1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2021 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_binary_h
#define wasm_binary_h
#include "mozilla/DebugOnly.h"
#include "mozilla/Maybe.h"
#include <type_traits>
#include "js/WasmFeatures.h"
#include "wasm/WasmCompile.h"
#include "wasm/WasmCompileArgs.h"
#include "wasm/WasmConstants.h"
#include "wasm/WasmTypeDecls.h"
#include "wasm/WasmTypeDef.h"
#include "wasm/WasmValType.h"
namespace js {
namespace wasm {
using mozilla::DebugOnly;
using mozilla::Maybe;
struct ModuleEnvironment;
// The Opcode compactly and safely represents the primary opcode plus any
// extension, with convenient predicates and accessors.
class Opcode {
uint32_t bits_;
public:
MOZ_IMPLICIT Opcode(Op op) : bits_(uint32_t(op)) {
static_assert(size_t(Op::Limit) == 256, "fits");
MOZ_ASSERT(size_t(op) < size_t(Op::Limit));
}
MOZ_IMPLICIT Opcode(MiscOp op)
: bits_((uint32_t(op) << 8) | uint32_t(Op::MiscPrefix)) {
static_assert(size_t(MiscOp::Limit) <= 0xFFFFFF, "fits");
MOZ_ASSERT(size_t(op) < size_t(MiscOp::Limit));
}
MOZ_IMPLICIT Opcode(ThreadOp op)
: bits_((uint32_t(op) << 8) | uint32_t(Op::ThreadPrefix)) {
static_assert(size_t(ThreadOp::Limit) <= 0xFFFFFF, "fits");
MOZ_ASSERT(size_t(op) < size_t(ThreadOp::Limit));
}
MOZ_IMPLICIT Opcode(MozOp op)
: bits_((uint32_t(op) << 8) | uint32_t(Op::MozPrefix)) {
static_assert(size_t(MozOp::Limit) <= 0xFFFFFF, "fits");
MOZ_ASSERT(size_t(op) < size_t(MozOp::Limit));
}
MOZ_IMPLICIT Opcode(SimdOp op)
: bits_((uint32_t(op) << 8) | uint32_t(Op::SimdPrefix)) {
static_assert(size_t(SimdOp::Limit) <= 0xFFFFFF, "fits");
MOZ_ASSERT(size_t(op) < size_t(SimdOp::Limit));
}
bool isOp() const { return bits_ < uint32_t(Op::FirstPrefix); }
bool isMisc() const { return (bits_ & 255) == uint32_t(Op::MiscPrefix); }
bool isThread() const { return (bits_ & 255) == uint32_t(Op::ThreadPrefix); }
bool isMoz() const { return (bits_ & 255) == uint32_t(Op::MozPrefix); }
bool isSimd() const { return (bits_ & 255) == uint32_t(Op::SimdPrefix); }
Op asOp() const {
MOZ_ASSERT(isOp());
return Op(bits_);
}
MiscOp asMisc() const {
MOZ_ASSERT(isMisc());
return MiscOp(bits_ >> 8);
}
ThreadOp asThread() const {
MOZ_ASSERT(isThread());
return ThreadOp(bits_ >> 8);
}
MozOp asMoz() const {
MOZ_ASSERT(isMoz());
return MozOp(bits_ >> 8);
}
SimdOp asSimd() const {
MOZ_ASSERT(isSimd());
return SimdOp(bits_ >> 8);
}
uint32_t bits() const { return bits_; }
bool operator==(const Opcode& that) const { return bits_ == that.bits_; }
bool operator!=(const Opcode& that) const { return bits_ != that.bits_; }
};
// This struct captures the bytecode offset of a section's payload (so not
// including the header) and the size of the payload.
struct SectionRange {
uint32_t start;
uint32_t size;
uint32_t end() const { return start + size; }
bool operator==(const SectionRange& rhs) const {
return start == rhs.start && size == rhs.size;
}
};
using MaybeSectionRange = Maybe<SectionRange>;
// The Encoder class appends bytes to the Bytes object it is given during
// construction. The client is responsible for the Bytes's lifetime and must
// keep the Bytes alive as long as the Encoder is used.
