1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_x86_shared_MacroAssembler_x86_shared_h
#define jit_x86_shared_MacroAssembler_x86_shared_h
#if defined(JS_CODEGEN_X86)
# include "jit/x86/Assembler-x86.h"
#elif defined(JS_CODEGEN_X64)
# include "jit/x64/Assembler-x64.h"
#endif
using js::wasm::FaultingCodeOffset;
namespace js {
namespace jit {
class MacroAssembler;
class MacroAssemblerX86Shared : public Assembler {
private:
// Perform a downcast. Should be removed by Bug 996602.
MacroAssembler& asMasm();
const MacroAssembler& asMasm() const;
public:
#ifdef JS_CODEGEN_X64
typedef X86Encoding::JmpSrc UsesItem;
#else
typedef CodeOffset UsesItem;
#endif
typedef Vector<UsesItem, 0, SystemAllocPolicy> UsesVector;
static_assert(sizeof(UsesItem) == 4);
protected:
// For Double, Float and SimdData, make the move ctors explicit so that MSVC
// knows what to use instead of copying these data structures.
template <class T>
struct Constant {
using Pod = T;
T value;
UsesVector uses;
explicit Constant(const T& value) : value(value) {}
Constant(Constant<T>&& other)
: value(other.value), uses(std::move(other.uses)) {}
explicit Constant(const Constant<T>&) = delete;
};
// Containers use SystemAllocPolicy since wasm releases memory after each
// function is compiled, and these need to live until after all functions
// are compiled.
using Double = Constant<double>;
Vector<Double, 0, SystemAllocPolicy> doubles_;
typedef HashMap<double, size_t, DefaultHasher<double>, SystemAllocPolicy>
DoubleMap;
DoubleMap doubleMap_;
using Float = Constant<float>;
Vector<Float, 0, SystemAllocPolicy> floats_;
typedef HashMap<float, size_t, DefaultHasher<float>, SystemAllocPolicy>
FloatMap;
FloatMap floatMap_;
struct SimdData : public Constant<SimdConstant> {
explicit SimdData(SimdConstant d) : Constant<SimdConstant>(d) {}
SimdData(SimdData&& d) : Constant<SimdConstant>(std::move(d)) {}
explicit SimdData(const SimdData&) = delete;
SimdConstant::Type type() const { return value.type(); }
};
Vector<SimdData, 0, SystemAllocPolicy> simds_;
typedef HashMap<SimdConstant, size_t, SimdConstant, SystemAllocPolicy>
SimdMap;
SimdMap simdMap_;
template <class T, class Map>
T* getConstant(const typename T::Pod& value, Map& map,
Vector<T, 0, SystemAllocPolicy>& vec);
Float* getFloat(float f);
Double* getDouble(double d);
SimdData* getSimdData(const SimdConstant& v);
public:
using Assembler::call;
MacroAssemblerX86Shared() = default;
bool appendRawCode(const uint8_t* code, size_t numBytes) {
return masm.appendRawCode(code, numBytes);
}
void addToPCRel4(uint32_t offset, int32_t bias) {
return masm.addToPCRel4(offset, bias);
}
// Evaluate srcDest = minmax<isMax>{Float32,Double}(srcDest, second).
// Checks for NaN if canBeNaN is true.
void minMaxDouble(FloatRegister srcDest, FloatRegister second, bool canBeNaN,
bool isMax);
void minMaxFloat32(FloatRegister srcDest, FloatRegister second, bool canBeNaN,
bool isMax);
void compareDouble(DoubleCondition cond, FloatRegister lhs,
FloatRegister rhs) {
if (cond & DoubleConditionBitInvert) {
vucomisd(lhs, rhs);
} else {
vucomisd(rhs, lhs);
}
}
void compareFloat(DoubleCondition cond, FloatRegister lhs,
FloatRegister rhs) {
if (cond & DoubleConditionBitInvert) {
vucomiss(lhs, rhs);
} else {
vucomiss(rhs, lhs);
}
}
void branchNegativeZero(FloatRegister reg, Register scratch, Label* label,
bool maybeNonZero = true);
void branchNegativeZeroFloat32(FloatRegister reg, Register scratch,
Label* label);
void move32(Imm32 imm, Register dest) {
// Use the ImmWord version of mov to register, which has special
// optimizations. Casting to uint32_t here ensures that the value
// is zero-extended.
