summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmBuiltins.cpp
blob: 08024c3dfe322b6af14eec11415fb49c97f982de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 *
 * Copyright 2017 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmBuiltins.h"

#include "mozilla/Atomics.h"

#include "fdlibm.h"
#include "jslibmath.h"
#include "jsmath.h"

#include "jit/AtomicOperations.h"
#include "jit/InlinableNatives.h"
#include "jit/MacroAssembler.h"
#include "jit/ProcessExecutableMemory.h"
#include "jit/Simulator.h"
#include "js/experimental/JitInfo.h"  // JSJitInfo
#include "js/friend/ErrorMessages.h"  // js::GetErrorMessage, JSMSG_*
#include "js/friend/StackLimits.h"    // js::AutoCheckRecursionLimit
#include "threading/Mutex.h"
#include "util/Memory.h"
#include "util/Poison.h"
#include "vm/BigIntType.h"
#include "vm/ErrorObject.h"
#include "wasm/WasmCodegenTypes.h"
#include "wasm/WasmDebug.h"
#include "wasm/WasmDebugFrame.h"
#include "wasm/WasmGcObject.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmStubs.h"

#include "debugger/DebugAPI-inl.h"
#include "vm/ErrorObject-inl.h"
#include "vm/JSContext-inl.h"
#include "vm/Stack-inl.h"
#include "wasm/WasmInstance-inl.h"

using namespace js;
using namespace jit;
using namespace wasm;

using mozilla::HashGeneric;
using mozilla::MakeEnumeratedRange;

static const unsigned BUILTIN_THUNK_LIFO_SIZE = 64 * 1024;

// ============================================================================
// WebAssembly builtin C++ functions called from wasm code to implement internal
// wasm operations: type descriptions.

// Some abbreviations, for the sake of conciseness.
#define _F64 MIRType::Double
#define _F32 MIRType::Float32
#define _I32 MIRType::Int32
#define _I64 MIRType::Int64
#define _PTR MIRType::Pointer
#define _RoN MIRType::WasmAnyRef
#define _VOID MIRType::None
#define _END MIRType::None
#define _Infallible FailureMode::Infallible
#define _FailOnNegI32 FailureMode::FailOnNegI32
#define _FailOnMaxI32 FailureMode::FailOnMaxI32
#define _FailOnNullPtr FailureMode::FailOnNullPtr
#define _FailOnInvalidRef FailureMode::FailOnInvalidRef

namespace js {
namespace wasm {

const SymbolicAddressSignature SASigSinNativeD = {
    SymbolicAddress::SinNativeD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigSinFdlibmD = {
    SymbolicAddress::SinFdlibmD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCosNativeD = {
    SymbolicAddress::CosNativeD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCosFdlibmD = {
    SymbolicAddress::CosFdlibmD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigTanNativeD = {
    SymbolicAddress::TanNativeD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigTanFdlibmD = {
    SymbolicAddress::TanFdlibmD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigASinD = {
    SymbolicAddress::ASinD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigACosD = {
    SymbolicAddress::ACosD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigATanD = {
    SymbolicAddress::ATanD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCeilD = {
    SymbolicAddress::CeilD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigCeilF = {
    SymbolicAddress::CeilF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigFloorD = {
    SymbolicAddress::FloorD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigFloorF = {
    SymbolicAddress::FloorF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigTruncD = {
    SymbolicAddress::TruncD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigTruncF = {
    SymbolicAddress::TruncF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigNearbyIntD = {
    SymbolicAddress::NearbyIntD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigNearbyIntF = {
    SymbolicAddress::NearbyIntF, _F32, _Infallible, 1, {_F32, _END}};
const SymbolicAddressSignature SASigExpD = {
    SymbolicAddress::ExpD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigLogD = {
    SymbolicAddress::LogD, _F64, _Infallible, 1, {_F64, _END}};
const SymbolicAddressSignature SASigPowD = {
    SymbolicAddress::PowD, _F64, _Infallible, 2, {_F64, _F64, _END}};
const SymbolicAddressSignature SASigATan2D = {
    SymbolicAddress::ATan2D, _F64, _Infallible, 2, {_F64, _F64, _END}};
const SymbolicAddressSignature SASigMemoryGrowM32 = {
    SymbolicAddress::MemoryGrowM32,
    _I32,
    _Infallible,
    3,
    {_PTR, _I32, _I32, _END}};
const SymbolicAddressSignature SASigMemoryGrowM64 = {
    SymbolicAddress::MemoryGrowM64,
    _I64,
    _Infallible,
    3,
    {_PTR, _I64, _I32, _END}};
const SymbolicAddressSignature SASigMemorySizeM32 = {
    SymbolicAddress::MemorySizeM32, _I32, _Infallible, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigMemorySizeM64 = {
    SymbolicAddress::MemorySizeM64, _I64, _Infallible, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigWaitI32M32 = {
    SymbolicAddress::WaitI32M32,
    _I32,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I32, _I64, _I32, _END}};
const SymbolicAddressSignature SASigWaitI32M64 = {
    SymbolicAddress::WaitI32M64,
    _I32,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I32, _I64, _I32, _END}};
const SymbolicAddressSignature SASigWaitI64M32 = {
    SymbolicAddress::WaitI64M32,
    _I32,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I64, _I64, _I32, _END}};
const SymbolicAddressSignature SASigWaitI64M64 = {
    SymbolicAddress::WaitI64M64,
    _I32,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I64, _I64, _I32, _END}};
const SymbolicAddressSignature SASigWakeM32 = {SymbolicAddress::WakeM32,
                                               _I32,
                                               _FailOnNegI32,
                                               4,
                                               {_PTR, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigWakeM64 = {SymbolicAddress::WakeM64,
                                               _I32,
                                               _FailOnNegI32,
                                               4,
                                               {_PTR, _I64, _I32, _I32, _END}};
const SymbolicAddressSignature SASigMemCopyM32 = {
    SymbolicAddress::MemCopyM32,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopySharedM32 = {
    SymbolicAddress::MemCopySharedM32,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopyM64 = {
    SymbolicAddress::MemCopyM64,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopySharedM64 = {
    SymbolicAddress::MemCopySharedM64,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemCopyAny = {
    SymbolicAddress::MemCopyAny,
    _VOID,
    _FailOnNegI32,
    6,
    {_PTR, _I64, _I64, _I64, _I32, _I32, _END}};
const SymbolicAddressSignature SASigDataDrop = {
    SymbolicAddress::DataDrop, _VOID, _FailOnNegI32, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigMemFillM32 = {
    SymbolicAddress::MemFillM32,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillSharedM32 = {
    SymbolicAddress::MemFillSharedM32,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillM64 = {
    SymbolicAddress::MemFillM64,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I32, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemFillSharedM64 = {
    SymbolicAddress::MemFillSharedM64,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I64, _I32, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemDiscardM32 = {
    SymbolicAddress::MemDiscardM32,
    _VOID,
    _FailOnNegI32,
    4,
    {_PTR, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemDiscardSharedM32 = {
    SymbolicAddress::MemDiscardSharedM32,
    _VOID,
    _FailOnNegI32,
    4,
    {_PTR, _I32, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigMemDiscardM64 = {
    SymbolicAddress::MemDiscardM64,
    _VOID,
    _FailOnNegI32,
    4,
    {_PTR, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemDiscardSharedM64 = {
    SymbolicAddress::MemDiscardSharedM64,
    _VOID,
    _FailOnNegI32,
    4,
    {_PTR, _I64, _I64, _PTR, _END}};
const SymbolicAddressSignature SASigMemInitM32 = {
    SymbolicAddress::MemInitM32,
    _VOID,
    _FailOnNegI32,
    6,
    {_PTR, _I32, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigMemInitM64 = {
    SymbolicAddress::MemInitM64,
    _VOID,
    _FailOnNegI32,
    6,
    {_PTR, _I64, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableCopy = {
    SymbolicAddress::TableCopy,
    _VOID,
    _FailOnNegI32,
    6,
    {_PTR, _I32, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigElemDrop = {
    SymbolicAddress::ElemDrop, _VOID, _FailOnNegI32, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigTableFill = {
    SymbolicAddress::TableFill,
    _VOID,
    _FailOnNegI32,
    5,
    {_PTR, _I32, _RoN, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableGet = {SymbolicAddress::TableGet,
                                                _RoN,
                                                _FailOnInvalidRef,
                                                3,
                                                {_PTR, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableGrow = {
    SymbolicAddress::TableGrow,
    _I32,
    _Infallible,
    4,
    {_PTR, _RoN, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableInit = {
    SymbolicAddress::TableInit,
    _VOID,
    _FailOnNegI32,
    6,
    {_PTR, _I32, _I32, _I32, _I32, _I32, _END}};
const SymbolicAddressSignature SASigTableSet = {SymbolicAddress::TableSet,
                                                _VOID,
                                                _FailOnNegI32,
                                                4,
                                                {_PTR, _I32, _RoN, _I32, _END}};
const SymbolicAddressSignature SASigTableSize = {
    SymbolicAddress::TableSize, _I32, _Infallible, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigRefFunc = {
    SymbolicAddress::RefFunc, _RoN, _FailOnInvalidRef, 2, {_PTR, _I32, _END}};
const SymbolicAddressSignature SASigPostBarrier = {
    SymbolicAddress::PostBarrier, _VOID, _Infallible, 2, {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigPostBarrierPrecise = {
    SymbolicAddress::PostBarrierPrecise,
    _VOID,
    _Infallible,
    3,
    {_PTR, _PTR, _RoN, _END}};
const SymbolicAddressSignature SASigPostBarrierPreciseWithOffset = {
    SymbolicAddress::PostBarrierPreciseWithOffset,
    _VOID,
    _Infallible,
    4,
    {_PTR, _PTR, _I32, _RoN, _END}};
const SymbolicAddressSignature SASigExceptionNew = {
    SymbolicAddress::ExceptionNew, _RoN, _FailOnNullPtr, 2, {_PTR, _RoN, _END}};
const SymbolicAddressSignature SASigThrowException = {
    SymbolicAddress::ThrowException,
    _VOID,
    _FailOnNegI32,
    2,
    {_PTR, _RoN, _END}};
const SymbolicAddressSignature SASigStructNewIL_true = {
    SymbolicAddress::StructNewIL_true,
    _RoN,
    _FailOnNullPtr,
    2,
    {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigStructNewIL_false = {
    SymbolicAddress::StructNewIL_false,
    _RoN,
    _FailOnNullPtr,
    2,
    {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigStructNewOOL_true = {
    SymbolicAddress::StructNewOOL_true,
    _RoN,
    _FailOnNullPtr,
    2,
    {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigStructNewOOL_false = {
    SymbolicAddress::StructNewOOL_false,
    _RoN,
    _FailOnNullPtr,
    2,
    {_PTR, _PTR, _END}};
const SymbolicAddressSignature SASigArrayNew_true = {
    SymbolicAddress::ArrayNew_true,
    _RoN,
    _FailOnNullPtr,
    3,
    {_PTR, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigArrayNew_false = {
    SymbolicAddress::ArrayNew_false,
    _RoN,
    _FailOnNullPtr,
    3,
    {_PTR, _I32, _PTR, _END}};
const SymbolicAddressSignature SASigArrayNewData = {
    SymbolicAddress::ArrayNewData,
    _RoN,
    _FailOnNullPtr,
    5,
    {_PTR, _I32, _I32, _PTR, _I32, _END}};
const SymbolicAddressSignature SASigArrayNewElem = {
    SymbolicAddress::ArrayNewElem,
    _RoN,
    _FailOnNullPtr,
    5,
    {_PTR, _I32, _I32, _PTR, _I32, _END}};
const SymbolicAddressSignature SASigArrayInitData = {
    SymbolicAddress::ArrayInitData,
    _VOID,
    _FailOnNegI32,
    7,
    {_PTR, _RoN, _I32, _I32, _I32, _PTR, _I32, _END}};
const SymbolicAddressSignature SASigArrayInitElem = {
    SymbolicAddress::ArrayInitElem,
    _VOID,
    _FailOnNegI32,
    7,
    {_PTR, _RoN, _I32, _I32, _I32, _PTR, _I32, _END}};
const SymbolicAddressSignature SASigArrayCopy = {
    SymbolicAddress::ArrayCopy,
    _VOID,
    _FailOnNegI32,
    7,
    {_PTR, _RoN, _I32, _RoN, _I32, _I32, _I32, _END}};