class Encoder {
Bytes& bytes_;
template <class T>
[[nodiscard]] bool write(const T& v) {
return bytes_.append(reinterpret_cast<const uint8_t*>(&v), sizeof(T));
}
template <typename UInt>
[[nodiscard]] bool writeVarU(UInt i) {
do {
uint8_t byte = i & 0x7f;
i >>= 7;
if (i != 0) {
byte |= 0x80;
}
if (!bytes_.append(byte)) {
return false;
}
} while (i != 0);
return true;
}
template <typename SInt>
[[nodiscard]] bool writeVarS(SInt i) {
bool done;
do {
uint8_t byte = i & 0x7f;
i >>= 7;
done = ((i == 0) && !(byte & 0x40)) || ((i == -1) && (byte & 0x40));
if (!done) {
byte |= 0x80;
}
if (!bytes_.append(byte)) {
return false;
}
} while (!done);
return true;
}
void patchVarU32(size_t offset, uint32_t patchBits, uint32_t assertBits) {
do {
uint8_t assertByte = assertBits & 0x7f;
uint8_t patchByte = patchBits & 0x7f;
assertBits >>= 7;
patchBits >>= 7;
if (assertBits != 0) {
assertByte |= 0x80;
patchByte |= 0x80;
}
MOZ_ASSERT(assertByte == bytes_[offset]);
(void)assertByte;
bytes_[offset] = patchByte;
offset++;
} while (assertBits != 0);
}
void patchFixedU7(size_t offset, uint8_t patchBits, uint8_t assertBits) {
MOZ_ASSERT(patchBits <= uint8_t(INT8_MAX));
patchFixedU8(offset, patchBits, assertBits);
}
void patchFixedU8(size_t offset, uint8_t patchBits, uint8_t assertBits) {
MOZ_ASSERT(bytes_[offset] == assertBits);
bytes_[offset] = patchBits;
}
uint32_t varU32ByteLength(size_t offset) const {
size_t start = offset;
while (bytes_[offset] & 0x80) {
offset++;
}
return offset - start + 1;
}
public:
explicit Encoder(Bytes& bytes) : bytes_(bytes) { MOZ_ASSERT(empty()); }
size_t currentOffset() const { return bytes_.length(); }
bool empty() const { return currentOffset() == 0; }
// Fixed-size encoding operations simply copy the literal bytes (without
// attempting to align).
[[nodiscard]] bool writeFixedU7(uint8_t i) {
MOZ_ASSERT(i <= uint8_t(INT8_MAX));
return writeFixedU8(i);
}
[[nodiscard]] bool writeFixedU8(uint8_t i) { return write<uint8_t>(i); }
[[nodiscard]] bool writeFixedU32(uint32_t i) { return write<uint32_t>(i); }
[[nodiscard]] bool writeFixedF32(float f) { return write<float>(f); }
[[nodiscard]] bool writeFixedF64(double d) { return write<double>(d); }
// Variable-length encodings that all use LEB128.
[[nodiscard]] bool writeVarU32(uint32_t i) { return writeVarU<uint32_t>(i); }
[[nodiscard]] bool writeVarS32(int32_t i) { return writeVarS<int32_t>(i); }
[[nodiscard]] bool writeVarU64(uint64_t i) { return writeVarU<uint64_t>(i); }
[[nodiscard]] bool writeVarS64(int64_t i) { return writeVarS<int64_t>(i); }
[[nodiscard]] bool writeValType(ValType type) {
static_assert(size_t(TypeCode::Limit) <= UINT8_MAX, "fits");
// writeValType is only used by asm.js, which doesn't use type
// references
MOZ_RELEASE_ASSERT(!type.isTypeRef(), "NYI");
TypeCode tc = type.packed().typeCode();
MOZ_ASSERT(size_t(tc) < size_t(TypeCode::Limit));
return writeFixedU8(uint8_t(tc));
}
[[nodiscard]] bool writeOp(Opcode opcode) {
// The Opcode constructor has asserted that `opcode` is meaningful, so no
// further correctness checking is necessary here.
uint32_t bits = opcode.bits();
if (!writeFixedU8(bits & 255)) {
return false;
}
if (opcode.isOp()) {
return true;
}
return writeVarU32(bits >> 8);
}
// Fixed-length encodings that allow back-patching.