mov(ImmWord(uint32_t(imm.value)), dest);
}
void move32(Imm32 imm, const Operand& dest) { movl(imm, dest); }
void move32(Register src, Register dest) { movl(src, dest); }
void move32(Register src, const Operand& dest) { movl(src, dest); }
void test32(Register lhs, Register rhs) { testl(rhs, lhs); }
void test32(const Address& addr, Imm32 imm) { testl(imm, Operand(addr)); }
void test32(const Operand lhs, Imm32 imm) { testl(imm, lhs); }
void test32(Register lhs, Imm32 rhs) { testl(rhs, lhs); }
void cmp32(Register lhs, Imm32 rhs) { cmpl(rhs, lhs); }
void cmp32(Register lhs, Register rhs) { cmpl(rhs, lhs); }
void cmp32(const Address& lhs, Register rhs) { cmp32(Operand(lhs), rhs); }
void cmp32(const Address& lhs, Imm32 rhs) { cmp32(Operand(lhs), rhs); }
void cmp32(const Operand& lhs, Imm32 rhs) { cmpl(rhs, lhs); }
void cmp32(const Operand& lhs, Register rhs) { cmpl(rhs, lhs); }
void cmp32(Register lhs, const Operand& rhs) { cmpl(rhs, lhs); }
void cmp16(const Address& lhs, Imm32 rhs) { cmp16(Operand(lhs), rhs); }
void cmp16(const Operand& lhs, Imm32 rhs) { cmpw(rhs, lhs); }
void cmp8(const Address& lhs, Imm32 rhs) { cmp8(Operand(lhs), rhs); }
void cmp8(const Operand& lhs, Imm32 rhs) { cmpb(rhs, lhs); }
void cmp8(const Operand& lhs, Register rhs) { cmpb(rhs, lhs); }
void atomic_inc32(const Operand& addr) { lock_incl(addr); }
void atomic_dec32(const Operand& addr) { lock_decl(addr); }
void branch16(Condition cond, Register lhs, Register rhs, Label* label) {
cmpw(rhs, lhs);
j(cond, label);
}
void branchTest16(Condition cond, Register lhs, Register rhs, Label* label) {
testw(rhs, lhs);
j(cond, label);
}
void jump(Label* label) { jmp(label); }
void jump(JitCode* code) { jmp(code); }
void jump(TrampolinePtr code) { jmp(ImmPtr(code.value)); }
void jump(ImmPtr ptr) { jmp(ptr); }
void jump(Register reg) { jmp(Operand(reg)); }
void jump(const Address& addr) { jmp(Operand(addr)); }
void convertInt32ToDouble(Register src, FloatRegister dest) {
// vcvtsi2sd and friends write only part of their output register, which
// causes slowdowns on out-of-order processors. Explicitly break
// dependencies with vxorpd (and vxorps elsewhere), which are handled
// specially in modern CPUs, for this purpose. See sections 8.14, 9.8,
// 10.8, 12.9, 13.16, 14.14, and 15.8 of Agner's Microarchitecture
// document.
zeroDouble(dest);
vcvtsi2sd(src, dest, dest);
}
void convertInt32ToDouble(const Address& src, FloatRegister dest) {
convertInt32ToDouble(Operand(src), dest);
}
void convertInt32ToDouble(const BaseIndex& src, FloatRegister dest) {
convertInt32ToDouble(Operand(src), dest);
}
void convertInt32ToDouble(const Operand& src, FloatRegister dest) {
// Clear the output register first to break dependencies; see above;
zeroDouble(dest);
vcvtsi2sd(Operand(src), dest, dest);
}
void convertInt32ToFloat32(Register src, FloatRegister dest) {
// Clear the output register first to break dependencies; see above;
zeroFloat32(dest);
vcvtsi2ss(src, dest, dest);
}
void convertInt32ToFloat32(const Address& src, FloatRegister dest) {
convertInt32ToFloat32(Operand(src), dest);
}
void convertInt32ToFloat32(const Operand& src, FloatRegister dest) {
// Clear the output register first to break dependencies; see above;
zeroFloat32(dest);
vcvtsi2ss(src, dest, dest);
}
Condition testDoubleTruthy(bool truthy, FloatRegister reg) {
ScratchDoubleScope scratch(asMasm());
zeroDouble(scratch);
vucomisd(reg, scratch);
return truthy ? NonZero : Zero;
}
// Class which ensures that registers used in byte ops are compatible with
// such instructions, even if the original register passed in wasn't. This
// only applies to x86, as on x64 all registers are valid single byte regs.
// This doesn't lead to great code but helps to simplify code generation.