#define VISIT_BUILTIN_FUNC(op, export, sa_name, ...)   \
  const SymbolicAddressSignature SASig##sa_name = {    \
      SymbolicAddress::sa_name,                        \
      DECLARE_BUILTIN_MODULE_FUNC_RESULT_SASTYPE_##op, \
      DECLARE_BUILTIN_MODULE_FUNC_FAILMODE_##op,       \
      DECLARE_BUILTIN_MODULE_FUNC_PARAM_SASTYPES_##op};

FOR_EACH_BUILTIN_MODULE_FUNC(VISIT_BUILTIN_FUNC)
#undef VISIT_BUILTIN_FUNC

}  // namespace wasm
}  // namespace js

#undef _F64
#undef _F32
#undef _I32
#undef _I64
#undef _PTR
#undef _RoN
#undef _VOID
#undef _END
#undef _Infallible
#undef _FailOnNegI32
#undef _FailOnNullPtr

#ifdef DEBUG
ABIType ToABIType(FailureMode mode) {
  switch (mode) {
    case FailureMode::FailOnNegI32:
      return ABIType::Int32;
    case FailureMode::FailOnNullPtr:
    case FailureMode::FailOnInvalidRef:
      return ABIType::General;
    default:
      MOZ_CRASH("unexpected failure mode");
  }
}

ABIType ToABIType(MIRType type) {
  switch (type) {
    case MIRType::None:
    case MIRType::Int32:
      return ABIType::Int32;
    case MIRType::Int64:
      return ABIType::Int64;
    case MIRType::Pointer:
    case MIRType::WasmAnyRef:
      return ABIType::General;
    case MIRType::Float32:
      return ABIType::Float32;
    case MIRType::Double:
      return ABIType::Float64;
    default:
      MOZ_CRASH("unexpected type");
  }
}

ABIFunctionType ToABIType(const SymbolicAddressSignature& sig) {
  MOZ_ASSERT_IF(sig.failureMode != FailureMode::Infallible,
                ToABIType(sig.failureMode) == ToABIType(sig.retType));
  int abiType = 0;
  for (int i = 0; i < sig.numArgs; i++) {
    abiType <<= ABITypeArgShift;
    abiType |= uint32_t(ToABIType(sig.argTypes[i]));
  }
  abiType <<= ABITypeArgShift;
  abiType |= uint32_t(ToABIType(sig.retType));
  return ABIFunctionType(abiType);
}
#endif

// ============================================================================
// WebAssembly builtin C++ functions called from wasm code to implement internal
// wasm operations: implementations.

#if defined(JS_CODEGEN_ARM)
extern "C" {

extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int);

extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int);
}
#endif

// This utility function can only be called for builtins that are called
// directly from wasm code.
static JitActivation* CallingActivation(JSContext* cx) {
  Activation* act = cx->activation();
  MOZ_ASSERT(act->asJit()->hasWasmExitFP());
  return act->asJit();
}

static bool WasmHandleDebugTrap() {
  JSContext* cx = TlsContext.get();  // Cold code
  JitActivation* activation = CallingActivation(cx);
  Frame* fp = activation->wasmExitFP();
  Instance* instance = GetNearestEffectiveInstance(fp);
  const Code& code = instance->code();
  MOZ_ASSERT(code.metadata().debugEnabled);

  // The debug trap stub is the innermost frame. It's return address is the
  // actual trap site.
  const CallSite* site = code.lookupCallSite(fp->returnAddress());
  MOZ_ASSERT(site);

  // Advance to the actual trapping frame.
  fp = fp->wasmCaller();
  DebugFrame* debugFrame = DebugFrame::from(fp);

  if (site->kind() == CallSite::EnterFrame) {
    if (!instance->debug().enterFrameTrapsEnabled()) {
      return true;
    }
    debugFrame->setIsDebuggee();
    debugFrame->observe(cx);
    if (!DebugAPI::onEnterFrame(cx, debugFrame)) {
      if (cx->isPropagatingForcedReturn()) {
        cx->clearPropagatingForcedReturn();
        // Ignoring forced return because changing code execution order is
        // not yet implemented in the wasm baseline.
        // TODO properly handle forced return and resume wasm execution.
        JS_ReportErrorASCII(cx,
                            "Unexpected resumption value from onEnterFrame");
      }
      return false;
    }
    return true;
  }
  if (site->kind() == CallSite::LeaveFrame ||
      site->kind() == CallSite::CollapseFrame) {
    if (site->kind() == CallSite::LeaveFrame &&
        !debugFrame->updateReturnJSValue(cx)) {
      return false;
    }
    if (site->kind() == CallSite::CollapseFrame) {
      debugFrame->discardReturnJSValue();
    }
    bool ok = DebugAPI::onLeaveFrame(cx, debugFrame, nullptr, true);
    debugFrame->leave(cx);
    return ok;
  }

  DebugState& debug = instance->debug();
  MOZ_ASSERT(debug.hasBreakpointTrapAtOffset(site->lineOrBytecode()));
  if (debug.stepModeEnabled(debugFrame->funcIndex())) {
    if (!DebugAPI::onSingleStep(cx)) {
      if (cx->isPropagatingForcedReturn()) {
        cx->clearPropagatingForcedReturn();
        // TODO properly handle forced return.
        JS_ReportErrorASCII(cx,
                            "Unexpected resumption value from onSingleStep");
      }
      return false;
    }
  }
  if (debug.hasBreakpointSite(site->lineOrBytecode())) {
    if (!DebugAPI::onTrap(cx)) {
      if (cx->isPropagatingForcedReturn()) {
        cx->clearPropagatingForcedReturn();
        // TODO properly handle forced return.
        JS_ReportErrorASCII(
            cx, "Unexpected resumption value from breakpoint handler");
      }
      return false;
    }
  }
  return true;
}

// Check if the pending exception, if any, is catchable by wasm.
static WasmExceptionObject* GetOrWrapWasmException(JitActivation* activation,
                                                   JSContext* cx) {
  if (!cx->isExceptionPending()) {
    return nullptr;
  }

  // Traps are generally not catchable as wasm exceptions. The only case in
  // which they are catchable is for Trap::ThrowReported, which the wasm
  // compiler uses to throw exceptions and is the source of exceptions from C++.
  if (activation->isWasmTrapping() &&
      activation->wasmTrapData().trap != Trap::ThrowReported) {
    return nullptr;
  }

  if (cx->isThrowingOverRecursed() || cx->isThrowingOutOfMemory()) {
    return nullptr;
  }

  // Write the exception out here to exn to avoid having to get the pending
  // exception and checking for OOM multiple times.
  RootedValue exn(cx);
  if (cx->getPendingException(&exn)) {
    // Check if a JS exception originated from a wasm trap.
    if (exn.isObject() && exn.toObject().is<ErrorObject>()) {
      ErrorObject& err = exn.toObject().as<ErrorObject>();
      if (err.fromWasmTrap()) {
        return nullptr;
      }
    }

    // Get or create a wasm exception to represent the pending exception
    Rooted<WasmExceptionObject*> wasmExn(cx);
    if (exn.isObject() && exn.toObject().is<WasmExceptionObject>()) {
      // We're already throwing a wasm exception
      wasmExn = &exn.toObject().as<WasmExceptionObject>();

      // If wasm is rethrowing a wrapped JS value, then set the pending
      // exception on cx to be the wrapped value. This will ensure that if we
      // unwind out of wasm the wrapper exception will not escape.
      //
      // We also do this here, and not at the end of wasm::HandleThrow so that
      // any DebugAPI calls see the wrapped JS value, not the wrapper
      // exception.
      if (wasmExn->isWrappedJSValue()) {
        // Re-use exn to avoid needing a new root
        exn = wasmExn->wrappedJSValue();
        cx->setPendingException(exn, nullptr);
      }
    } else {
      // Wrap all thrown JS values in a wasm exception. This is required so
      // that all exceptions have tags, and the 'null' JS value becomes a
      // non-null wasm exception.
      wasmExn = WasmExceptionObject::wrapJSValue(cx, exn);
    }

    if (wasmExn) {
      return wasmExn;
    }
  }

  MOZ_ASSERT(cx->isThrowingOutOfMemory());
  return nullptr;
}

// Unwind the entire activation in response to a thrown exception. This function
// is responsible for notifying the debugger of each unwound frame. The return
// value is the new stack address which the calling stub will set to the sp
// register before executing a return instruction.
//
// This function will also look for try-catch handlers and, if not trapping or
// throwing an uncatchable exception, will write the handler info in the return
// argument and return true.
//
// Returns false if a handler isn't found or shouldn't be used (e.g., traps).

bool wasm::HandleThrow(JSContext* cx, WasmFrameIter& iter,
                       jit::ResumeFromException* rfe) {
  // WasmFrameIter iterates down wasm frames in the activation starting at
  // JitActivation::wasmExitFP(). Calling WasmFrameIter::startUnwinding pops
  // JitActivation::wasmExitFP() once each time WasmFrameIter is incremented,
  // ultimately leaving exit FP null when the WasmFrameIter is done().  This
  // is necessary to prevent a DebugFrame from being observed again after we
  // just called onLeaveFrame (which would lead to the frame being re-added
  // to the map of live frames, right as it becomes trash).

