      xorl(dest, dest);
    } else {
      movq(word, dest);
    }
  }
  void mov(ImmPtr imm, Register dest) { movq(imm, dest); }
  void mov(wasm::SymbolicAddress imm, Register dest) {
    masm.movq_i64r(-1, dest.encoding());
    append(wasm::SymbolicAccess(CodeOffset(masm.currentOffset()), imm));
  }
  void mov(const Operand& src, Register dest) { movq(src, dest); }
  void mov(Register src, const Operand& dest) { movq(src, dest); }
  void mov(Imm32 imm32, const Operand& dest) { movq(imm32, dest); }
  void mov(Register src, Register dest) { movq(src, dest); }
  void mov(CodeLabel* label, Register dest) {
    masm.movq_i64r(/* placeholder */ 0, dest.encoding());
    label->patchAt()->bind(masm.size());
  }
  void xchg(Register src, Register dest) { xchgq(src, dest); }

  void lea(const Operand& src, Register dest) {
    switch (src.kind()) {
      case Operand::MEM_REG_DISP:
        masm.leaq_mr(src.disp(), src.base(), dest.encoding());
        break;
      case Operand::MEM_SCALE:
        masm.leaq_mr(src.disp(), src.base(), src.index(), src.scale(),
                     dest.encoding());
        break;
      default:
        MOZ_CRASH("unexepcted operand kind");
    }
  }

  void cmovz32(const Operand& src, Register dest) { return cmovzl(src, dest); }
  void cmovzPtr(const Operand& src, Register dest) { return cmovzq(src, dest); }

  CodeOffset loadRipRelativeInt32(Register dest) {
    return CodeOffset(masm.movl_ripr(dest.encoding()).offset());
  }
  CodeOffset loadRipRelativeInt64(Register dest) {
    return CodeOffset(masm.movq_ripr(dest.encoding()).offset());
  }
  CodeOffset loadRipRelativeDouble(FloatRegister dest) {
    return CodeOffset(masm.vmovsd_ripr(dest.encoding()).offset());
  }
  CodeOffset loadRipRelativeFloat32(FloatRegister dest) {
    return CodeOffset(masm.vmovss_ripr(dest.encoding()).offset());
  }
  CodeOffset loadRipRelativeInt32x4(FloatRegister dest) {
    return CodeOffset(masm.vmovdqa_ripr(dest.encoding()).offset());
  }
  CodeOffset loadRipRelativeFloat32x4(FloatRegister dest) {
    return CodeOffset(masm.vmovaps_ripr(dest.encoding()).offset());
  }
  CodeOffset leaRipRelative(Register dest) {
    return CodeOffset(masm.leaq_rip(dest.encoding()).offset());
  }

  void cmpq(Register rhs, Register lhs) {
    masm.cmpq_rr(rhs.encoding(), lhs.encoding());
  }
  void cmpq(Register rhs, const Operand& lhs) {
    switch (lhs.kind()) {
      case Operand::REG:
        masm.cmpq_rr(rhs.encoding(), lhs.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.cmpq_rm(rhs.encoding(), lhs.disp(), lhs.base());
        break;
      case Operand::MEM_SCALE:
        masm.cmpq_rm(rhs.encoding(), lhs.disp(), lhs.base(), lhs.index(),
                     lhs.scale());
        break;
      case Operand::MEM_ADDRESS32:
        masm.cmpq_rm(rhs.encoding(), lhs.address());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void cmpq(Imm32 rhs, Register lhs) {
    masm.cmpq_ir(rhs.value, lhs.encoding());
  }
  void cmpq(Imm32 rhs, const Operand& lhs) {
    switch (lhs.kind()) {
      case Operand::REG:
        masm.cmpq_ir(rhs.value, lhs.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.cmpq_im(rhs.value, lhs.disp(), lhs.base());
        break;
      case Operand::MEM_SCALE:
        masm.cmpq_im(rhs.value, lhs.disp(), lhs.base(), lhs.index(),
                     lhs.scale());
        break;
      case Operand::MEM_ADDRESS32:
        masm.cmpq_im(rhs.value, lhs.address());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }
  void cmpq(const Operand& rhs, Register lhs) {
    switch (rhs.kind()) {
      case Operand::REG:
        masm.cmpq_rr(rhs.reg(), lhs.encoding());
        break;
      case Operand::MEM_REG_DISP:
        masm.cmpq_mr(rhs.disp(), rhs.base(), lhs.encoding());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
    }
  }