[[nodiscard]] bool writePatchableFixedU7(size_t* offset) {
*offset = bytes_.length();
return writeFixedU8(UINT8_MAX);
}
void patchFixedU7(size_t offset, uint8_t patchBits) {
return patchFixedU7(offset, patchBits, UINT8_MAX);
}
// Variable-length encodings that allow back-patching.
[[nodiscard]] bool writePatchableVarU32(size_t* offset) {
*offset = bytes_.length();
return writeVarU32(UINT32_MAX);
}
void patchVarU32(size_t offset, uint32_t patchBits) {
return patchVarU32(offset, patchBits, UINT32_MAX);
}
// Byte ranges start with an LEB128 length followed by an arbitrary sequence
// of bytes. When used for strings, bytes are to be interpreted as utf8.
[[nodiscard]] bool writeBytes(const void* bytes, uint32_t numBytes) {
return writeVarU32(numBytes) &&
bytes_.append(reinterpret_cast<const uint8_t*>(bytes), numBytes);
}
// A "section" is a contiguous range of bytes that stores its own size so
// that it may be trivially skipped without examining the payload. Sections
// require backpatching since the size of the section is only known at the
// end while the size's varU32 must be stored at the beginning. Immediately
// after the section length is the string id of the section.
[[nodiscard]] bool startSection(SectionId id, size_t* offset) {
MOZ_ASSERT(uint32_t(id) < 128);
return writeVarU32(uint32_t(id)) && writePatchableVarU32(offset);
}
void finishSection(size_t offset) {
return patchVarU32(offset,
bytes_.length() - offset - varU32ByteLength(offset));
}
};
// The Decoder class decodes the bytes in the range it is given during
// construction. The client is responsible for keeping the byte range alive as
// long as the Decoder is used.
class Decoder {
const uint8_t* const beg_;
const uint8_t* const end_;
const uint8_t* cur_;
const size_t offsetInModule_;
UniqueChars* error_;
UniqueCharsVector* warnings_;
bool resilientMode_;
template <class T>
[[nodiscard]] bool read(T* out) {
if (bytesRemain() < sizeof(T)) {
return false;
}
memcpy((void*)out, cur_, sizeof(T));
cur_ += sizeof(T);
return true;
}
template <class T>
T uncheckedRead() {
MOZ_ASSERT(bytesRemain() >= sizeof(T));
T ret;
memcpy(&ret, cur_, sizeof(T));
cur_ += sizeof(T);
return ret;
}
template <class T>
void uncheckedRead(T* ret) {
MOZ_ASSERT(bytesRemain() >= sizeof(T));
memcpy(ret, cur_, sizeof(T));
cur_ += sizeof(T);
}
template <typename UInt>
[[nodiscard]] bool readVarU(UInt* out) {
DebugOnly<const uint8_t*> before = cur_;
const unsigned numBits = sizeof(UInt) * CHAR_BIT;
const unsigned remainderBits = numBits % 7;
const unsigned numBitsInSevens = numBits - remainderBits;
UInt u = 0;
uint8_t byte;
UInt shift = 0;
do {
if (!readFixedU8(&byte)) {
return false;
}
if (!(byte & 0x80)) {
*out = u | UInt(byte) << shift;
return true;
}
u |= UInt(byte & 0x7F) << shift;
shift += 7;
} while (shift != numBitsInSevens);
if (!readFixedU8(&byte) || (byte & (unsigned(-1) << remainderBits))) {
return false;
}
*out = u | (UInt(byte) << numBitsInSevens);
MOZ_ASSERT_IF(sizeof(UInt) == 4,
unsigned(cur_ - before) <= MaxVarU32DecodedBytes);
return true;
}
template <typename SInt>
[[nodiscard]] bool readVarS(SInt* out) {
using UInt = std::make_unsigned_t<SInt>;