//
// Note that this can currently only be used in cases where the register is
// read from by the guarded instruction, not written to.
class AutoEnsureByteRegister {
MacroAssemblerX86Shared* masm;
Register original_;
Register substitute_;
public:
template <typename T>
AutoEnsureByteRegister(MacroAssemblerX86Shared* masm, T address,
Register reg)
: masm(masm), original_(reg) {
AllocatableGeneralRegisterSet singleByteRegs(Registers::SingleByteRegs);
if (singleByteRegs.has(reg)) {
substitute_ = reg;
} else {
MOZ_ASSERT(address.base != StackPointer);
do {
substitute_ = singleByteRegs.takeAny();
} while (Operand(address).containsReg(substitute_));
masm->push(substitute_);
masm->mov(reg, substitute_);
}
}
~AutoEnsureByteRegister() {
if (original_ != substitute_) {
masm->pop(substitute_);
}
}
Register reg() { return substitute_; }
};
void load8ZeroExtend(const Operand& src, Register dest) { movzbl(src, dest); }
FaultingCodeOffset load8ZeroExtend(const Address& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movzbl(Operand(src), dest);
return fco;
}
FaultingCodeOffset load8ZeroExtend(const BaseIndex& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movzbl(Operand(src), dest);
return fco;
}
void load8SignExtend(const Operand& src, Register dest) { movsbl(src, dest); }
FaultingCodeOffset load8SignExtend(const Address& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movsbl(Operand(src), dest);
return fco;
}
FaultingCodeOffset load8SignExtend(const BaseIndex& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movsbl(Operand(src), dest);
return fco;
}
template <typename T>
void store8(Imm32 src, const T& dest) {
movb(src, Operand(dest));
}
template <typename T>
FaultingCodeOffset store8(Register src, const T& dest) {
AutoEnsureByteRegister ensure(this, dest, src);
// We must read the current offset only after AutoEnsureByteRegister's
// constructor has done its thing, since it may insert instructions, and
// we want to get the offset for the `movb` itself.
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movb(ensure.reg(), Operand(dest));
return fco;
}
void load16ZeroExtend(const Operand& src, Register dest) {
movzwl(src, dest);
}
FaultingCodeOffset load16ZeroExtend(const Address& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movzwl(Operand(src), dest);
return fco;
}
FaultingCodeOffset load16ZeroExtend(const BaseIndex& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movzwl(Operand(src), dest);
return fco;
}
template <typename S>
void load16UnalignedZeroExtend(const S& src, Register dest) {
load16ZeroExtend(src, dest);
}
template <typename S, typename T>
FaultingCodeOffset store16(const S& src, const T& dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movw(src, Operand(dest));
return fco;
}
template <typename S, typename T>
void store16Unaligned(const S& src, const T& dest) {
store16(src, dest);
}
void load16SignExtend(const Operand& src, Register dest) {
movswl(src, dest);
}
FaultingCodeOffset load16SignExtend(const Address& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movswl(Operand(src), dest);
return fco;
}
FaultingCodeOffset load16SignExtend(const BaseIndex& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movswl(Operand(src), dest);
return fco;
}
template <typename S>
void load16UnalignedSignExtend(const S& src, Register dest) {
load16SignExtend(src, dest);
}
FaultingCodeOffset load32(const Address& address, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movl(Operand(address), dest);
return fco;
}
FaultingCodeOffset load32(const BaseIndex& src, Register dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movl(Operand(src), dest);
return fco;
}
void load32(const Operand& src, Register dest) { movl(src, dest); }
template <typename S>
void load32Unaligned(const S& src, Register dest) {
load32(src, dest);
}
template <typename S, typename T>
FaultingCodeOffset store32(const S& src, const T& dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
movl(src, Operand(dest));
return fco;
}
template <typename S, typename T>
void store32Unaligned(const S& src, const T& dest) {
store32(src, dest);
}
FaultingCodeOffset loadDouble(const Address& src, FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovsd(src, dest);
return fco;
}
FaultingCodeOffset loadDouble(const BaseIndex& src, FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovsd(src, dest);
return fco;
}
void loadDouble(const Operand& src, FloatRegister dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
loadDouble(src.toAddress(), dest);
break;
case Operand::MEM_SCALE:
loadDouble(src.toBaseIndex(), dest);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void moveDouble(FloatRegister src, FloatRegister dest) {
// Use vmovapd instead of vmovsd to avoid dependencies.
vmovapd(src, dest);
}
void zeroDouble(FloatRegister reg) { vxorpd(reg, reg, reg); }
void zeroFloat32(FloatRegister reg) { vxorps(reg, reg, reg); }
void convertFloat32ToDouble(FloatRegister src, FloatRegister dest) {
vcvtss2sd(src, dest, dest);
}
void convertDoubleToFloat32(FloatRegister src, FloatRegister dest) {
vcvtsd2ss(src, dest, dest);
}
void loadInt32x4(const Address& addr, FloatRegister dest) {
vmovdqa(Operand(addr), dest);
}
void loadFloat32x4(const Address& addr, FloatRegister dest) {
vmovaps(Operand(addr), dest);
}
void storeInt32x4(FloatRegister src, const Address& addr) {
vmovdqa(src, Operand(addr));
}
void storeFloat32x4(FloatRegister src, const Address& addr) {
vmovaps(src, Operand(addr));
}
void convertFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest) {
// Note that if the conversion failed (because the converted
// result is larger than the maximum signed int32, or less than the
// least signed int32, or NaN), this will return the undefined integer
// value (0x8000000).