  MOZ_ASSERT(CallingActivation(cx) == iter.activation());
  MOZ_ASSERT(!iter.done());
  iter.setUnwind(WasmFrameIter::Unwind::True);

  // Live wasm code on the stack is kept alive (in TraceJitActivation) by
  // marking the instance of every wasm::Frame found by WasmFrameIter.
  // However, as explained above, we're popping frames while iterating which
  // means that a GC during this loop could collect the code of frames whose
  // code is still on the stack. This is actually mostly fine: as soon as we
  // return to the throw stub, the entire stack will be popped as a whole,
  // returning to the C++ caller. However, we must keep the throw stub alive
  // itself which is owned by the innermost instance.
  Rooted<WasmInstanceObject*> keepAlive(cx, iter.instance()->object());

  JitActivation* activation = CallingActivation(cx);
  Rooted<WasmExceptionObject*> wasmExn(cx,
                                       GetOrWrapWasmException(activation, cx));

  for (; !iter.done(); ++iter) {
    // Wasm code can enter same-compartment realms, so reset cx->realm to
    // this frame's realm.
    cx->setRealmForJitExceptionHandler(iter.instance()->realm());

    // Only look for an exception handler if there's a catchable exception.
    if (wasmExn) {
      const wasm::Code& code = iter.instance()->code();
      const uint8_t* pc = iter.resumePCinCurrentFrame();
      Tier tier;
      const wasm::TryNote* tryNote = code.lookupTryNote((void*)pc, &tier);

      if (tryNote) {
#ifdef ENABLE_WASM_TAIL_CALLS
        // Skip tryNote if pc is at return stub generated by
        // wasmCollapseFrameSlow.
        const CallSite* site = code.lookupCallSite((void*)pc);
        if (site && site->kind() == CallSite::ReturnStub) {
          continue;
        }
#endif

        cx->clearPendingException();
        MOZ_ASSERT(iter.instance() == iter.instance());
        iter.instance()->setPendingException(wasmExn);

        rfe->kind = ExceptionResumeKind::WasmCatch;
        rfe->framePointer = (uint8_t*)iter.frame();
        rfe->instance = iter.instance();

        rfe->stackPointer =
            (uint8_t*)(rfe->framePointer - tryNote->landingPadFramePushed());
        rfe->target =
            iter.instance()->codeBase(tier) + tryNote->landingPadEntryPoint();

        // Make sure to clear trapping state if we got here due to a trap.
        if (activation->isWasmTrapping()) {
          activation->finishWasmTrap();
        }

        return true;
      }
    }

    if (!iter.debugEnabled()) {
      continue;
    }

    DebugFrame* frame = iter.debugFrame();
    frame->clearReturnJSValue();

    // Assume ResumeMode::Terminate if no exception is pending --
    // no onExceptionUnwind handlers must be fired.
    if (cx->isExceptionPending()) {
      if (!DebugAPI::onExceptionUnwind(cx, frame)) {
        if (cx->isPropagatingForcedReturn()) {
          cx->clearPropagatingForcedReturn();
          // Unexpected trap return -- raising error since throw recovery
          // is not yet implemented in the wasm baseline.
          // TODO properly handle forced return and resume wasm execution.
          JS_ReportErrorASCII(
              cx, "Unexpected resumption value from onExceptionUnwind");
          wasmExn = nullptr;
        }
      }
    }

    bool ok = DebugAPI::onLeaveFrame(cx, frame, nullptr, false);
    if (ok) {
      // Unexpected success from the handler onLeaveFrame -- raising error
      // since throw recovery is not yet implemented in the wasm baseline.
      // TODO properly handle success and resume wasm execution.
      JS_ReportErrorASCII(cx, "Unexpected success from onLeaveFrame");
      wasmExn = nullptr;
    }
    frame->leave(cx);
  }

  MOZ_ASSERT(!cx->activation()->asJit()->isWasmTrapping(),
             "unwinding clears the trapping state");

  // Assert that any pending exception escaping to non-wasm code is not a
  // wrapper exception object
#ifdef DEBUG
  Rooted<Value> pendingException(cx);
  if (cx->isExceptionPending() && cx->getPendingException(&pendingException)) {
    MOZ_ASSERT_IF(pendingException.isObject() &&
                      pendingException.toObject().is<WasmExceptionObject>(),
                  !pendingException.toObject()
                       .as<WasmExceptionObject>()
                       .isWrappedJSValue());
  }
#endif

  // In case of no handler, exit wasm via ret().
  // FailInstanceReg signals to wasm stub to do a failure return.
  rfe->kind = ExceptionResumeKind::Wasm;
  rfe->framePointer = (uint8_t*)iter.unwoundCallerFP();
  rfe->stackPointer = (uint8_t*)iter.unwoundAddressOfReturnAddress();
  rfe->instance = (Instance*)FailInstanceReg;
  rfe->target = nullptr;
  return false;
}

static void* WasmHandleThrow(jit::ResumeFromException* rfe) {
  JSContext* cx = TlsContext.get();  // Cold code
  JitActivation* activation = CallingActivation(cx);
  WasmFrameIter iter(activation);
  // We can ignore the return result here because the throw stub code
  // can just check the resume kind to see if a handler was found or not.
  HandleThrow(cx, iter, rfe);
  return rfe;
}

// Has the same return-value convention as HandleTrap().
static void* CheckInterrupt(JSContext* cx, JitActivation* activation) {
  ResetInterruptState(cx);

  if (!CheckForInterrupt(cx)) {
    return nullptr;
  }

  void* resumePC = activation->wasmTrapData().resumePC;
  activation->finishWasmTrap();
  return resumePC;
}

// The calling convention between this function and its caller in the stub
// generated by GenerateTrapExit() is:
//   - return nullptr if the stub should jump to the throw stub to unwind
//     the activation;
//   - return the (non-null) resumePC that should be jumped if execution should
//     resume after the trap.
static void* WasmHandleTrap() {
  JSContext* cx = TlsContext.get();  // Cold code
  JitActivation* activation = CallingActivation(cx);

  switch (activation->wasmTrapData().trap) {
    case Trap::Unreachable: {
      ReportTrapError(cx, JSMSG_WASM_UNREACHABLE);
      return nullptr;
    }
    case Trap::IntegerOverflow: {
      ReportTrapError(cx, JSMSG_WASM_INTEGER_OVERFLOW);
      return nullptr;
    }
    case Trap::InvalidConversionToInteger: {
      ReportTrapError(cx, JSMSG_WASM_INVALID_CONVERSION);
      return nullptr;
    }
    case Trap::IntegerDivideByZero: {
      ReportTrapError(cx, JSMSG_WASM_INT_DIVIDE_BY_ZERO);
      return nullptr;
    }
    case Trap::IndirectCallToNull: {
      ReportTrapError(cx, JSMSG_WASM_IND_CALL_TO_NULL);
      return nullptr;
    }
    case Trap::IndirectCallBadSig: {
      ReportTrapError(cx, JSMSG_WASM_IND_CALL_BAD_SIG);
      return nullptr;
    }
    case Trap::NullPointerDereference: {
      ReportTrapError(cx, JSMSG_WASM_DEREF_NULL);
      return nullptr;
    }
    case Trap::BadCast: {
      ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
      return nullptr;
    }
    case Trap::OutOfBounds: {
      ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
      return nullptr;
    }
    case Trap::UnalignedAccess: {
      ReportTrapError(cx, JSMSG_WASM_UNALIGNED_ACCESS);
      return nullptr;
    }
    case Trap::CheckInterrupt:
      return CheckInterrupt(cx, activation);
    case Trap::StackOverflow: {
      // Instance::setInterrupt() causes a fake stack overflow. Since
      // Instance::setInterrupt() is called racily, it's possible for a real
      // stack overflow to trap, followed by a racy call to setInterrupt().
      // Thus, we must check for a real stack overflow first before we
      // CheckInterrupt() and possibly resume execution.
      AutoCheckRecursionLimit recursion(cx);
      if (!recursion.check(cx)) {
        return nullptr;
      }
      if (activation->wasmExitInstance()->isInterrupted()) {
        return CheckInterrupt(cx, activation);
      }
      ReportTrapError(cx, JSMSG_OVER_RECURSED);
      return nullptr;
    }
    case Trap::ThrowReported:
      // Error was already reported under another name.
      return nullptr;
    case Trap::Limit:
      break;
  }

  MOZ_CRASH("unexpected trap");
}

static void WasmReportV128JSCall() {
  JSContext* cx = TlsContext.get();  // Cold code
  JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                           JSMSG_WASM_BAD_VAL_TYPE);
}

static int32_t CoerceInPlace_ToInt32(Value* rawVal) {
  JSContext* cx = TlsContext.get();  // Cold code

  int32_t i32;
  RootedValue val(cx, *rawVal);
  if (!ToInt32(cx, val, &i32)) {
    *rawVal = PoisonedObjectValue(0x42);
    return false;
  }