const unsigned numBits = sizeof(SInt) * CHAR_BIT;
const unsigned remainderBits = numBits % 7;
const unsigned numBitsInSevens = numBits - remainderBits;
SInt s = 0;
uint8_t byte;
unsigned shift = 0;
do {
if (!readFixedU8(&byte)) {
return false;
}
s |= SInt(byte & 0x7f) << shift;
shift += 7;
if (!(byte & 0x80)) {
if (byte & 0x40) {
s |= UInt(-1) << shift;
}
*out = s;
return true;
}
} while (shift < numBitsInSevens);
if (!remainderBits || !readFixedU8(&byte) || (byte & 0x80)) {
return false;
}
uint8_t mask = 0x7f & (uint8_t(-1) << remainderBits);
if ((byte & mask) != ((byte & (1 << (remainderBits - 1))) ? mask : 0)) {
return false;
}
*out = s | UInt(byte) << shift;
return true;
}
public:
Decoder(const uint8_t* begin, const uint8_t* end, size_t offsetInModule,
UniqueChars* error, UniqueCharsVector* warnings = nullptr,
bool resilientMode = false)
: beg_(begin),
end_(end),
cur_(begin),
offsetInModule_(offsetInModule),
error_(error),
warnings_(warnings),
resilientMode_(resilientMode) {
MOZ_ASSERT(begin <= end);
}
explicit Decoder(const Bytes& bytes, size_t offsetInModule = 0,
UniqueChars* error = nullptr,
UniqueCharsVector* warnings = nullptr)
: beg_(bytes.begin()),
end_(bytes.end()),
cur_(bytes.begin()),
offsetInModule_(offsetInModule),
error_(error),
warnings_(warnings),
resilientMode_(false) {}
// These convenience functions use currentOffset() as the errorOffset.
bool fail(const char* msg) { return fail(currentOffset(), msg); }
bool failf(const char* msg, ...) MOZ_FORMAT_PRINTF(2, 3);
void warnf(const char* msg, ...) MOZ_FORMAT_PRINTF(2, 3);
// Report an error at the given offset (relative to the whole module).
bool fail(size_t errorOffset, const char* msg);
UniqueChars* error() { return error_; }
void clearError() {
if (error_) {
error_->reset();
}
}
bool done() const {
MOZ_ASSERT(cur_ <= end_);
return cur_ == end_;
}
bool resilientMode() const { return resilientMode_; }
size_t bytesRemain() const {
MOZ_ASSERT(end_ >= cur_);
return size_t(end_ - cur_);
}
// pos must be a value previously returned from currentPosition.
void rollbackPosition(const uint8_t* pos) { cur_ = pos; }
const uint8_t* currentPosition() const { return cur_; }
size_t beginOffset() const { return offsetInModule_; }
size_t currentOffset() const { return offsetInModule_ + (cur_ - beg_); }
const uint8_t* begin() const { return beg_; }
const uint8_t* end() const { return end_; }
// Peek at the next byte, if it exists, without advancing the position.
bool peekByte(uint8_t* byte) {
if (done()) {
return false;
}
*byte = *cur_;
return true;
}
// Fixed-size encoding operations simply copy the literal bytes (without
// attempting to align).
[[nodiscard]] bool readFixedU8(uint8_t* i) { return read<uint8_t>(i); }
[[nodiscard]] bool readFixedU32(uint32_t* u) { return read<uint32_t>(u); }
[[nodiscard]] bool readFixedF32(float* f) { return read<float>(f); }
[[nodiscard]] bool readFixedF64(double* d) { return read<double>(d); }
#ifdef ENABLE_WASM_SIMD
[[nodiscard]] bool readFixedV128(V128* d) {
for (unsigned i = 0; i < 16; i++) {
if (!read<uint8_t>(d->bytes + i)) {
return false;
}
}
return true;
}
#endif
// Variable-length encodings that all use LEB128.