vcvttps2dq(src, dest);
}
void convertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest) {
vcvtdq2ps(src, dest);
}
void binarySimd128(const SimdConstant& rhs, FloatRegister lhsDest,
void (MacroAssembler::*regOp)(const Operand&,
FloatRegister,
FloatRegister),
void (MacroAssembler::*constOp)(const SimdConstant&,
FloatRegister));
void binarySimd128(
FloatRegister lhs, const SimdConstant& rhs, FloatRegister dest,
void (MacroAssembler::*regOp)(const Operand&, FloatRegister,
FloatRegister),
void (MacroAssembler::*constOp)(const SimdConstant&, FloatRegister,
FloatRegister));
void binarySimd128(const SimdConstant& rhs, FloatRegister lhsDest,
void (MacroAssembler::*regOp)(const Operand&,
FloatRegister),
void (MacroAssembler::*constOp)(const SimdConstant&,
FloatRegister));
// SIMD methods, defined in MacroAssembler-x86-shared-SIMD.cpp.
void unsignedConvertInt32x4ToFloat32x4(FloatRegister src, FloatRegister dest);
void unsignedConvertInt32x4ToFloat64x2(FloatRegister src, FloatRegister dest);
void bitwiseTestSimd128(const SimdConstant& rhs, FloatRegister lhs);
void truncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister dest);
void unsignedTruncSatFloat32x4ToInt32x4(FloatRegister src, FloatRegister temp,
FloatRegister dest);
void unsignedTruncFloat32x4ToInt32x4Relaxed(FloatRegister src,
FloatRegister dest);
void truncSatFloat64x2ToInt32x4(FloatRegister src, FloatRegister temp,
FloatRegister dest);
void unsignedTruncSatFloat64x2ToInt32x4(FloatRegister src, FloatRegister temp,
FloatRegister dest);
void unsignedTruncFloat64x2ToInt32x4Relaxed(FloatRegister src,
FloatRegister dest);
void splatX16(Register input, FloatRegister output);
void splatX8(Register input, FloatRegister output);
void splatX4(Register input, FloatRegister output);
void splatX4(FloatRegister input, FloatRegister output);
void splatX2(FloatRegister input, FloatRegister output);
void extractLaneInt32x4(FloatRegister input, Register output, unsigned lane);
void extractLaneFloat32x4(FloatRegister input, FloatRegister output,
unsigned lane);
void extractLaneFloat64x2(FloatRegister input, FloatRegister output,
unsigned lane);
void extractLaneInt16x8(FloatRegister input, Register output, unsigned lane,
SimdSign sign);
void extractLaneInt8x16(FloatRegister input, Register output, unsigned lane,
SimdSign sign);
void replaceLaneFloat32x4(unsigned lane, FloatRegister lhs, FloatRegister rhs,
FloatRegister dest);
void replaceLaneFloat64x2(unsigned lane, FloatRegister lhs, FloatRegister rhs,
FloatRegister dest);
void shuffleInt8x16(FloatRegister lhs, FloatRegister rhs,
FloatRegister output, const uint8_t lanes[16]);
void blendInt8x16(FloatRegister lhs, FloatRegister rhs, FloatRegister output,
FloatRegister temp, const uint8_t lanes[16]);
void blendInt16x8(FloatRegister lhs, FloatRegister rhs, FloatRegister output,
const uint16_t lanes[8]);
void laneSelectSimd128(FloatRegister mask, FloatRegister lhs,
FloatRegister rhs, FloatRegister output);
void compareInt8x16(FloatRegister lhs, Operand rhs, Assembler::Condition cond,
FloatRegister output);
void compareInt8x16(Assembler::Condition cond, FloatRegister lhs,
const SimdConstant& rhs, FloatRegister dest);
void compareInt16x8(FloatRegister lhs, Operand rhs, Assembler::Condition cond,
FloatRegister output);
void compareInt16x8(Assembler::Condition cond, FloatRegister lhs,
const SimdConstant& rhs, FloatRegister dest);
void compareInt32x4(FloatRegister lhs, Operand rhs, Assembler::Condition cond,
FloatRegister output);
void compareInt32x4(Assembler::Condition cond, FloatRegister lhs,
const SimdConstant& rhs, FloatRegister dest);
void compareForEqualityInt64x2(FloatRegister lhs, Operand rhs,
Assembler::Condition cond,
FloatRegister output);
void compareForOrderingInt64x2(FloatRegister lhs, Operand rhs,
