1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2014 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wasm/WasmFrameIter.h"
#include "jit/JitFrames.h"
#include "js/ColumnNumber.h" // JS::WasmFunctionIndex, LimitedColumnNumberOneOrigin, JS::TaggedColumnNumberOneOrigin, JS::TaggedColumnNumberOneOrigin
#include "vm/JitActivation.h" // js::jit::JitActivation
#include "vm/JSContext.h"
#include "wasm/WasmBuiltinModuleGenerated.h"
#include "wasm/WasmDebugFrame.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmInstanceData.h"
#include "wasm/WasmStubs.h"
#include "jit/MacroAssembler-inl.h"
#include "wasm/WasmInstance-inl.h"
using namespace js;
using namespace js::jit;
using namespace js::wasm;
using mozilla::DebugOnly;
using mozilla::Maybe;
static Instance* ExtractCallerInstanceFromFrameWithInstances(Frame* fp) {
return *reinterpret_cast<Instance**>(
reinterpret_cast<uint8_t*>(fp) +
FrameWithInstances::callerInstanceOffset());
}
static const Instance* ExtractCalleeInstanceFromFrameWithInstances(
const Frame* fp) {
return *reinterpret_cast<Instance* const*>(
reinterpret_cast<const uint8_t*>(fp) +
FrameWithInstances::calleeInstanceOffset());
}
/*****************************************************************************/
// WasmFrameIter implementation
WasmFrameIter::WasmFrameIter(JitActivation* activation, wasm::Frame* fp)
: activation_(activation),
code_(nullptr),
codeRange_(nullptr),
lineOrBytecode_(0),
fp_(fp ? fp : activation->wasmExitFP()),
instance_(nullptr),
unwoundCallerFP_(nullptr),
unwind_(Unwind::False),
unwoundAddressOfReturnAddress_(nullptr),
resumePCinCurrentFrame_(nullptr),
failedUnwindSignatureMismatch_(false) {
MOZ_ASSERT(fp_);
instance_ = GetNearestEffectiveInstance(fp_);
// When the stack is captured during a trap (viz., to create the .stack
// for an Error object), use the pc/bytecode information captured by the
// signal handler in the runtime. Take care not to use this trap unwind
// state for wasm frames in the middle of a JitActivation, i.e., wasm frames
// that called into JIT frames before the trap.
if (activation->isWasmTrapping() && fp_ == activation->wasmExitFP()) {
const TrapData& trapData = activation->wasmTrapData();
void* unwoundPC = trapData.unwoundPC;
code_ = &instance_->code();
MOZ_ASSERT(code_ == LookupCode(unwoundPC));
codeRange_ = code_->lookupFuncRange(unwoundPC);
MOZ_ASSERT(codeRange_);
lineOrBytecode_ = trapData.bytecodeOffset;
failedUnwindSignatureMismatch_ = trapData.failedUnwindSignatureMismatch;
MOZ_ASSERT(!done());
return;
}
// Otherwise, execution exits wasm code via an exit stub which sets exitFP
// to the exit stub's frame. Thus, in this case, we want to start iteration
// at the caller of the exit frame, whose Code, CodeRange and CallSite are
// indicated by the returnAddress of the exit stub's frame. If the caller
// was Ion, we can just skip the wasm frames.
popFrame();
MOZ_ASSERT(!done() || unwoundCallerFP_);
}
bool WasmFrameIter::done() const {
MOZ_ASSERT(!!fp_ == !!code_);
MOZ_ASSERT(!!fp_ == !!codeRange_);
return !fp_;
}
void WasmFrameIter::operator++() {
MOZ_ASSERT(!done());
// When the iterator is set to unwind, each time the iterator pops a frame,
// the JitActivation is updated so that the just-popped frame is no longer
// visible. This is necessary since Debugger::onLeaveFrame is called before
// popping each frame and, once onLeaveFrame is called for a given frame,
// that frame must not be visible to subsequent stack iteration (or it
// could be added as a "new" frame just as it becomes garbage). When the
// frame is trapping, then exitFP is included in the callstack (otherwise,
// it is skipped, as explained above). So to unwind the innermost frame, we
// just clear the trapping state.
if (unwind_ == Unwind::True) {
if (activation_->isWasmTrapping()) {
activation_->finishWasmTrap();
}
activation_->setWasmExitFP(fp_);
}
popFrame();
}
static inline void AssertDirectJitCall(const void* fp) {
// Called via an inlined fast JIT to wasm call: in this case, FP is
// pointing in the middle of the exit frame, right before the exit
// footer; ensure the exit frame type is the expected one.
#ifdef DEBUG
auto* jitCaller = (ExitFrameLayout*)fp;
MOZ_ASSERT(jitCaller->footer()->type() ==
jit::ExitFrameType::DirectWasmJitCall);
#endif
}
void WasmFrameIter::popFrame() {
uint8_t* returnAddress = fp_->returnAddress();
code_ = LookupCode(returnAddress, &codeRange_);
if (!code_) {
// This is a direct call from the jit into the wasm function's body. The
// call stack resembles this at this point:
//
// |---------------------|
// | JIT FRAME |
// | JIT FAKE EXIT FRAME | <-- fp_->callerFP_
// | WASM FRAME | <-- fp_
// |---------------------|
//
// fp_->callerFP_ points to the fake exit frame set up by the jit caller,
// and the return-address-to-fp is in JIT code, thus doesn't belong to any
// wasm instance's code (in particular, there's no associated CodeRange).