  void testq(Imm32 rhs, Register lhs) {
    masm.testq_ir(rhs.value, lhs.encoding());
  }
  void testq(Register rhs, Register lhs) {
    masm.testq_rr(rhs.encoding(), lhs.encoding());
  }
  void testq(Imm32 rhs, const Operand& lhs) {
    switch (lhs.kind()) {
      case Operand::REG:
        masm.testq_ir(rhs.value, lhs.reg());
        break;
      case Operand::MEM_REG_DISP:
        masm.testq_i32m(rhs.value, lhs.disp(), lhs.base());
        break;
      default:
        MOZ_CRASH("unexpected operand kind");
        break;
    }
  }

  void jmp(ImmPtr target, RelocationKind reloc = RelocationKind::HARDCODED) {
    MOZ_ASSERT(hasCreator());
    JmpSrc src = masm.jmp();
    addPendingJump(src, target, reloc);
  }
  void j(Condition cond, ImmPtr target,
         RelocationKind reloc = RelocationKind::HARDCODED) {
    JmpSrc src = masm.jCC(static_cast<X86Encoding::Condition>(cond));
    addPendingJump(src, target, reloc);
  }

  void jmp(JitCode* target) {
    jmp(ImmPtr(target->raw()), RelocationKind::JITCODE);
  }
  void j(Condition cond, JitCode* target) {
    j(cond, ImmPtr(target->raw()), RelocationKind::JITCODE);
  }
  void call(JitCode* target) {
    JmpSrc src = masm.call();
    addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE);
  }
  void call(ImmWord target) { call(ImmPtr((void*)target.value)); }
  void call(ImmPtr target) {
    JmpSrc src = masm.call();
    addPendingJump(src, target, RelocationKind::HARDCODED);
  }

  // Emit a CALL or CMP (nop) instruction. ToggleCall can be used to patch
  // this instruction.
  CodeOffset toggledCall(JitCode* target, bool enabled) {
    CodeOffset offset(size());
    JmpSrc src = enabled ? masm.call() : masm.cmp_eax();
    addPendingJump(src, ImmPtr(target->raw()), RelocationKind::JITCODE);
    MOZ_ASSERT_IF(!oom(), size() - offset.offset() == ToggledCallSize(nullptr));
    return offset;
  }

  static size_t ToggledCallSize(uint8_t* code) {
    // Size of a call instruction.
    return 5;
  }

  // Do not mask shared implementations.
  using AssemblerX86Shared::call;

  void vcvttsd2sq(FloatRegister src, Register dest) {
    masm.vcvttsd2sq_rr(src.encoding(), dest.encoding());
  }
  void vcvttss2sq(FloatRegister src, Register dest) {
    masm.vcvttss2sq_rr(src.encoding(), dest.encoding());
  }
  void vcvtsq2sd(Register src1, FloatRegister src0, FloatRegister dest) {
    masm.vcvtsq2sd_rr(src1.encoding(), src0.encoding(), dest.encoding());
  }
  void vcvtsq2ss(Register src1, FloatRegister src0, FloatRegister dest) {
    masm.vcvtsq2ss_rr(src1.encoding(), src0.encoding(), dest.encoding());
  }
};

static inline bool GetIntArgReg(uint32_t intArg, uint32_t floatArg,
                                Register* out) {
#if defined(_WIN64)
  uint32_t arg = intArg + floatArg;
#else
  uint32_t arg = intArg;
#endif
  if (arg >= NumIntArgRegs) {
    return false;
  }
  *out = IntArgRegs[arg];
  return true;
}

// Get a register in which we plan to put a quantity that will be used as an
// integer argument.  This differs from GetIntArgReg in that if we have no more
// actual argument registers to use we will fall back on using whatever
// CallTempReg* don't overlap the argument registers, and only fail once those
// run out too.
static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
                                       uint32_t usedFloatArgs, Register* out) {
  if (GetIntArgReg(usedIntArgs, usedFloatArgs, out)) {
    return true;
  }
  // Unfortunately, we have to assume things about the point at which
  // GetIntArgReg returns false, because we need to know how many registers it
  // can allocate.
#if defined(_WIN64)
  uint32_t arg = usedIntArgs + usedFloatArgs;
#else
  uint32_t arg = usedIntArgs;
#endif
  arg -= NumIntArgRegs;
  if (arg >= NumCallTempNonArgRegs) {
    return false;
  }
  *out = CallTempNonArgRegs[arg];
  return true;
}

static inline bool GetFloatArgReg(uint32_t intArg, uint32_t floatArg,
                                  FloatRegister* out) {
#if defined(_WIN64)
  uint32_t arg = intArg + floatArg;
#else
  uint32_t arg = floatArg;
#endif
  if (floatArg >= NumFloatArgRegs) {
    return false;
  }
  *out = FloatArgRegs[arg];
  return true;
}

}  // namespace jit
}  // namespace js

#endif /* jit_x64_Assembler_x64_h */