Assembler::Condition cond, FloatRegister temp1,
FloatRegister temp2, FloatRegister output);
void compareForOrderingInt64x2AVX(FloatRegister lhs, FloatRegister rhs,
Assembler::Condition cond,
FloatRegister output);
void compareFloat32x4(FloatRegister lhs, Operand rhs,
Assembler::Condition cond, FloatRegister output);
void compareFloat32x4(Assembler::Condition cond, FloatRegister lhs,
const SimdConstant& rhs, FloatRegister dest);
void compareFloat64x2(FloatRegister lhs, Operand rhs,
Assembler::Condition cond, FloatRegister output);
void compareFloat64x2(Assembler::Condition cond, FloatRegister lhs,
const SimdConstant& rhs, FloatRegister dest);
void minMaxFloat32x4(bool isMin, FloatRegister lhs, Operand rhs,
FloatRegister temp1, FloatRegister temp2,
FloatRegister output);
void minMaxFloat32x4AVX(bool isMin, FloatRegister lhs, FloatRegister rhs,
FloatRegister temp1, FloatRegister temp2,
FloatRegister output);
void minMaxFloat64x2(bool isMin, FloatRegister lhs, Operand rhs,
FloatRegister temp1, FloatRegister temp2,
FloatRegister output);
void minMaxFloat64x2AVX(bool isMin, FloatRegister lhs, FloatRegister rhs,
FloatRegister temp1, FloatRegister temp2,
FloatRegister output);
void minFloat32x4(FloatRegister lhs, FloatRegister rhs, FloatRegister temp1,
FloatRegister temp2, FloatRegister output);
void maxFloat32x4(FloatRegister lhs, FloatRegister rhs, FloatRegister temp1,
FloatRegister temp2, FloatRegister output);
void minFloat64x2(FloatRegister lhs, FloatRegister rhs, FloatRegister temp1,
FloatRegister temp2, FloatRegister output);
void maxFloat64x2(FloatRegister lhs, FloatRegister rhs, FloatRegister temp1,
FloatRegister temp2, FloatRegister output);
void packedShiftByScalarInt8x16(
FloatRegister in, Register count, FloatRegister xtmp, FloatRegister dest,
void (MacroAssemblerX86Shared::*shift)(FloatRegister, FloatRegister,
FloatRegister),
void (MacroAssemblerX86Shared::*extend)(const Operand&, FloatRegister));
void packedLeftShiftByScalarInt8x16(FloatRegister in, Register count,
FloatRegister xtmp, FloatRegister dest);
void packedLeftShiftByScalarInt8x16(Imm32 count, FloatRegister src,
FloatRegister dest);
void packedRightShiftByScalarInt8x16(FloatRegister in, Register count,
FloatRegister xtmp, FloatRegister dest);
void packedRightShiftByScalarInt8x16(Imm32 count, FloatRegister src,
FloatRegister dest);
void packedUnsignedRightShiftByScalarInt8x16(FloatRegister in, Register count,
FloatRegister xtmp,
FloatRegister dest);
void packedUnsignedRightShiftByScalarInt8x16(Imm32 count, FloatRegister src,
FloatRegister dest);
void packedLeftShiftByScalarInt16x8(FloatRegister in, Register count,
FloatRegister dest);
void packedRightShiftByScalarInt16x8(FloatRegister in, Register count,
FloatRegister dest);
void packedUnsignedRightShiftByScalarInt16x8(FloatRegister in, Register count,
FloatRegister dest);
void packedLeftShiftByScalarInt32x4(FloatRegister in, Register count,
FloatRegister dest);
void packedRightShiftByScalarInt32x4(FloatRegister in, Register count,
FloatRegister dest);
void packedUnsignedRightShiftByScalarInt32x4(FloatRegister in, Register count,
FloatRegister dest);
void packedLeftShiftByScalarInt64x2(FloatRegister in, Register count,
FloatRegister dest);
void packedRightShiftByScalarInt64x2(FloatRegister in, Register count,
FloatRegister temp, FloatRegister dest);
void packedRightShiftByScalarInt64x2(Imm32 count, FloatRegister src,
FloatRegister dest);
void packedUnsignedRightShiftByScalarInt64x2(FloatRegister in, Register count,
FloatRegister dest);
void selectSimd128(FloatRegister mask, FloatRegister onTrue,
FloatRegister onFalse, FloatRegister temp,
FloatRegister output);
void popcntInt8x16(FloatRegister src, FloatRegister temp,
FloatRegister output);
// SIMD inline methods private to the implementation, that appear to be used.