[[nodiscard]] bool readVarU32(uint32_t* out) {
return readVarU<uint32_t>(out);
}
[[nodiscard]] bool readVarS32(int32_t* out) { return readVarS<int32_t>(out); }
[[nodiscard]] bool readVarU64(uint64_t* out) {
return readVarU<uint64_t>(out);
}
[[nodiscard]] bool readVarS64(int64_t* out) { return readVarS<int64_t>(out); }
// Value and reference types
[[nodiscard]] ValType uncheckedReadValType(const TypeContext& types);
template <class T>
[[nodiscard]] bool readPackedType(const TypeContext& types,
const FeatureArgs& features, T* type);
[[nodiscard]] bool readValType(const TypeContext& types,
const FeatureArgs& features, ValType* type);
[[nodiscard]] bool readStorageType(const TypeContext& types,
const FeatureArgs& features,
StorageType* type);
[[nodiscard]] bool readHeapType(const TypeContext& types,
const FeatureArgs& features, bool nullable,
RefType* type);
[[nodiscard]] bool readRefType(const TypeContext& types,
const FeatureArgs& features, RefType* type);
// Instruction opcode
[[nodiscard]] bool readOp(OpBytes* op);
// Instruction immediates for constant instructions
[[nodiscard]] bool readBinary() { return true; }
[[nodiscard]] bool readTypeIndex(uint32_t* typeIndex);
[[nodiscard]] bool readGlobalIndex(uint32_t* globalIndex);
[[nodiscard]] bool readFuncIndex(uint32_t* funcIndex);
[[nodiscard]] bool readI32Const(int32_t* i32);
[[nodiscard]] bool readI64Const(int64_t* i64);
[[nodiscard]] bool readF32Const(float* f32);
[[nodiscard]] bool readF64Const(double* f64);
#ifdef ENABLE_WASM_SIMD
[[nodiscard]] bool readV128Const(V128* value);
#endif
[[nodiscard]] bool readRefNull(const TypeContext& types,
const FeatureArgs& features, RefType* type);
// See writeBytes comment.
[[nodiscard]] bool readBytes(uint32_t numBytes,
const uint8_t** bytes = nullptr) {
if (bytes) {
*bytes = cur_;
}
if (bytesRemain() < numBytes) {
return false;
}
cur_ += numBytes;
return true;
}
// See "section" description in Encoder.
[[nodiscard]] bool readSectionHeader(uint8_t* id, SectionRange* range);
[[nodiscard]] bool startSection(SectionId id, ModuleEnvironment* env,
MaybeSectionRange* range,
const char* sectionName);
[[nodiscard]] bool finishSection(const SectionRange& range,
const char* sectionName);
// Custom sections do not cause validation errors unless the error is in
// the section header itself.
[[nodiscard]] bool startCustomSection(const char* expected,
size_t expectedLength,
ModuleEnvironment* env,
MaybeSectionRange* range);
template <size_t NameSizeWith0>
[[nodiscard]] bool startCustomSection(const char (&name)[NameSizeWith0],
ModuleEnvironment* env,
MaybeSectionRange* range) {
MOZ_ASSERT(name[NameSizeWith0 - 1] == '\0');
return startCustomSection(name, NameSizeWith0 - 1, env, range);
}
void finishCustomSection(const char* name, const SectionRange& range);
void skipAndFinishCustomSection(const SectionRange& range);
[[nodiscard]] bool skipCustomSection(ModuleEnvironment* env);
// The Name section has its own optional subsections.
[[nodiscard]] bool startNameSubsection(NameType nameType,
Maybe<uint32_t>* endOffset);
[[nodiscard]] bool finishNameSubsection(uint32_t endOffset);
[[nodiscard]] bool skipNameSubsection();
// The infallible "unchecked" decoding functions can be used when we are
// sure that the bytes are well-formed (by construction or due to previous
// validation).