  *rawVal = Int32Value(i32);
  return true;
}

static int32_t CoerceInPlace_ToBigInt(Value* rawVal) {
  JSContext* cx = TlsContext.get();  // Cold code

  RootedValue val(cx, *rawVal);
  BigInt* bi = ToBigInt(cx, val);
  if (!bi) {
    *rawVal = PoisonedObjectValue(0x43);
    return false;
  }

  *rawVal = BigIntValue(bi);
  return true;
}

static int32_t CoerceInPlace_ToNumber(Value* rawVal) {
  JSContext* cx = TlsContext.get();  // Cold code

  double dbl;
  RootedValue val(cx, *rawVal);
  if (!ToNumber(cx, val, &dbl)) {
    *rawVal = PoisonedObjectValue(0x42);
    return false;
  }

  *rawVal = DoubleValue(dbl);
  return true;
}

static void* BoxValue_Anyref(Value* rawVal) {
  JSContext* cx = TlsContext.get();  // Cold code
  RootedValue val(cx, *rawVal);
  RootedAnyRef result(cx, AnyRef::null());
  if (!AnyRef::fromJSValue(cx, val, &result)) {
    return nullptr;
  }
  return result.get().forCompiledCode();
}

static int32_t CoerceInPlace_JitEntry(int funcExportIndex, Instance* instance,
                                      Value* argv) {
  JSContext* cx = TlsContext.get();  // Cold code

  const Code& code = instance->code();
  const FuncExport& fe =
      code.metadata(code.stableTier()).funcExports[funcExportIndex];
  const FuncType& funcType = code.metadata().getFuncExportType(fe);

  for (size_t i = 0; i < funcType.args().length(); i++) {
    HandleValue arg = HandleValue::fromMarkedLocation(&argv[i]);
    switch (funcType.args()[i].kind()) {
      case ValType::I32: {
        int32_t i32;
        if (!ToInt32(cx, arg, &i32)) {
          return false;
        }
        argv[i] = Int32Value(i32);
        break;
      }
      case ValType::I64: {
        // In this case we store a BigInt value as there is no value type
        // corresponding directly to an I64. The conversion to I64 happens
        // in the JIT entry stub.
        BigInt* bigint = ToBigInt(cx, arg);
        if (!bigint) {
          return false;
        }
        argv[i] = BigIntValue(bigint);
        break;
      }
      case ValType::F32:
      case ValType::F64: {
        double dbl;
        if (!ToNumber(cx, arg, &dbl)) {
          return false;
        }
        // No need to convert double-to-float for f32, it's done inline
        // in the wasm stub later.
        argv[i] = DoubleValue(dbl);
        break;
      }
      case ValType::Ref: {
        // Guarded against by temporarilyUnsupportedReftypeForEntry()
        MOZ_RELEASE_ASSERT(funcType.args()[i].refType().isExtern());
        // Perform any fallible boxing that may need to happen so that the JIT
        // code does not need to.
        if (AnyRef::valueNeedsBoxing(arg)) {
          JSObject* boxedValue = AnyRef::boxValue(cx, arg);
          if (!boxedValue) {
            return false;
          }
          argv[i] = ObjectOrNullValue(boxedValue);
        }
        break;
      }
      case ValType::V128: {
        // Guarded against by hasV128ArgOrRet()
        MOZ_CRASH("unexpected input argument in CoerceInPlace_JitEntry");
      }
      default: {
        MOZ_CRASH("unexpected input argument in CoerceInPlace_JitEntry");
      }
    }
  }

  return true;
}

// Allocate a BigInt without GC, corresponds to the similar VMFunction.
static BigInt* AllocateBigIntTenuredNoGC() {
  JSContext* cx = TlsContext.get();  // Cold code (the caller is elaborate)

  return cx->newCell<BigInt, NoGC>(gc::Heap::Tenured);
}

static int64_t DivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
                      uint32_t y_lo) {
  int64_t x = ((uint64_t)x_hi << 32) + x_lo;
  int64_t y = ((uint64_t)y_hi << 32) + y_lo;
  MOZ_ASSERT(x != INT64_MIN || y != -1);
  MOZ_ASSERT(y != 0);
  return x / y;
}

static int64_t UDivI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
                       uint32_t y_lo) {
  uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
  uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
  MOZ_ASSERT(y != 0);
  return int64_t(x / y);
}

static int64_t ModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
                      uint32_t y_lo) {
  int64_t x = ((uint64_t)x_hi << 32) + x_lo;
  int64_t y = ((uint64_t)y_hi << 32) + y_lo;
  MOZ_ASSERT(x != INT64_MIN || y != -1);
  MOZ_ASSERT(y != 0);
  return x % y;
}

static int64_t UModI64(uint32_t x_hi, uint32_t x_lo, uint32_t y_hi,
                       uint32_t y_lo) {
  uint64_t x = ((uint64_t)x_hi << 32) + x_lo;
  uint64_t y = ((uint64_t)y_hi << 32) + y_lo;
  MOZ_ASSERT(y != 0);
  return int64_t(x % y);
}

static int64_t TruncateDoubleToInt64(double input) {
  // Note: INT64_MAX is not representable in double. It is actually
  // INT64_MAX + 1.  Therefore also sending the failure value.
  if (input >= double(INT64_MAX) || input < double(INT64_MIN) ||
      std::isnan(input)) {
    return int64_t(0x8000000000000000);
  }
  return int64_t(input);
}

static uint64_t TruncateDoubleToUint64(double input) {
  // Note: UINT64_MAX is not representable in double. It is actually
  // UINT64_MAX + 1.  Therefore also sending the failure value.
  if (input >= double(UINT64_MAX) || input <= -1.0 || std::isnan(input)) {
    return int64_t(0x8000000000000000);
  }
  return uint64_t(input);
}

static int64_t SaturatingTruncateDoubleToInt64(double input) {
  // Handle in-range values (except INT64_MIN).
  if (fabs(input) < -double(INT64_MIN)) {
    return int64_t(input);
  }
  // Handle NaN.
  if (std::isnan(input)) {
    return 0;
  }
  // Handle positive overflow.
  if (input > 0) {
    return INT64_MAX;
  }
  // Handle negative overflow.
  return INT64_MIN;
}

static uint64_t SaturatingTruncateDoubleToUint64(double input) {
  // Handle positive overflow.
  if (input >= -double(INT64_MIN) * 2.0) {
    return UINT64_MAX;
  }
  // Handle in-range values.
  if (input > -1.0) {
    return uint64_t(input);
  }
  // Handle NaN and negative overflow.
  return 0;
}

static double Int64ToDouble(int32_t x_hi, uint32_t x_lo) {
  int64_t x = int64_t((uint64_t(x_hi) << 32)) + int64_t(x_lo);
  return double(x);
}

static float Int64ToFloat32(int32_t x_hi, uint32_t x_lo) {
  int64_t x = int64_t((uint64_t(x_hi) << 32)) + int64_t(x_lo);
  return float(x);
}

static double Uint64ToDouble(int32_t x_hi, uint32_t x_lo) {
  uint64_t x = (uint64_t(x_hi) << 32) + uint64_t(x_lo);
  return double(x);
}

static float Uint64ToFloat32(int32_t x_hi, uint32_t x_lo) {
  uint64_t x = (uint64_t(x_hi) << 32) + uint64_t(x_lo);
  return float(x);
}

template <class F>
static inline void* FuncCast(F* funcPtr, ABIFunctionType abiType) {
  void* pf = JS_FUNC_TO_DATA_PTR(void*, funcPtr);
#ifdef JS_SIMULATOR
  pf = Simulator::RedirectNativeFunction(pf, abiType);
#endif
  return pf;
}

#ifdef WASM_CODEGEN_DEBUG
void wasm::PrintI32(int32_t val) { fprintf(stderr, "i32(%d) ", val); }