template <class T, class Reg>
inline void loadScalar(const Operand& src, Reg dest);
template <class T, class Reg>
inline void storeScalar(Reg src, const Address& dest);
template <class T>
inline void loadAlignedVector(const Address& src, FloatRegister dest);
template <class T>
inline void storeAlignedVector(FloatRegister src, const Address& dest);
void loadAlignedSimd128Int(const Address& src, FloatRegister dest) {
vmovdqa(Operand(src), dest);
}
void loadAlignedSimd128Int(const Operand& src, FloatRegister dest) {
vmovdqa(src, dest);
}
void storeAlignedSimd128Int(FloatRegister src, const Address& dest) {
vmovdqa(src, Operand(dest));
}
void moveSimd128Int(FloatRegister src, FloatRegister dest) {
if (src != dest) {
vmovdqa(src, dest);
}
}
FloatRegister moveSimd128IntIfNotAVX(FloatRegister src, FloatRegister dest) {
MOZ_ASSERT(src.isSimd128() && dest.isSimd128());
if (HasAVX()) {
return src;
}
moveSimd128Int(src, dest);
return dest;
}
FloatRegister selectDestIfAVX(FloatRegister src, FloatRegister dest) {
MOZ_ASSERT(src.isSimd128() && dest.isSimd128());
return HasAVX() ? dest : src;
}
FaultingCodeOffset loadUnalignedSimd128Int(const Address& src,
FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovdqu(Operand(src), dest);
return fco;
}
FaultingCodeOffset loadUnalignedSimd128Int(const BaseIndex& src,
FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovdqu(Operand(src), dest);
return fco;
}
void loadUnalignedSimd128Int(const Operand& src, FloatRegister dest) {
vmovdqu(src, dest);
}
FaultingCodeOffset storeUnalignedSimd128Int(FloatRegister src,
const Address& dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovdqu(src, Operand(dest));
return fco;
}
FaultingCodeOffset storeUnalignedSimd128Int(FloatRegister src,
const BaseIndex& dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovdqu(src, Operand(dest));
return fco;
}
void storeUnalignedSimd128Int(FloatRegister src, const Operand& dest) {
vmovdqu(src, dest);
}
void packedLeftShiftByScalarInt16x8(Imm32 count, FloatRegister dest) {
count.value &= 15;
vpsllw(count, dest, dest);
}
void packedRightShiftByScalarInt16x8(Imm32 count, FloatRegister dest) {
count.value &= 15;
vpsraw(count, dest, dest);
}
void packedUnsignedRightShiftByScalarInt16x8(Imm32 count,
FloatRegister dest) {
count.value &= 15;
vpsrlw(count, dest, dest);
}
void packedLeftShiftByScalarInt32x4(Imm32 count, FloatRegister dest) {
count.value &= 31;
vpslld(count, dest, dest);
}
void packedRightShiftByScalarInt32x4(Imm32 count, FloatRegister dest) {
count.value &= 31;
vpsrad(count, dest, dest);
}
void packedUnsignedRightShiftByScalarInt32x4(Imm32 count,
FloatRegister dest) {
count.value &= 31;
vpsrld(count, dest, dest);
}
void loadAlignedSimd128Float(const Address& src, FloatRegister dest) {
vmovaps(Operand(src), dest);
}
void loadAlignedSimd128Float(const Operand& src, FloatRegister dest) {
vmovaps(src, dest);
}
void storeAlignedSimd128Float(FloatRegister src, const Address& dest) {
vmovaps(src, Operand(dest));
}
void moveSimd128Float(FloatRegister src, FloatRegister dest) {
if (src != dest) {
vmovaps(src, dest);
}
}
FloatRegister moveSimd128FloatIfNotAVX(FloatRegister src,
FloatRegister dest) {
MOZ_ASSERT(src.isSimd128() && dest.isSimd128());
if (HasAVX()) {
return src;
}
moveSimd128Float(src, dest);
return dest;
}
FloatRegister moveSimd128FloatIfEqual(FloatRegister src, FloatRegister dest,
FloatRegister other) {
MOZ_ASSERT(src.isSimd128() && dest.isSimd128());
if (src != other) {
return src;
}
moveSimd128Float(src, dest);
return dest;
}
FloatRegister moveSimd128FloatIfNotAVXOrOther(FloatRegister src,
FloatRegister dest,
FloatRegister other) {
MOZ_ASSERT(src.isSimd128() && dest.isSimd128());
if (HasAVX() && src != other) {
return src;
}
moveSimd128Float(src, dest);
return dest;
}
FaultingCodeOffset loadUnalignedSimd128(const Operand& src,
FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovups(src, dest);
return fco;
}
FaultingCodeOffset storeUnalignedSimd128(FloatRegister src,
const Operand& dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovups(src, dest);