uint8_t uncheckedReadFixedU8() { return uncheckedRead<uint8_t>(); }
uint32_t uncheckedReadFixedU32() { return uncheckedRead<uint32_t>(); }
void uncheckedReadFixedF32(float* out) { uncheckedRead<float>(out); }
void uncheckedReadFixedF64(double* out) { uncheckedRead<double>(out); }
template <typename UInt>
UInt uncheckedReadVarU() {
static const unsigned numBits = sizeof(UInt) * CHAR_BIT;
static const unsigned remainderBits = numBits % 7;
static const unsigned numBitsInSevens = numBits - remainderBits;
UInt decoded = 0;
uint32_t shift = 0;
do {
uint8_t byte = *cur_++;
if (!(byte & 0x80)) {
return decoded | (UInt(byte) << shift);
}
decoded |= UInt(byte & 0x7f) << shift;
shift += 7;
} while (shift != numBitsInSevens);
uint8_t byte = *cur_++;
MOZ_ASSERT(!(byte & 0xf0));
return decoded | (UInt(byte) << numBitsInSevens);
}
uint32_t uncheckedReadVarU32() { return uncheckedReadVarU<uint32_t>(); }
int32_t uncheckedReadVarS32() {
int32_t i32 = 0;
MOZ_ALWAYS_TRUE(readVarS32(&i32));
return i32;
}
uint64_t uncheckedReadVarU64() { return uncheckedReadVarU<uint64_t>(); }
int64_t uncheckedReadVarS64() {
int64_t i64 = 0;
MOZ_ALWAYS_TRUE(readVarS64(&i64));
return i64;
}
Op uncheckedReadOp() {
static_assert(size_t(Op::Limit) == 256, "fits");
uint8_t u8 = uncheckedReadFixedU8();
return u8 != UINT8_MAX ? Op(u8) : Op(uncheckedReadFixedU8() + UINT8_MAX);
}
};
// Value and reference types
inline ValType Decoder::uncheckedReadValType(const TypeContext& types) {
uint8_t code = uncheckedReadFixedU8();
switch (code) {
case uint8_t(TypeCode::FuncRef):
case uint8_t(TypeCode::ExternRef):
case uint8_t(TypeCode::ExnRef):
return RefType::fromTypeCode(TypeCode(code), true);
case uint8_t(TypeCode::Ref):
case uint8_t(TypeCode::NullableRef): {
bool nullable = code == uint8_t(TypeCode::NullableRef);
uint8_t nextByte;
peekByte(&nextByte);
if ((nextByte & SLEB128SignMask) == SLEB128SignBit) {
uint8_t code = uncheckedReadFixedU8();
return RefType::fromTypeCode(TypeCode(code), nullable);
}
int32_t x = uncheckedReadVarS32();
const TypeDef* typeDef = &types.type(x);
return RefType::fromTypeDef(typeDef, nullable);
}
default:
return ValType::fromNonRefTypeCode(TypeCode(code));
}
}
template <class T>
inline bool Decoder::readPackedType(const TypeContext& types,
const FeatureArgs& features, T* type) {
static_assert(uint8_t(TypeCode::Limit) <= UINT8_MAX, "fits");
uint8_t code;
if (!readFixedU8(&code)) {
return fail("expected type code");
}
switch (code) {
case uint8_t(TypeCode::V128): {
#ifdef ENABLE_WASM_SIMD
if (!features.simd) {
return fail("v128 not enabled");
}
*type = T::fromNonRefTypeCode(TypeCode(code));
return true;
#else
break;
#endif
}
case uint8_t(TypeCode::FuncRef):
case uint8_t(TypeCode::ExternRef): {
*type = RefType::fromTypeCode(TypeCode(code), true);
return true;
}
case uint8_t(TypeCode::ExnRef): {
if (!features.exnref) {
return fail("exnref not enabled");
}
*type = RefType::fromTypeCode(TypeCode(code), true);
return true;
}
case uint8_t(TypeCode::Ref):
case uint8_t(TypeCode::NullableRef): {
#ifdef ENABLE_WASM_FUNCTION_REFERENCES
if (!features.functionReferences) {
return fail("(ref T) types not enabled");
}
bool nullable = code == uint8_t(TypeCode::NullableRef);
RefType refType;
if (!readHeapType(types, features, nullable, &refType)) {
return false;
}
*type = refType;
return true;
#else
break;
#endif
}
case uint8_t(TypeCode::AnyRef):
case uint8_t(TypeCode::I31Ref):
case uint8_t(TypeCode::EqRef):
case uint8_t(TypeCode::StructRef):
case uint8_t(TypeCode::ArrayRef):
case uint8_t(TypeCode::NullFuncRef):
case uint8_t(TypeCode::NullExternRef):
case uint8_t(TypeCode::NullAnyRef): {
#ifdef ENABLE_WASM_GC
if (!features.gc) {
return fail("gc types not enabled");
}
*type = RefType::fromTypeCode(TypeCode(code), true);
return true;
#else
break;
#endif
}
default: {
if (!T::isValidTypeCode(TypeCode(code))) {
break;
}