void wasm::PrintPtr(uint8_t* val) { fprintf(stderr, "ptr(%p) ", val); }

void wasm::PrintF32(float val) { fprintf(stderr, "f32(%f) ", val); }

void wasm::PrintF64(double val) { fprintf(stderr, "f64(%lf) ", val); }

void wasm::PrintText(const char* out) { fprintf(stderr, "%s", out); }
#endif

void* wasm::AddressOf(SymbolicAddress imm, ABIFunctionType* abiType) {
  // See NeedsBuiltinThunk for a classification of the different names here.
  switch (imm) {
    case SymbolicAddress::HandleDebugTrap:
      *abiType = Args_General0;
      return FuncCast(WasmHandleDebugTrap, *abiType);
    case SymbolicAddress::HandleThrow:
      *abiType = Args_General1;
      return FuncCast(WasmHandleThrow, *abiType);
    case SymbolicAddress::HandleTrap:
      *abiType = Args_General0;
      return FuncCast(WasmHandleTrap, *abiType);
    case SymbolicAddress::ReportV128JSCall:
      *abiType = Args_General0;
      return FuncCast(WasmReportV128JSCall, *abiType);
    case SymbolicAddress::CallImport_General:
      *abiType = Args_Int32_GeneralInt32Int32General;
      return FuncCast(Instance::callImport_general, *abiType);
    case SymbolicAddress::CoerceInPlace_ToInt32:
      *abiType = Args_General1;
      return FuncCast(CoerceInPlace_ToInt32, *abiType);
    case SymbolicAddress::CoerceInPlace_ToBigInt:
      *abiType = Args_General1;
      return FuncCast(CoerceInPlace_ToBigInt, *abiType);
    case SymbolicAddress::CoerceInPlace_ToNumber:
      *abiType = Args_General1;
      return FuncCast(CoerceInPlace_ToNumber, *abiType);
    case SymbolicAddress::CoerceInPlace_JitEntry:
      *abiType = Args_General3;
      return FuncCast(CoerceInPlace_JitEntry, *abiType);
    case SymbolicAddress::ToInt32:
      *abiType = Args_Int_Double;
      return FuncCast<int32_t(double)>(JS::ToInt32, *abiType);
    case SymbolicAddress::BoxValue_Anyref:
      *abiType = Args_General1;
      return FuncCast(BoxValue_Anyref, *abiType);
    case SymbolicAddress::AllocateBigInt:
      *abiType = Args_General0;
      return FuncCast(AllocateBigIntTenuredNoGC, *abiType);
    case SymbolicAddress::DivI64:
      *abiType = Args_Int64_Int32Int32Int32Int32;
      return FuncCast(DivI64, *abiType);
    case SymbolicAddress::UDivI64:
      *abiType = Args_Int64_Int32Int32Int32Int32;
      return FuncCast(UDivI64, *abiType);
    case SymbolicAddress::ModI64:
      *abiType = Args_Int64_Int32Int32Int32Int32;
      return FuncCast(ModI64, *abiType);
    case SymbolicAddress::UModI64:
      *abiType = Args_Int64_Int32Int32Int32Int32;
      return FuncCast(UModI64, *abiType);
    case SymbolicAddress::TruncateDoubleToUint64:
      *abiType = Args_Int64_Double;
      return FuncCast(TruncateDoubleToUint64, *abiType);
    case SymbolicAddress::TruncateDoubleToInt64:
      *abiType = Args_Int64_Double;
      return FuncCast(TruncateDoubleToInt64, *abiType);
    case SymbolicAddress::SaturatingTruncateDoubleToUint64:
      *abiType = Args_Int64_Double;
      return FuncCast(SaturatingTruncateDoubleToUint64, *abiType);
    case SymbolicAddress::SaturatingTruncateDoubleToInt64:
      *abiType = Args_Int64_Double;
      return FuncCast(SaturatingTruncateDoubleToInt64, *abiType);
    case SymbolicAddress::Uint64ToDouble:
      *abiType = Args_Double_IntInt;
      return FuncCast(Uint64ToDouble, *abiType);
    case SymbolicAddress::Uint64ToFloat32:
      *abiType = Args_Float32_IntInt;
      return FuncCast(Uint64ToFloat32, *abiType);
    case SymbolicAddress::Int64ToDouble:
      *abiType = Args_Double_IntInt;
      return FuncCast(Int64ToDouble, *abiType);
    case SymbolicAddress::Int64ToFloat32:
      *abiType = Args_Float32_IntInt;
      return FuncCast(Int64ToFloat32, *abiType);
#if defined(JS_CODEGEN_ARM)
    case SymbolicAddress::aeabi_idivmod:
      *abiType = Args_Int64_GeneralGeneral;
      return FuncCast(__aeabi_idivmod, *abiType);
    case SymbolicAddress::aeabi_uidivmod:
      *abiType = Args_Int64_GeneralGeneral;
      return FuncCast(__aeabi_uidivmod, *abiType);
#endif
    case SymbolicAddress::ModD:
      *abiType = Args_Double_DoubleDouble;
      return FuncCast(NumberMod, *abiType);
    case SymbolicAddress::SinNativeD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(sin, *abiType);
    case SymbolicAddress::SinFdlibmD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_sin, *abiType);
    case SymbolicAddress::CosNativeD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(cos, *abiType);
    case SymbolicAddress::CosFdlibmD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_cos, *abiType);
    case SymbolicAddress::TanNativeD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(tan, *abiType);
    case SymbolicAddress::TanFdlibmD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_tan, *abiType);
    case SymbolicAddress::ASinD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_asin, *abiType);
    case SymbolicAddress::ACosD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_acos, *abiType);
    case SymbolicAddress::ATanD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_atan, *abiType);
    case SymbolicAddress::CeilD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_ceil, *abiType);
    case SymbolicAddress::CeilF:
      *abiType = Args_Float32_Float32;
      return FuncCast<float(float)>(fdlibm_ceilf, *abiType);
    case SymbolicAddress::FloorD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_floor, *abiType);
    case SymbolicAddress::FloorF:
      *abiType = Args_Float32_Float32;
      return FuncCast<float(float)>(fdlibm_floorf, *abiType);
    case SymbolicAddress::TruncD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_trunc, *abiType);
    case SymbolicAddress::TruncF:
      *abiType = Args_Float32_Float32;
      return FuncCast<float(float)>(fdlibm_truncf, *abiType);
    case SymbolicAddress::NearbyIntD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_nearbyint, *abiType);
    case SymbolicAddress::NearbyIntF:
      *abiType = Args_Float32_Float32;
      return FuncCast<float(float)>(fdlibm_nearbyintf, *abiType);
    case SymbolicAddress::ExpD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_exp, *abiType);
    case SymbolicAddress::LogD:
      *abiType = Args_Double_Double;
      return FuncCast<double(double)>(fdlibm_log, *abiType);
    case SymbolicAddress::PowD:
      *abiType = Args_Double_DoubleDouble;
      return FuncCast(ecmaPow, *abiType);
    case SymbolicAddress::ATan2D:
      *abiType = Args_Double_DoubleDouble;
      return FuncCast(ecmaAtan2, *abiType);

    case SymbolicAddress::MemoryGrowM32:
      *abiType = Args_Int32_GeneralInt32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemoryGrowM32));
      return FuncCast(Instance::memoryGrow_m32, *abiType);
    case SymbolicAddress::MemoryGrowM64:
      *abiType = Args_Int64_GeneralInt64Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemoryGrowM64));
      return FuncCast(Instance::memoryGrow_m64, *abiType);
    case SymbolicAddress::MemorySizeM32:
      *abiType = Args_Int32_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemorySizeM32));
      return FuncCast(Instance::memorySize_m32, *abiType);
    case SymbolicAddress::MemorySizeM64:
      *abiType = Args_Int64_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemorySizeM64));
      return FuncCast(Instance::memorySize_m64, *abiType);
    case SymbolicAddress::WaitI32M32:
      *abiType = Args_Int32_GeneralInt32Int32Int64Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWaitI32M32));
      return FuncCast(Instance::wait_i32_m32, *abiType);
    case SymbolicAddress::WaitI32M64:
      *abiType = Args_Int32_GeneralInt64Int32Int64Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWaitI32M64));
      return FuncCast(Instance::wait_i32_m64, *abiType);
    case SymbolicAddress::WaitI64M32:
      *abiType = Args_Int32_GeneralInt32Int64Int64Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWaitI64M32));
      return FuncCast(Instance::wait_i64_m32, *abiType);
    case SymbolicAddress::WaitI64M64:
      *abiType = Args_Int32_GeneralInt64Int64Int64Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWaitI64M64));
      return FuncCast(Instance::wait_i64_m64, *abiType);
    case SymbolicAddress::WakeM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWakeM32));
      return FuncCast(Instance::wake_m32, *abiType);
    case SymbolicAddress::WakeM64:
      *abiType = Args_Int32_GeneralInt64Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigWakeM64));
      return FuncCast(Instance::wake_m64, *abiType);
    case SymbolicAddress::MemCopyM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemCopyM32));
      return FuncCast(Instance::memCopy_m32, *abiType);
    case SymbolicAddress::MemCopySharedM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemCopySharedM32));
      return FuncCast(Instance::memCopyShared_m32, *abiType);
    case SymbolicAddress::MemCopyM64:
      *abiType = Args_Int32_GeneralInt64Int64Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemCopyM64));
      return FuncCast(Instance::memCopy_m64, *abiType);
    case SymbolicAddress::MemCopySharedM64:
      *abiType = Args_Int32_GeneralInt64Int64Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemCopySharedM64));
      return FuncCast(Instance::memCopyShared_m64, *abiType);
    case SymbolicAddress::MemCopyAny:
      *abiType = Args_Int32_GeneralInt64Int64Int64Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemCopyAny));
      return FuncCast(Instance::memCopy_any, *abiType);
    case SymbolicAddress::DataDrop:
      *abiType = Args_Int32_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigDataDrop));
      return FuncCast(Instance::dataDrop, *abiType);
    case SymbolicAddress::MemFillM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemFillM32));
      return FuncCast(Instance::memFill_m32, *abiType);
    case SymbolicAddress::MemFillSharedM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemFillSharedM32));
      return FuncCast(Instance::memFillShared_m32, *abiType);
    case SymbolicAddress::MemFillM64:
      *abiType = Args_Int32_GeneralInt64Int32Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemFillM64));
      return FuncCast(Instance::memFill_m64, *abiType);
    case SymbolicAddress::MemFillSharedM64:
      *abiType = Args_Int32_GeneralInt64Int32Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemFillSharedM64));
      return FuncCast(Instance::memFillShared_m64, *abiType);
    case SymbolicAddress::MemDiscardM32:
      *abiType = Args_Int32_GeneralInt32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemDiscardM32));
      return FuncCast(Instance::memDiscard_m32, *abiType);
    case SymbolicAddress::MemDiscardSharedM32:
      *abiType = Args_Int32_GeneralInt32Int32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemDiscardSharedM32));
      return FuncCast(Instance::memDiscardShared_m32, *abiType);
    case SymbolicAddress::MemDiscardM64:
      *abiType = Args_Int32_GeneralInt64Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemDiscardM64));
      return FuncCast(Instance::memDiscard_m64, *abiType);
    case SymbolicAddress::MemDiscardSharedM64:
      *abiType = Args_Int32_GeneralInt64Int64General;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemDiscardSharedM64));
      return FuncCast(Instance::memDiscardShared_m64, *abiType);
    case SymbolicAddress::MemInitM32:
      *abiType = Args_Int32_GeneralInt32Int32Int32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemInitM32));
      return FuncCast(Instance::memInit_m32, *abiType);
    case SymbolicAddress::MemInitM64:
      *abiType = Args_Int32_GeneralInt64Int32Int32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigMemInitM64));
      return FuncCast(Instance::memInit_m64, *abiType);
    case SymbolicAddress::TableCopy:
      *abiType = Args_Int32_GeneralInt32Int32Int32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableCopy));
      return FuncCast(Instance::tableCopy, *abiType);
    case SymbolicAddress::ElemDrop:
      *abiType = Args_Int32_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigElemDrop));
      return FuncCast(Instance::elemDrop, *abiType);
    case SymbolicAddress::TableFill:
      *abiType = Args_Int32_GeneralInt32GeneralInt32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableFill));
      return FuncCast(Instance::tableFill, *abiType);
    case SymbolicAddress::TableInit:
      *abiType = Args_Int32_GeneralInt32Int32Int32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableInit));
      return FuncCast(Instance::tableInit, *abiType);
    case SymbolicAddress::TableGet:
      *abiType = Args_General_GeneralInt32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableGet));
      return FuncCast(Instance::tableGet, *abiType);
    case SymbolicAddress::TableGrow:
      *abiType = Args_Int32_GeneralGeneralInt32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableGrow));
      return FuncCast(Instance::tableGrow, *abiType);
    case SymbolicAddress::TableSet:
      *abiType = Args_Int32_GeneralInt32GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableSet));
      return FuncCast(Instance::tableSet, *abiType);
    case SymbolicAddress::TableSize:
      *abiType = Args_Int32_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigTableSize));
      return FuncCast(Instance::tableSize, *abiType);
    case SymbolicAddress::RefFunc:
      *abiType = Args_General_GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigRefFunc));
      return FuncCast(Instance::refFunc, *abiType);
    case SymbolicAddress::PostBarrier:
      *abiType = Args_Int32_GeneralGeneral;
      MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrier));
      return FuncCast(Instance::postBarrier, *abiType);
    case SymbolicAddress::PostBarrierPrecise:
      *abiType = Args_Int32_GeneralGeneralGeneral;
      MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrierPrecise));
      return FuncCast(Instance::postBarrierPrecise, *abiType);
    case SymbolicAddress::PostBarrierPreciseWithOffset:
      *abiType = Args_Int32_GeneralGeneralInt32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigPostBarrierPreciseWithOffset));
      return FuncCast(Instance::postBarrierPreciseWithOffset, *abiType);
    case SymbolicAddress::StructNewIL_true:
      *abiType = Args_General2;
      MOZ_ASSERT(*abiType == ToABIType(SASigStructNewIL_true));
      return FuncCast(Instance::structNewIL<true>, *abiType);
    case SymbolicAddress::StructNewIL_false:
      *abiType = Args_General2;
      MOZ_ASSERT(*abiType == ToABIType(SASigStructNewIL_false));
      return FuncCast(Instance::structNewIL<false>, *abiType);
    case SymbolicAddress::StructNewOOL_true:
      *abiType = Args_General2;
      MOZ_ASSERT(*abiType == ToABIType(SASigStructNewOOL_true));
      return FuncCast(Instance::structNewOOL<true>, *abiType);
    case SymbolicAddress::StructNewOOL_false:
      *abiType = Args_General2;
      MOZ_ASSERT(*abiType == ToABIType(SASigStructNewOOL_false));
      return FuncCast(Instance::structNewOOL<false>, *abiType);
    case SymbolicAddress::ArrayNew_true:
      *abiType = Args_General_GeneralInt32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayNew_true));
      return FuncCast(Instance::arrayNew<true>, *abiType);
    case SymbolicAddress::ArrayNew_false:
      *abiType = Args_General_GeneralInt32General;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayNew_false));
      return FuncCast(Instance::arrayNew<false>, *abiType);
    case SymbolicAddress::ArrayNewData:
      *abiType = Args_General_GeneralInt32Int32GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayNewData));
      return FuncCast(Instance::arrayNewData, *abiType);
    case SymbolicAddress::ArrayNewElem:
      *abiType = Args_General_GeneralInt32Int32GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayNewElem));
      return FuncCast(Instance::arrayNewElem, *abiType);
    case SymbolicAddress::ArrayInitData:
      *abiType = Args_Int32_GeneralGeneralInt32Int32Int32GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayInitData));
      return FuncCast(Instance::arrayInitData, *abiType);
    case SymbolicAddress::ArrayInitElem:
      *abiType = Args_Int32_GeneralGeneralInt32Int32Int32GeneralInt32;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayInitElem));
      return FuncCast(Instance::arrayInitElem, *abiType);
    case SymbolicAddress::ArrayCopy:
      *abiType = Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32;
      MOZ_ASSERT(*abiType == ToABIType(SASigArrayCopy));
      return FuncCast(Instance::arrayCopy, *abiType);
    case SymbolicAddress::SlotsToAllocKindBytesTable:
      return (void*)gc::slotsToAllocKindBytes;
    case SymbolicAddress::ExceptionNew:
      *abiType = Args_General2;
      MOZ_ASSERT(*abiType == ToABIType(SASigExceptionNew));
      return FuncCast(Instance::exceptionNew, *abiType);
    case SymbolicAddress::ThrowException:
      *abiType = Args_Int32_GeneralGeneral;
      MOZ_ASSERT(*abiType == ToABIType(SASigThrowException));
      return FuncCast(Instance::throwException, *abiType);