return fco;
}
static uint32_t ComputeShuffleMask(uint32_t x = 0, uint32_t y = 1,
uint32_t z = 2, uint32_t w = 3) {
MOZ_ASSERT(x < 4 && y < 4 && z < 4 && w < 4);
uint32_t r = (w << 6) | (z << 4) | (y << 2) | (x << 0);
MOZ_ASSERT(r < 256);
return r;
}
void shuffleInt32(uint32_t mask, FloatRegister src, FloatRegister dest) {
vpshufd(mask, src, dest);
}
void moveLowInt32(FloatRegister src, Register dest) { vmovd(src, dest); }
void moveHighPairToLowPairFloat32(FloatRegister src, FloatRegister dest) {
vmovhlps(src, dest, dest);
}
void moveFloatAsDouble(Register src, FloatRegister dest) {
vmovd(src, dest);
vcvtss2sd(dest, dest, dest);
}
void loadFloatAsDouble(const Address& src, FloatRegister dest) {
vmovss(src, dest);
vcvtss2sd(dest, dest, dest);
}
void loadFloatAsDouble(const BaseIndex& src, FloatRegister dest) {
vmovss(src, dest);
vcvtss2sd(dest, dest, dest);
}
void loadFloatAsDouble(const Operand& src, FloatRegister dest) {
loadFloat32(src, dest);
vcvtss2sd(dest, dest, dest);
}
FaultingCodeOffset loadFloat32(const Address& src, FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovss(src, dest);
return fco;
}
FaultingCodeOffset loadFloat32(const BaseIndex& src, FloatRegister dest) {
FaultingCodeOffset fco = FaultingCodeOffset(currentOffset());
vmovss(src, dest);
return fco;
}
void loadFloat32(const Operand& src, FloatRegister dest) {
switch (src.kind()) {
case Operand::MEM_REG_DISP:
loadFloat32(src.toAddress(), dest);
break;
case Operand::MEM_SCALE:
loadFloat32(src.toBaseIndex(), dest);
break;
default:
MOZ_CRASH("unexpected operand kind");
}
}
void moveFloat32(FloatRegister src, FloatRegister dest) {
// Use vmovaps instead of vmovss to avoid dependencies.
vmovaps(src, dest);
}
// Checks whether a double is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void convertDoubleToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true) {
// Check for -0.0
if (negativeZeroCheck) {
branchNegativeZero(src, dest, fail);
}
ScratchDoubleScope scratch(asMasm());
vcvttsd2si(src, dest);
convertInt32ToDouble(dest, scratch);
vucomisd(scratch, src);
j(Assembler::Parity, fail);
j(Assembler::NotEqual, fail);
}
// Checks whether a float32 is representable as a 32-bit integer. If so, the
// integer is written to the output register. Otherwise, a bailout is taken to
// the given snapshot. This function overwrites the scratch float register.
void convertFloat32ToInt32(FloatRegister src, Register dest, Label* fail,
bool negativeZeroCheck = true) {
// Check for -0.0
if (negativeZeroCheck) {
branchNegativeZeroFloat32(src, dest, fail);
}
ScratchFloat32Scope scratch(asMasm());
vcvttss2si(src, dest);
convertInt32ToFloat32(dest, scratch);
vucomiss(scratch, src);
j(Assembler::Parity, fail);
j(Assembler::NotEqual, fail);
}
void truncateDoubleToInt32(FloatRegister src, Register dest, Label* fail) {
// vcvttsd2si returns 0x80000000 on failure. Test for it by
// subtracting 1 and testing overflow. The other possibility is to test
// equality for INT_MIN after a comparison, but 1 costs fewer bytes to
// materialize.
vcvttsd2si(src, dest);
cmp32(dest, Imm32(1));
j(Assembler::Overflow, fail);
}
void truncateFloat32ToInt32(FloatRegister src, Register dest, Label* fail) {
// Same trick as explained in the above comment.
vcvttss2si(src, dest);
cmp32(dest, Imm32(1));
j(Assembler::Overflow, fail);
}
inline void clampIntToUint8(Register reg);
bool maybeInlineDouble(double d, FloatRegister dest) {
// Loading zero with xor is specially optimized in hardware.
if (mozilla::IsPositiveZero(d)) {
zeroDouble(dest);
return true;
}
// It is also possible to load several common constants using vpcmpeqw
// to get all ones and then vpsllq and vpsrlq to get zeros at the ends,
// as described in "13.4 Generating constants" of
// "2. Optimizing subroutines in assembly language" by Agner Fog, and as
// previously implemented here. However, with x86 and x64 both using
// constant pool loads for double constants, this is probably only
// worthwhile in cases where a load is likely to be delayed.