*type = T::fromNonRefTypeCode(TypeCode(code));
return true;
}
}
return fail("bad type");
}
inline bool Decoder::readValType(const TypeContext& types,
const FeatureArgs& features, ValType* type) {
return readPackedType<ValType>(types, features, type);
}
inline bool Decoder::readStorageType(const TypeContext& types,
const FeatureArgs& features,
StorageType* type) {
return readPackedType<StorageType>(types, features, type);
}
inline bool Decoder::readHeapType(const TypeContext& types,
const FeatureArgs& features, bool nullable,
RefType* type) {
uint8_t nextByte;
if (!peekByte(&nextByte)) {
return fail("expected heap type code");
}
if ((nextByte & SLEB128SignMask) == SLEB128SignBit) {
uint8_t code;
if (!readFixedU8(&code)) {
return false;
}
switch (code) {
case uint8_t(TypeCode::FuncRef):
case uint8_t(TypeCode::ExternRef):
*type = RefType::fromTypeCode(TypeCode(code), nullable);
return true;
case uint8_t(TypeCode::ExnRef): {
if (!features.exnref) {
return fail("exnref not enabled");
}
*type = RefType::fromTypeCode(TypeCode(code), nullable);
return true;
}
#ifdef ENABLE_WASM_GC
case uint8_t(TypeCode::AnyRef):
case uint8_t(TypeCode::I31Ref):
case uint8_t(TypeCode::EqRef):
case uint8_t(TypeCode::StructRef):
case uint8_t(TypeCode::ArrayRef):
case uint8_t(TypeCode::NullFuncRef):
case uint8_t(TypeCode::NullExternRef):
case uint8_t(TypeCode::NullAnyRef):
if (!features.gc) {
return fail("gc types not enabled");
}
*type = RefType::fromTypeCode(TypeCode(code), nullable);
return true;
#endif
default:
return fail("invalid heap type");
}
}
#ifdef ENABLE_WASM_FUNCTION_REFERENCES
if (features.functionReferences) {
int32_t x;
if (!readVarS32(&x) || x < 0 || uint32_t(x) >= types.length()) {
return fail("invalid heap type index");
}
const TypeDef* typeDef = &types.type(x);
*type = RefType::fromTypeDef(typeDef, nullable);
return true;
}
#endif
return fail("invalid heap type");
}
inline bool Decoder::readRefType(const TypeContext& types,
const FeatureArgs& features, RefType* type) {
ValType valType;
if (!readValType(types, features, &valType)) {
return false;
}
if (!valType.isRefType()) {
return fail("bad type");
}
*type = valType.refType();
return true;
}
// Instruction opcode
inline bool Decoder::readOp(OpBytes* op) {
static_assert(size_t(Op::Limit) == 256, "fits");
uint8_t u8;
if (!readFixedU8(&u8)) {
return false;
}
op->b0 = u8;
if (MOZ_LIKELY(!IsPrefixByte(u8))) {
return true;
}
return readVarU32(&op->b1);
}
// Instruction immediates for constant instructions
inline bool Decoder::readTypeIndex(uint32_t* typeIndex) {
if (!readVarU32(typeIndex)) {
return fail("unable to read type index");
}
return true;
}
inline bool Decoder::readGlobalIndex(uint32_t* globalIndex) {
if (!readVarU32(globalIndex)) {
return fail("unable to read global index");
}
return true;
}
inline bool Decoder::readFuncIndex(uint32_t* funcIndex) {
if (!readVarU32(funcIndex)) {
return fail("unable to read function index");
}
return true;
}
inline bool Decoder::readI32Const(int32_t* i32) {
if (!readVarS32(i32)) {
return fail("failed to read I32 constant");
}
return true;
}
inline bool Decoder::readI64Const(int64_t* i64) {
if (!readVarS64(i64)) {
return fail("failed to read I64 constant");
}
return true;
}
inline bool Decoder::readF32Const(float* f32) {
if (!readFixedF32(f32)) {
return fail("failed to read F32 constant");
}
return true;
}
inline bool Decoder::readF64Const(double* f64) {
if (!readFixedF64(f64)) {
return fail("failed to read F64 constant");
}
return true;
}
#ifdef ENABLE_WASM_SIMD
inline bool Decoder::readV128Const(V128* value) {
if (!readFixedV128(value)) {
return fail("unable to read V128 constant");
}
return true;
}
#endif
inline bool Decoder::readRefNull(const TypeContext& types,
const FeatureArgs& features, RefType* type) {
return readHeapType(types, features, true, type);
}
} // namespace wasm
} // namespace js
#endif // namespace wasm_binary_h
|