1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_shared_LIR_x86_shared_h
#define jit_x86_shared_LIR_x86_shared_h
namespace js {
namespace jit {
class LDivI : public LBinaryMath<1> {
public:
LIR_HEADER(DivI)
LDivI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
if (mir()->isTruncated()) {
if (mir()->canBeNegativeZero()) {
return mir()->canBeNegativeOverflow()
? "Truncate_NegativeZero_NegativeOverflow"
: "Truncate_NegativeZero";
}
return mir()->canBeNegativeOverflow() ? "Truncate_NegativeOverflow"
: "Truncate";
}
if (mir()->canBeNegativeZero()) {
return mir()->canBeNegativeOverflow() ? "NegativeZero_NegativeOverflow"
: "NegativeZero";
}
return mir()->canBeNegativeOverflow() ? "NegativeOverflow" : nullptr;
}
const LDefinition* remainder() { return getTemp(0); }
MDiv* mir() const { return mir_->toDiv(); }
};
// Signed division by a power-of-two constant.
class LDivPowTwoI : public LBinaryMath<0> {
const int32_t shift_;
const bool negativeDivisor_;
public:
LIR_HEADER(DivPowTwoI)
LDivPowTwoI(const LAllocation& lhs, const LAllocation& lhsCopy, int32_t shift,
bool negativeDivisor)
: LBinaryMath(classOpcode),
shift_(shift),
negativeDivisor_(negativeDivisor) {
setOperand(0, lhs);
setOperand(1, lhsCopy);
}
const LAllocation* numerator() { return getOperand(0); }
const LAllocation* numeratorCopy() { return getOperand(1); }
int32_t shift() const { return shift_; }
bool negativeDivisor() const { return negativeDivisor_; }
MDiv* mir() const { return mir_->toDiv(); }
};
class LDivOrModConstantI : public LInstructionHelper<1, 1, 1> {
const int32_t denominator_;
public:
LIR_HEADER(DivOrModConstantI)
LDivOrModConstantI(const LAllocation& lhs, int32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
int32_t denominator() const { return denominator_; }
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeNegativeDividend();
}
return mir_->toDiv()->canBeNegativeDividend();
}
};
class LModI : public LBinaryMath<1> {
public:
LIR_HEADER(ModI)
LModI(const LAllocation& lhs, const LAllocation& rhs, const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
const LDefinition* remainder() { return getDef(0); }
MMod* mir() const { return mir_->toMod(); }
};
// This class performs a simple x86 'div', yielding either a quotient or
// remainder depending on whether this instruction is defined to output eax
// (quotient) or edx (remainder).
class LUDivOrMod : public LBinaryMath<1> {
public:
LIR_HEADER(UDivOrMod);
LUDivOrMod(const LAllocation& lhs, const LAllocation& rhs,
const LDefinition& temp)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setTemp(0, temp);
}
const LDefinition* remainder() { return getTemp(0); }
const char* extraName() const {
return mir()->isTruncated() ? "Truncated" : nullptr;
}
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeDivideByZero() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeDivideByZero();
}
return mir_->toDiv()->canBeDivideByZero();
}
bool trapOnError() const {
if (mir_->isMod()) {
return mir_->toMod()->trapOnError();
}
return mir_->toDiv()->trapOnError();
}
wasm::BytecodeOffset bytecodeOffset() const {
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
class LUDivOrModConstant : public LInstructionHelper<1, 1, 1> {
const uint32_t denominator_;
public:
LIR_HEADER(UDivOrModConstant)
LUDivOrModConstant(const LAllocation& lhs, uint32_t denominator,
const LDefinition& temp)
: LInstructionHelper(classOpcode), denominator_(denominator) {
setOperand(0, lhs);
setTemp(0, temp);
}
const LAllocation* numerator() { return getOperand(0); }
uint32_t denominator() const { return denominator_; }
MBinaryArithInstruction* mir() const {
MOZ_ASSERT(mir_->isDiv() || mir_->isMod());
return static_cast<MBinaryArithInstruction*>(mir_);
}
bool canBeNegativeDividend() const {
if (mir_->isMod()) {
return mir_->toMod()->canBeNegativeDividend();
}
return mir_->toDiv()->canBeNegativeDividend();
}
bool trapOnError() const {
if (mir_->isMod()) {
return mir_->toMod()->trapOnError();
}
return mir_->toDiv()->trapOnError();
}
wasm::BytecodeOffset bytecodeOffset() const {
if (mir_->isMod()) {
return mir_->toMod()->bytecodeOffset();
}
return mir_->toDiv()->bytecodeOffset();
}
};
class LModPowTwoI : public LInstructionHelper<1, 1, 0> {
const int32_t shift_;
public:
LIR_HEADER(ModPowTwoI)
LModPowTwoI(const LAllocation& lhs, int32_t shift)
: LInstructionHelper(classOpcode), shift_(shift) {
setOperand(0, lhs);
}
int32_t shift() const { return shift_; }
const LDefinition* remainder() { return getDef(0); }
MMod* mir() const { return mir_->toMod(); }
};
// Takes a tableswitch with an integer to decide
class LTableSwitch : public LInstructionHelper<0, 1, 2> {
public:
LIR_HEADER(TableSwitch)
LTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setOperand(0, in);
setTemp(0, inputCopy);
setTemp(1, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
const LAllocation* index() { return getOperand(0); }
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempPointer() { return getTemp(1); }
};
// Takes a tableswitch with a value to decide
class LTableSwitchV : public LInstructionHelper<0, BOX_PIECES, 3> {
public:
LIR_HEADER(TableSwitchV)
LTableSwitchV(const LBoxAllocation& input, const LDefinition& inputCopy,
const LDefinition& floatCopy,
const LDefinition& jumpTablePointer, MTableSwitch* ins)
: LInstructionHelper(classOpcode) {
setBoxOperand(InputValue, input);
setTemp(0, inputCopy);
setTemp(1, floatCopy);
setTemp(2, jumpTablePointer);
setMir(ins);
}
MTableSwitch* mir() const { return mir_->toTableSwitch(); }
static const size_t InputValue = 0;
const LDefinition* tempInt() { return getTemp(0); }
const LDefinition* tempFloat() { return getTemp(1); }
const LDefinition* tempPointer() { return getTemp(2); }
};
class LMulI : public LBinaryMath<0, 1> {
public:
LIR_HEADER(MulI)
LMulI(const LAllocation& lhs, const LAllocation& rhs,
const LAllocation& lhsCopy)
: LBinaryMath(classOpcode) {
setOperand(0, lhs);
setOperand(1, rhs);
setOperand(2, lhsCopy);
}
const char* extraName() const {
return (mir()->mode() == MMul::Integer)
? "Integer"
: (mir()->canBeNegativeZero() ? "CanBeNegativeZero" : nullptr);
}
MMul* mir() const { return mir_->toMul(); }
const LAllocation* lhsCopy() { return this->getOperand(2); }
};
class LInt64ToFloatingPoint : public LInstructionHelper<1, INT64_PIECES, 1> {
public:
LIR_HEADER(Int64ToFloatingPoint);
LInt64ToFloatingPoint(const LInt64Allocation& in, const LDefinition& temp)
: LInstructionHelper(classOpcode) {
setInt64Operand(0, in);
setTemp(0, temp);
}
MInt64ToFloatingPoint* mir() const { return mir_->toInt64ToFloatingPoint(); }
const LDefinition* temp() { return getTemp(0); }
};
} // namespace jit
} // namespace js
#endif /* jit_x86_shared_LIR_x86_shared_h */
|