#ifdef WASM_CODEGEN_DEBUG
    case SymbolicAddress::PrintI32:
      *abiType = Args_General1;
      return FuncCast(PrintI32, *abiType);
    case SymbolicAddress::PrintPtr:
      *abiType = Args_General1;
      return FuncCast(PrintPtr, *abiType);
    case SymbolicAddress::PrintF32:
      *abiType = Args_Int_Float32;
      return FuncCast(PrintF32, *abiType);
    case SymbolicAddress::PrintF64:
      *abiType = Args_Int_Double;
      return FuncCast(PrintF64, *abiType);
    case SymbolicAddress::PrintText:
      *abiType = Args_General1;
      return FuncCast(PrintText, *abiType);
#endif
#define VISIT_BUILTIN_FUNC(op, export, sa_name, abitype, entry, ...) \
  case SymbolicAddress::sa_name:                                     \
    *abiType = abitype;                                              \
    return FuncCast(entry, *abiType);
      FOR_EACH_BUILTIN_MODULE_FUNC(VISIT_BUILTIN_FUNC)
#undef VISIT_BUILTIN_FUNC
    case SymbolicAddress::Limit:
      break;
  }

  MOZ_CRASH("Bad SymbolicAddress");
}

bool wasm::IsRoundingFunction(SymbolicAddress callee, jit::RoundingMode* mode) {
  switch (callee) {
    case SymbolicAddress::FloorD:
    case SymbolicAddress::FloorF:
      *mode = jit::RoundingMode::Down;
      return true;
    case SymbolicAddress::CeilD:
    case SymbolicAddress::CeilF:
      *mode = jit::RoundingMode::Up;
      return true;
    case SymbolicAddress::TruncD:
    case SymbolicAddress::TruncF:
      *mode = jit::RoundingMode::TowardsZero;
      return true;
    case SymbolicAddress::NearbyIntD:
    case SymbolicAddress::NearbyIntF:
      *mode = jit::RoundingMode::NearestTiesToEven;
      return true;
    default:
      return false;
  }
}

bool wasm::NeedsBuiltinThunk(SymbolicAddress sym) {
  // Also see "The Wasm Builtin ABIs" in WasmFrame.h.
  switch (sym) {
    // No thunk, because they do their work within the activation
    case SymbolicAddress::HandleThrow:  // GenerateThrowStub
    case SymbolicAddress::HandleTrap:   // GenerateTrapExit
      return false;

    // No thunk, because some work has to be done within the activation before
    // the activation exit: when called, arbitrary wasm registers are live and
    // must be saved, and the stack pointer may not be aligned for any ABI.
    case SymbolicAddress::HandleDebugTrap:  // GenerateDebugTrapStub

    // No thunk, because their caller manages the activation exit explicitly
    case SymbolicAddress::CallImport_General:      // GenerateImportInterpExit
    case SymbolicAddress::CoerceInPlace_ToInt32:   // GenerateImportJitExit
    case SymbolicAddress::CoerceInPlace_ToNumber:  // GenerateImportJitExit
    case SymbolicAddress::CoerceInPlace_ToBigInt:  // GenerateImportJitExit
    case SymbolicAddress::BoxValue_Anyref:         // GenerateImportJitExit
      return false;

#ifdef WASM_CODEGEN_DEBUG
    // No thunk, because they call directly into C++ code that does not interact
    // with the rest of the VM at all.
    case SymbolicAddress::PrintI32:  // Debug stub printers
    case SymbolicAddress::PrintPtr:
    case SymbolicAddress::PrintF32:
    case SymbolicAddress::PrintF64:
    case SymbolicAddress::PrintText:
      return false;
#endif

    // No thunk because they're just data
    case SymbolicAddress::SlotsToAllocKindBytesTable:
      return false;