return false;
}
bool maybeInlineFloat(float f, FloatRegister dest) {
// See comment above
if (mozilla::IsPositiveZero(f)) {
zeroFloat32(dest);
return true;
}
return false;
}
bool maybeInlineSimd128Int(const SimdConstant& v, const FloatRegister& dest) {
if (v.isZeroBits()) {
vpxor(dest, dest, dest);
return true;
}
if (v.isOneBits()) {
vpcmpeqw(Operand(dest), dest, dest);
return true;
}
return false;
}
bool maybeInlineSimd128Float(const SimdConstant& v,
const FloatRegister& dest) {
if (v.isZeroBits()) {
vxorps(dest, dest, dest);
return true;
}
return false;
}
void convertBoolToInt32(Register source, Register dest) {
// Note that C++ bool is only 1 byte, so zero extend it to clear the
// higher-order bits.
movzbl(source, dest);
}
void emitSet(Assembler::Condition cond, Register dest,
Assembler::NaNCond ifNaN = Assembler::NaN_HandledByCond) {
if (AllocatableGeneralRegisterSet(Registers::SingleByteRegs).has(dest)) {
// If the register we're defining is a single byte register,
// take advantage of the setCC instruction
setCC(cond, dest);
movzbl(dest, dest);
if (ifNaN != Assembler::NaN_HandledByCond) {
Label noNaN;
j(Assembler::NoParity, &noNaN);
mov(ImmWord(ifNaN == Assembler::NaN_IsTrue), dest);
bind(&noNaN);
}
} else {
Label end;
Label ifFalse;
if (ifNaN == Assembler::NaN_IsFalse) {
j(Assembler::Parity, &ifFalse);
}
// Note a subtlety here: FLAGS is live at this point, and the
// mov interface doesn't guarantee to preserve FLAGS. Use
// movl instead of mov, because the movl instruction
// preserves FLAGS.
movl(Imm32(1), dest);
j(cond, &end);
if (ifNaN == Assembler::NaN_IsTrue) {
j(Assembler::Parity, &end);
}
bind(&ifFalse);
mov(ImmWord(0), dest);
bind(&end);
}
}
void emitSetRegisterIf(AssemblerX86Shared::Condition cond, Register dest) {
if (AllocatableGeneralRegisterSet(Registers::SingleByteRegs).has(dest)) {
// If the register we're defining is a single byte register,
// take advantage of the setCC instruction
setCC(cond, dest);
movzbl(dest, dest);
} else {
Label end;
movl(Imm32(1), dest);
j(cond, &end);
mov(ImmWord(0), dest);
bind(&end);
}
}
// Emit a JMP that can be toggled to a CMP. See ToggleToJmp(), ToggleToCmp().
CodeOffset toggledJump(Label* label) {
CodeOffset offset(size());
jump(label);
return offset;
}
template <typename T>
void computeEffectiveAddress(const T& address, Register dest) {
lea(Operand(address), dest);
}
void checkStackAlignment() {
// Exists for ARM compatibility.
}
void abiret() { ret(); }
protected:
bool buildOOLFakeExitFrame(void* fakeReturnAddr);
};
// Specialize for float to use movaps. Use movdqa for everything else.
template <>
inline void MacroAssemblerX86Shared::loadAlignedVector<float>(
const Address& src, FloatRegister dest) {
loadAlignedSimd128Float(src, dest);
}
template <typename T>
inline void MacroAssemblerX86Shared::loadAlignedVector(const Address& src,
FloatRegister dest) {
loadAlignedSimd128Int(src, dest);
}
// Specialize for float to use movaps. Use movdqa for everything else.
template <>
inline void MacroAssemblerX86Shared::storeAlignedVector<float>(
FloatRegister src, const Address& dest) {
storeAlignedSimd128Float(src, dest);
}
template <typename T>
inline void MacroAssemblerX86Shared::storeAlignedVector(FloatRegister src,
const Address& dest) {
storeAlignedSimd128Int(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::loadScalar<int8_t>(const Operand& src,
Register dest) {
load8ZeroExtend(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::loadScalar<int16_t>(const Operand& src,
Register dest) {
load16ZeroExtend(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::loadScalar<int32_t>(const Operand& src,
Register dest) {
load32(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::loadScalar<float>(const Operand& src,
FloatRegister dest) {
loadFloat32(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::storeScalar<int8_t>(Register src,
const Address& dest) {
store8(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::storeScalar<int16_t>(Register src,
const Address& dest) {
store16(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::storeScalar<int32_t>(Register src,
const Address& dest) {
store32(src, dest);
}
template <>
inline void MacroAssemblerX86Shared::storeScalar<float>(FloatRegister src,
const Address& dest) {
vmovss(src, dest);
}
} // namespace jit
} // namespace js
#endif /* jit_x86_shared_MacroAssembler_x86_shared_h */
|