1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/RegisterSets.h"
#include "jsapi-tests/tests.h"
using namespace js;
using namespace js::jit;
static bool CoPrime(size_t a, size_t b) {
if (b <= 1) {
return a == 1 || b == 1;
}
return CoPrime(b, a % b);
}
// This macros are use to iterave over all registers in a large number of
// non-looping sequences, which does not rely on the getFirst / getLast
// functions.
#define BEGIN_INDEX_WALK(RegTotal) \
static const size_t Total = RegTotal; \
for (size_t walk = 1; walk < RegTotal; walk += 2) { \
if (!CoPrime(RegTotal, walk)) continue; \
for (size_t start = 0; start < RegTotal; start++) { \
size_t index = start;
#define END_INDEX_WALK \
} \
}
#define BEGIN_All_WALK(RegTotal) \
static const size_t Total = RegTotal; \
size_t walk = 1; \
size_t start = 0; \
size_t index = start;
#define FOR_ALL_REGISTERS(Register, reg) \
do { \
Register reg = Register::FromCode(index);
#define END_FOR_ALL_REGISTERS \
index = (index + walk) % Total; \
} \
while (index != start)
BEGIN_TEST(testJitRegisterSet_GPR) {
BEGIN_INDEX_WALK(Registers::Total)
LiveGeneralRegisterSet liveRegs;
AllocatableGeneralRegisterSet pool(GeneralRegisterSet::All());
CHECK(liveRegs.empty());
CHECK(pool.set() == GeneralRegisterSet::All());
FOR_ALL_REGISTERS(Register, reg) {
CHECK(!pool.has(reg) || !liveRegs.has(reg));
if (pool.has(reg)) {
CHECK(!liveRegs.has(reg));
pool.take(reg);
liveRegs.add(reg);
CHECK(liveRegs.has(reg));
CHECK(!pool.has(reg));
}
CHECK(!pool.has(reg) || !liveRegs.has(reg));
}
END_FOR_ALL_REGISTERS;
CHECK(pool.empty());
FOR_ALL_REGISTERS(Register, reg) {
CHECK(!pool.has(reg) || !liveRegs.has(reg));
if (liveRegs.has(reg)) {
CHECK(!pool.has(reg));
liveRegs.take(reg);
pool.add(reg);
CHECK(pool.has(reg));
CHECK(!liveRegs.has(reg));
}
CHECK(!pool.has(reg) || !liveRegs.has(reg));
}
END_FOR_ALL_REGISTERS;
CHECK(liveRegs.empty());
CHECK(pool.set() == GeneralRegisterSet::All());
END_INDEX_WALK
return true;
}
END_TEST(testJitRegisterSet_GPR)
BEGIN_TEST(testJitRegisterSet_FPU) {
BEGIN_INDEX_WALK(FloatRegisters::Total)
LiveFloatRegisterSet liveRegs;
AllocatableFloatRegisterSet pool(FloatRegisterSet::All());
CHECK(liveRegs.empty());
CHECK(pool.set() == FloatRegisterSet::All());
FOR_ALL_REGISTERS(FloatRegister, reg) {
CHECK(!pool.has(reg) || !liveRegs.has(reg));
if (pool.has(reg)) {
CHECK(!liveRegs.has(reg));
pool.take(reg);
liveRegs.add(reg);
CHECK(liveRegs.has(reg));
CHECK(!pool.has(reg));
}
CHECK(!pool.has(reg) || !liveRegs.has(reg));
}
END_FOR_ALL_REGISTERS;
CHECK(pool.empty());
FOR_ALL_REGISTERS(FloatRegister, reg) {
CHECK(!pool.has(reg) || !liveRegs.has(reg));
if (liveRegs.has(reg)) {
CHECK(!pool.has(reg));
liveRegs.take(reg);
pool.add(reg);
CHECK(pool.has(reg));
CHECK(!liveRegs.has(reg));
}
CHECK(!pool.has(reg) || !liveRegs.has(reg));
}
END_FOR_ALL_REGISTERS;
CHECK(liveRegs.empty());
CHECK(pool.set() == FloatRegisterSet::All());
END_INDEX_WALK
return true;
}
END_TEST(testJitRegisterSet_FPU)
void pullAllFpus(AllocatableFloatRegisterSet& set, uint32_t& max_bits,
uint32_t bits) {
FloatRegisterSet allocSet(set.bits());
FloatRegisterSet available_f32(
allocSet.allAllocatable<RegTypeName::Float32>());
FloatRegisterSet available_f64(
allocSet.allAllocatable<RegTypeName::Float64>());
FloatRegisterSet available_v128(
allocSet.allAllocatable<RegTypeName::Vector128>());
for (FloatRegisterIterator it(available_f32); it.more(); ++it) {
FloatRegister tmp = *it;
set.take(tmp);
pullAllFpus(set, max_bits, bits + 32);
set.add(tmp);
}
for (FloatRegisterIterator it(available_f64); it.more(); ++it) {
FloatRegister tmp = *it;
set.take(tmp);
pullAllFpus(set, max_bits, bits + 64);
set.add(tmp);
}
for (FloatRegisterIterator it(available_v128); it.more(); ++it) {
FloatRegister tmp = *it;
set.take(tmp);
pullAllFpus(set, max_bits, bits + 128);
set.add(tmp);
}
if (bits >= max_bits) {
max_bits = bits;
}
}
BEGIN_TEST(testJitRegisterSet_FPU_Aliases) {
BEGIN_All_WALK(FloatRegisters::Total);
FOR_ALL_REGISTERS(FloatRegister, reg) {
AllocatableFloatRegisterSet pool;
pool.add(reg);
uint32_t alias_bits = 0;
for (uint32_t i = 0; i < reg.numAlignedAliased(); i++) {
FloatRegister alias = reg.alignedAliased(i);
if (alias.isSingle()) {
if (alias_bits <= 32) {
alias_bits = 32;
}
} else if (alias.isDouble()) {
if (alias_bits <= 64) {
alias_bits = 64;
}
} else if (alias.isSimd128()) {
if (alias_bits <= 128) {
alias_bits = 128;
}
}
}
uint32_t max_bits = 0;
pullAllFpus(pool, max_bits, 0);
// By adding one register, we expect that we should not be able to pull
// more than any of its aligned aliases. This rule should hold for both
// x64 and ARM.
CHECK(max_bits <= alias_bits);
// We added one register, we expect to be able to pull it back.
CHECK(max_bits > 0);
}
END_FOR_ALL_REGISTERS;
return true;
}
END_TEST(testJitRegisterSet_FPU_Aliases)
|