    // Everyone else gets a thunk to handle the exit from the activation
    case SymbolicAddress::ToInt32:
    case SymbolicAddress::DivI64:
    case SymbolicAddress::UDivI64:
    case SymbolicAddress::ModI64:
    case SymbolicAddress::UModI64:
    case SymbolicAddress::TruncateDoubleToUint64:
    case SymbolicAddress::TruncateDoubleToInt64:
    case SymbolicAddress::SaturatingTruncateDoubleToUint64:
    case SymbolicAddress::SaturatingTruncateDoubleToInt64:
    case SymbolicAddress::Uint64ToDouble:
    case SymbolicAddress::Uint64ToFloat32:
    case SymbolicAddress::Int64ToDouble:
    case SymbolicAddress::Int64ToFloat32:
#if defined(JS_CODEGEN_ARM)
    case SymbolicAddress::aeabi_idivmod:
    case SymbolicAddress::aeabi_uidivmod:
#endif
    case SymbolicAddress::AllocateBigInt:
    case SymbolicAddress::ModD:
    case SymbolicAddress::SinNativeD:
    case SymbolicAddress::SinFdlibmD:
    case SymbolicAddress::CosNativeD:
    case SymbolicAddress::CosFdlibmD:
    case SymbolicAddress::TanNativeD:
    case SymbolicAddress::TanFdlibmD:
    case SymbolicAddress::ASinD:
    case SymbolicAddress::ACosD:
    case SymbolicAddress::ATanD:
    case SymbolicAddress::CeilD:
    case SymbolicAddress::CeilF:
    case SymbolicAddress::FloorD:
    case SymbolicAddress::FloorF:
    case SymbolicAddress::TruncD:
    case SymbolicAddress::TruncF:
    case SymbolicAddress::NearbyIntD:
    case SymbolicAddress::NearbyIntF:
    case SymbolicAddress::ExpD:
    case SymbolicAddress::LogD:
    case SymbolicAddress::PowD:
    case SymbolicAddress::ATan2D:
    case SymbolicAddress::MemoryGrowM32:
    case SymbolicAddress::MemoryGrowM64:
    case SymbolicAddress::MemorySizeM32:
    case SymbolicAddress::MemorySizeM64:
    case SymbolicAddress::WaitI32M32:
    case SymbolicAddress::WaitI32M64:
    case SymbolicAddress::WaitI64M32:
    case SymbolicAddress::WaitI64M64:
    case SymbolicAddress::WakeM32:
    case SymbolicAddress::WakeM64:
    case SymbolicAddress::CoerceInPlace_JitEntry:
    case SymbolicAddress::ReportV128JSCall:
    case SymbolicAddress::MemCopyM32:
    case SymbolicAddress::MemCopySharedM32:
    case SymbolicAddress::MemCopyM64:
    case SymbolicAddress::MemCopySharedM64:
    case SymbolicAddress::MemCopyAny:
    case SymbolicAddress::DataDrop:
    case SymbolicAddress::MemFillM32:
    case SymbolicAddress::MemFillSharedM32:
    case SymbolicAddress::MemFillM64:
    case SymbolicAddress::MemFillSharedM64:
    case SymbolicAddress::MemDiscardM32:
    case SymbolicAddress::MemDiscardSharedM32:
    case SymbolicAddress::MemDiscardM64:
    case SymbolicAddress::MemDiscardSharedM64:
    case SymbolicAddress::MemInitM32:
    case SymbolicAddress::MemInitM64:
    case SymbolicAddress::TableCopy:
    case SymbolicAddress::ElemDrop:
    case SymbolicAddress::TableFill:
    case SymbolicAddress::TableGet:
    case SymbolicAddress::TableGrow:
    case SymbolicAddress::TableInit:
    case SymbolicAddress::TableSet:
    case SymbolicAddress::TableSize:
    case SymbolicAddress::RefFunc:
    case SymbolicAddress::PostBarrier:
    case SymbolicAddress::PostBarrierPrecise:
    case SymbolicAddress::PostBarrierPreciseWithOffset:
    case SymbolicAddress::ExceptionNew:
    case SymbolicAddress::ThrowException:
    case SymbolicAddress::StructNewIL_true:
    case SymbolicAddress::StructNewIL_false:
    case SymbolicAddress::StructNewOOL_true:
    case SymbolicAddress::StructNewOOL_false:
    case SymbolicAddress::ArrayNew_true:
    case SymbolicAddress::ArrayNew_false:
    case SymbolicAddress::ArrayNewData:
    case SymbolicAddress::ArrayNewElem:
    case SymbolicAddress::ArrayInitData:
    case SymbolicAddress::ArrayInitElem:
    case SymbolicAddress::ArrayCopy:
#define VISIT_BUILTIN_FUNC(op, export, sa_name, ...) \
  case SymbolicAddress::sa_name:
      FOR_EACH_BUILTIN_MODULE_FUNC(VISIT_BUILTIN_FUNC)
#undef VISIT_BUILTIN_FUNC
      return true;

    case SymbolicAddress::Limit:
      break;
  }

  MOZ_CRASH("unexpected symbolic address");
}

// ============================================================================
// [SMDOC] JS Fast Wasm Imports
//
// JS builtins that can be imported by wasm modules and called efficiently
// through thunks. These thunks conform to the internal wasm ABI and thus can be
// patched in for import calls. Calling a JS builtin through a thunk is much
// faster than calling out through the generic import call trampoline which will
// end up in the slowest C++ Instance::callImport path.
//
// Each JS builtin can have several overloads. These must all be enumerated in
// PopulateTypedNatives() so they can be included in the process-wide thunk set.
// Additionally to the traditional overloading based on types, every builtin
// can also have a version implemented by fdlibm or the native math library.
// This is useful for fingerprinting resistance.

#define FOR_EACH_SIN_COS_TAN_NATIVE(_) \
  _(math_sin, MathSin)                 \
  _(math_tan, MathTan)                 \
  _(math_cos, MathCos)

#define FOR_EACH_UNARY_NATIVE(_) \
  _(math_exp, MathExp)           \
  _(math_log, MathLog)           \
  _(math_asin, MathASin)         \
  _(math_atan, MathATan)         \
  _(math_acos, MathACos)         \
  _(math_log10, MathLog10)       \
  _(math_log2, MathLog2)         \
  _(math_log1p, MathLog1P)       \
  _(math_expm1, MathExpM1)       \
  _(math_sinh, MathSinH)         \
  _(math_tanh, MathTanH)         \
  _(math_cosh, MathCosH)         \
  _(math_asinh, MathASinH)       \
  _(math_atanh, MathATanH)       \
  _(math_acosh, MathACosH)       \
  _(math_sign, MathSign)         \
  _(math_trunc, MathTrunc)       \
  _(math_cbrt, MathCbrt)

#define FOR_EACH_BINARY_NATIVE(_) \
  _(ecmaAtan2, MathATan2)         \
  _(ecmaHypot, MathHypot)         \
  _(ecmaPow, MathPow)

#define DEFINE_SIN_COS_TAN_FLOAT_WRAPPER(func, _) \
  static float func##_native_impl_f32(float x) {  \
    return float(func##_native_impl(double(x)));  \
  }                                               \
  static float func##_fdlibm_impl_f32(float x) {  \
    return float(func##_fdlibm_impl(double(x)));  \
  }

#define DEFINE_UNARY_FLOAT_WRAPPER(func, _) \
  static float func##_impl_f32(float x) {   \
    return float(func##_impl(double(x)));   \
  }

#define DEFINE_BINARY_FLOAT_WRAPPER(func, _)  \
  static float func##_f32(float x, float y) { \
    return float(func(double(x), double(y))); \
  }

FOR_EACH_SIN_COS_TAN_NATIVE(DEFINE_SIN_COS_TAN_FLOAT_WRAPPER)
FOR_EACH_UNARY_NATIVE(DEFINE_UNARY_FLOAT_WRAPPER)
FOR_EACH_BINARY_NATIVE(DEFINE_BINARY_FLOAT_WRAPPER)

#undef DEFINE_UNARY_FLOAT_WRAPPER
#undef DEFINE_BINARY_FLOAT_WRAPPER

struct TypedNative {
  InlinableNative native;
  ABIFunctionType abiType;
  enum class FdlibmImpl : uint8_t { No, Yes } fdlibm;

  TypedNative(InlinableNative native, ABIFunctionType abiType,
              FdlibmImpl fdlibm)
      : native(native), abiType(abiType), fdlibm(fdlibm) {}

  using Lookup = TypedNative;
  static HashNumber hash(const Lookup& l) {
    return HashGeneric(uint32_t(l.native), uint32_t(l.abiType),
                       uint32_t(l.fdlibm));
  }
  static bool match(const TypedNative& lhs, const Lookup& rhs) {
    return lhs.native == rhs.native && lhs.abiType == rhs.abiType &&
           lhs.fdlibm == rhs.fdlibm;
  }
};

using TypedNativeToFuncPtrMap =
    HashMap<TypedNative, void*, TypedNative, SystemAllocPolicy>;

static bool PopulateTypedNatives(TypedNativeToFuncPtrMap* typedNatives) {
#define ADD_OVERLOAD(funcName, native, abiType, fdlibm)                   \
  if (!typedNatives->putNew(TypedNative(InlinableNative::native, abiType, \
                                        TypedNative::FdlibmImpl::fdlibm), \
                            FuncCast(funcName, abiType)))                 \
    return false;

#define ADD_SIN_COS_TAN_OVERLOADS(funcName, native)                          \
  ADD_OVERLOAD(funcName##_native_impl, native, Args_Double_Double, No)       \
  ADD_OVERLOAD(funcName##_fdlibm_impl, native, Args_Double_Double, Yes)      \
  ADD_OVERLOAD(funcName##_native_impl_f32, native, Args_Float32_Float32, No) \
  ADD_OVERLOAD(funcName##_fdlibm_impl_f32, native, Args_Float32_Float32, Yes)

#define ADD_UNARY_OVERLOADS(funcName, native)                   \
  ADD_OVERLOAD(funcName##_impl, native, Args_Double_Double, No) \
  ADD_OVERLOAD(funcName##_impl_f32, native, Args_Float32_Float32, No)

#define ADD_BINARY_OVERLOADS(funcName, native)                 \
  ADD_OVERLOAD(funcName, native, Args_Double_DoubleDouble, No) \
  ADD_OVERLOAD(funcName##_f32, native, Args_Float32_Float32Float32, No)

  FOR_EACH_SIN_COS_TAN_NATIVE(ADD_SIN_COS_TAN_OVERLOADS)
  FOR_EACH_UNARY_NATIVE(ADD_UNARY_OVERLOADS)
  FOR_EACH_BINARY_NATIVE(ADD_BINARY_OVERLOADS)

#undef ADD_UNARY_OVERLOADS
#undef ADD_BINARY_OVERLOADS

  return true;
}

#undef FOR_EACH_UNARY_NATIVE
#undef FOR_EACH_BINARY_NATIVE

// ============================================================================
// [SMDOC] Process-wide builtin thunk set
//
// Thunks are inserted between wasm calls and the C++ callee and achieve two
// things:
//  - bridging the few differences between the internal wasm ABI and the
//    external native ABI (viz. float returns on x86 and soft-fp ARM)
//  - executing an exit prologue/epilogue which in turn allows any profiling
//    iterator to see the full stack up to the wasm operation that called out
//
// Thunks are created for two kinds of C++ callees, enumerated above:
//  - SymbolicAddress: for statically compiled calls in the wasm module
//  - Imported JS builtins: optimized calls to imports
//
// All thunks are created up front, lazily, when the first wasm module is
// compiled in the process. Thunks are kept alive until the JS engine shuts down
// in the process. No thunks are created at runtime after initialization. This
// simple scheme allows several simplifications:
//  - no reference counting to keep thunks alive
//  - no problems toggling W^X permissions which, because of multiple executing
//    threads, would require each thunk allocation to be on its own page
// The cost for creating all thunks at once is relatively low since all thunks
// fit within the smallest executable-code allocation quantum (64k).

using TypedNativeToCodeRangeMap =
    HashMap<TypedNative, uint32_t, TypedNative, SystemAllocPolicy>;

using SymbolicAddressToCodeRangeArray =
    EnumeratedArray<SymbolicAddress, SymbolicAddress::Limit, uint32_t>;

struct BuiltinThunks {
  uint8_t* codeBase;
  size_t codeSize;
  CodeRangeVector codeRanges;
  TypedNativeToCodeRangeMap typedNativeToCodeRange;
  SymbolicAddressToCodeRangeArray symbolicAddressToCodeRange;
  uint32_t provisionalLazyJitEntryOffset;

  BuiltinThunks() : codeBase(nullptr), codeSize(0) {}

  ~BuiltinThunks() {
    if (codeBase) {
      DeallocateExecutableMemory(codeBase, codeSize);
    }
  }
};

Mutex initBuiltinThunks(mutexid::WasmInitBuiltinThunks);
Atomic<const BuiltinThunks*> builtinThunks;

bool wasm::EnsureBuiltinThunksInitialized() {
  LockGuard<Mutex> guard(initBuiltinThunks);
  if (builtinThunks) {
    return true;
  }

  auto thunks = MakeUnique<BuiltinThunks>();
  if (!thunks) {
    return false;
  }

  LifoAlloc lifo(BUILTIN_THUNK_LIFO_SIZE);
  TempAllocator tempAlloc(&lifo);
  WasmMacroAssembler masm(tempAlloc);
  AutoCreatedBy acb(masm, "wasm::EnsureBuiltinThunksInitialized");

  for (auto sym : MakeEnumeratedRange(SymbolicAddress::Limit)) {
    if (!NeedsBuiltinThunk(sym)) {
      thunks->symbolicAddressToCodeRange[sym] = UINT32_MAX;
      continue;
    }

    uint32_t codeRangeIndex = thunks->codeRanges.length();
    thunks->symbolicAddressToCodeRange[sym] = codeRangeIndex;

    ABIFunctionType abiType;
    void* funcPtr = AddressOf(sym, &abiType);

    ExitReason exitReason(sym);

    CallableOffsets offsets;
    if (!GenerateBuiltinThunk(masm, abiType, exitReason, funcPtr, &offsets)) {
      return false;
    }
    if (!thunks->codeRanges.emplaceBack(CodeRange::BuiltinThunk, offsets)) {
      return false;
    }
  }

  TypedNativeToFuncPtrMap typedNatives;
  if (!PopulateTypedNatives(&typedNatives)) {
    return false;
  }

  for (TypedNativeToFuncPtrMap::Range r = typedNatives.all(); !r.empty();
       r.popFront()) {
    TypedNative typedNative = r.front().key();

    uint32_t codeRangeIndex = thunks->codeRanges.length();
    if (!thunks->typedNativeToCodeRange.putNew(typedNative, codeRangeIndex)) {
      return false;
    }

    ABIFunctionType abiType = typedNative.abiType;
    void* funcPtr = r.front().value();

    ExitReason exitReason = ExitReason::Fixed::BuiltinNative;

    CallableOffsets offsets;
    if (!GenerateBuiltinThunk(masm, abiType, exitReason, funcPtr, &offsets)) {
      return false;
    }
    if (!thunks->codeRanges.emplaceBack(CodeRange::BuiltinThunk, offsets)) {
      return false;
    }
  }

  // Provisional lazy JitEntry stub: This is a shared stub that can be installed
  // in the jit-entry jump table.  It uses the JIT ABI and when invoked will
  // retrieve (via TlsContext()) and invoke the context-appropriate
  // invoke-from-interpreter jit stub, thus serving as the initial, unoptimized
  // jit-entry stub for any exported wasm function that has a jit-entry.

#ifdef DEBUG
  // We need to allow this machine code to bake in a C++ code pointer, so we
  // disable the wasm restrictions while generating this stub.
  JitContext jitContext;
  bool oldFlag = jitContext.setIsCompilingWasm(false);
#endif

  Offsets provisionalLazyJitEntryOffsets;
  if (!GenerateProvisionalLazyJitEntryStub(masm,
                                           &provisionalLazyJitEntryOffsets)) {
    return false;
  }
  thunks->provisionalLazyJitEntryOffset = provisionalLazyJitEntryOffsets.begin;

#ifdef DEBUG
  jitContext.setIsCompilingWasm(oldFlag);
#endif

  masm.finish();
  if (masm.oom()) {
    return false;
  }

  size_t allocSize = AlignBytes(masm.bytesNeeded(), ExecutableCodePageSize);

  thunks->codeSize = allocSize;
  thunks->codeBase = (uint8_t*)AllocateExecutableMemory(
      allocSize, ProtectionSetting::Writable, MemCheckKind::MakeUndefined);
  if (!thunks->codeBase) {
    return false;
  }

  AutoMarkJitCodeWritableForThread writable;

  masm.executableCopy(thunks->codeBase);
  memset(thunks->codeBase + masm.bytesNeeded(), 0,
         allocSize - masm.bytesNeeded());

  masm.processCodeLabels(thunks->codeBase);
  PatchDebugSymbolicAccesses(thunks->codeBase, masm);

  MOZ_ASSERT(masm.callSites().empty());
  MOZ_ASSERT(masm.callSiteTargets().empty());
  MOZ_ASSERT(masm.trapSites().empty());
  MOZ_ASSERT(masm.tryNotes().empty());
  MOZ_ASSERT(masm.codeRangeUnwindInfos().empty());

  if (!ExecutableAllocator::makeExecutableAndFlushICache(thunks->codeBase,
                                                         thunks->codeSize)) {
    return false;
  }

  builtinThunks = thunks.release();
  return true;
}

void wasm::ReleaseBuiltinThunks() {
  if (builtinThunks) {
    const BuiltinThunks* ptr = builtinThunks;
    js_delete(const_cast<BuiltinThunks*>(ptr));
    builtinThunks = nullptr;
  }
}

void* wasm::SymbolicAddressTarget(SymbolicAddress sym) {
  MOZ_ASSERT(builtinThunks);

  ABIFunctionType abiType;
  void* funcPtr = AddressOf(sym, &abiType);

  if (!NeedsBuiltinThunk(sym)) {
    return funcPtr;
  }

  const BuiltinThunks& thunks = *builtinThunks;
  uint32_t codeRangeIndex = thunks.symbolicAddressToCodeRange[sym];
  return thunks.codeBase + thunks.codeRanges[codeRangeIndex].begin();
}

void* wasm::ProvisionalLazyJitEntryStub() {
  MOZ_ASSERT(builtinThunks);

  const BuiltinThunks& thunks = *builtinThunks;
  return thunks.codeBase + thunks.provisionalLazyJitEntryOffset;
}

static Maybe<ABIFunctionType> ToBuiltinABIFunctionType(
    const FuncType& funcType) {
  const ValTypeVector& args = funcType.args();
  const ValTypeVector& results = funcType.results();

  if (results.length() != 1) {
    return Nothing();
  }

  if ((args.length() + 1) > (sizeof(uint32_t) * 8 / ABITypeArgShift)) {
    return Nothing();
  }

  uint32_t abiType = 0;
  for (size_t i = 0; i < args.length(); i++) {
    switch (args[i].kind()) {
      case ValType::F32:
        abiType <<= ABITypeArgShift;
        abiType |= uint32_t(ABIType::Float32);
        break;
      case ValType::F64:
        abiType <<= ABITypeArgShift;
        abiType |= uint32_t(ABIType::Float64);
        break;
      default:
        return Nothing();
    }
  }

  abiType <<= ABITypeArgShift;
  switch (results[0].kind()) {
    case ValType::F32:
      abiType |= uint32_t(ABIType::Float32);
      break;
    case ValType::F64:
      abiType |= uint32_t(ABIType::Float64);
      break;
    default:
      return Nothing();
  }

  return Some(ABIFunctionType(abiType));
}

void* wasm::MaybeGetBuiltinThunk(JSFunction* f, const FuncType& funcType) {
  MOZ_ASSERT(builtinThunks);

  if (!f->isNativeFun() || !f->hasJitInfo() ||
      f->jitInfo()->type() != JSJitInfo::InlinableNative) {
    return nullptr;
  }

  Maybe<ABIFunctionType> abiType = ToBuiltinABIFunctionType(funcType);
  if (!abiType) {
    return nullptr;
  }

  const BuiltinThunks& thunks = *builtinThunks;

  // If this function must use the fdlibm implementation first try to lookup
  // the fdlibm version. If that version doesn't exist we still fallback to
  // the normal native.
  if (math_use_fdlibm_for_sin_cos_tan() ||
      f->realm()->creationOptions().alwaysUseFdlibm()) {
    TypedNative typedNative(f->jitInfo()->inlinableNative, *abiType,
                            TypedNative::FdlibmImpl::Yes);
    auto p =
        thunks.typedNativeToCodeRange.readonlyThreadsafeLookup(typedNative);
    if (p) {
      return thunks.codeBase + thunks.codeRanges[p->value()].begin();
    }
  }

  TypedNative typedNative(f->jitInfo()->inlinableNative, *abiType,
                          TypedNative::FdlibmImpl::No);
  auto p = thunks.typedNativeToCodeRange.readonlyThreadsafeLookup(typedNative);
  if (!p) {
    return nullptr;
  }

  return thunks.codeBase + thunks.codeRanges[p->value()].begin();
}

bool wasm::LookupBuiltinThunk(void* pc, const CodeRange** codeRange,
                              uint8_t** codeBase) {
  if (!builtinThunks) {
    return false;
  }

  const BuiltinThunks& thunks = *builtinThunks;
  if (pc < thunks.codeBase || pc >= thunks.codeBase + thunks.codeSize) {
    return false;
  }

  *codeBase = thunks.codeBase;

  CodeRange::OffsetInCode target((uint8_t*)pc - thunks.codeBase);
  *codeRange = LookupInSorted(thunks.codeRanges, target);

  return !!*codeRange;
}