// Mark the frame as such.
AssertDirectJitCall(fp_->jitEntryCaller());
unwoundCallerFP_ = fp_->jitEntryCaller();
unwoundJitFrameType_.emplace(FrameType::Exit);
if (unwind_ == Unwind::True) {
activation_->setJSExitFP(unwoundCallerFP());
unwoundAddressOfReturnAddress_ = fp_->addressOfReturnAddress();
}
fp_ = nullptr;
code_ = nullptr;
codeRange_ = nullptr;
MOZ_ASSERT(done());
return;
}
MOZ_ASSERT(codeRange_);
Frame* prevFP = fp_;
fp_ = fp_->wasmCaller();
resumePCinCurrentFrame_ = returnAddress;
if (codeRange_->isInterpEntry()) {
// Interpreter entry has a simple frame, record FP from it.
unwoundCallerFP_ = reinterpret_cast<uint8_t*>(fp_);
fp_ = nullptr;
code_ = nullptr;
codeRange_ = nullptr;
if (unwind_ == Unwind::True) {
// We're exiting via the interpreter entry; we can safely reset
// exitFP.
activation_->setWasmExitFP(nullptr);
unwoundAddressOfReturnAddress_ = prevFP->addressOfReturnAddress();
}
MOZ_ASSERT(done());
return;
}
if (codeRange_->isJitEntry()) {
// This wasm function has been called through the generic JIT entry by
// a JIT caller, so the call stack resembles this:
//
// |---------------------|
// | JIT FRAME |
// | JSJIT TO WASM EXIT | <-- fp_
// | WASM JIT ENTRY | <-- prevFP (already unwound)
// | WASM FRAME | (already unwound)
// |---------------------|
//
// The next value of FP is just a regular jit frame used as a marker to
// know that we should transition to a JSJit frame iterator.
unwoundCallerFP_ = reinterpret_cast<uint8_t*>(fp_);
unwoundJitFrameType_.emplace(FrameType::JSJitToWasm);
fp_ = nullptr;
code_ = nullptr;
codeRange_ = nullptr;
if (unwind_ == Unwind::True) {
activation_->setJSExitFP(unwoundCallerFP());
unwoundAddressOfReturnAddress_ = prevFP->addressOfReturnAddress();
}
MOZ_ASSERT(done());
return;
}
MOZ_ASSERT(codeRange_->kind() == CodeRange::Function);
const CallSite* callsite = code_->lookupCallSite(returnAddress);
MOZ_ASSERT(callsite);
if (callsite->mightBeCrossInstance()) {
instance_ = ExtractCallerInstanceFromFrameWithInstances(prevFP);
}
MOZ_ASSERT(code_ == &instance()->code());
lineOrBytecode_ = callsite->lineOrBytecode();
failedUnwindSignatureMismatch_ = false;
MOZ_ASSERT(!done());
}
const char* WasmFrameIter::filename() const {
MOZ_ASSERT(!done());
return code_->metadata().filename.get();
}
const char16_t* WasmFrameIter::displayURL() const {
MOZ_ASSERT(!done());
return code_->metadata().displayURL();
}
bool WasmFrameIter::mutedErrors() const {
MOZ_ASSERT(!done());
return code_->metadata().mutedErrors();
}
JSAtom* WasmFrameIter::functionDisplayAtom() const {
MOZ_ASSERT(!done());
JSContext* cx = activation_->cx();
JSAtom* atom = instance()->getFuncDisplayAtom(cx, codeRange_->funcIndex());
if (!atom) {
cx->clearPendingException();
return cx->names().empty_;
}
return atom;
}
unsigned WasmFrameIter::lineOrBytecode() const {
MOZ_ASSERT(!done());
return lineOrBytecode_;
}
uint32_t WasmFrameIter::funcIndex() const {
MOZ_ASSERT(!done());
return codeRange_->funcIndex();
}
unsigned WasmFrameIter::computeLine(
JS::TaggedColumnNumberOneOrigin* column) const {
if (instance()->isAsmJS()) {
if (column) {
*column =
JS::TaggedColumnNumberOneOrigin(JS::LimitedColumnNumberOneOrigin(
JS::WasmFunctionIndex::DefaultBinarySourceColumnNumberOneOrigin));
}
return lineOrBytecode_;
}
MOZ_ASSERT(!(codeRange_->funcIndex() &
JS::TaggedColumnNumberOneOrigin::WasmFunctionTag));
if (column) {
*column = JS::TaggedColumnNumberOneOrigin(
JS::WasmFunctionIndex(codeRange_->funcIndex()));
}
return lineOrBytecode_;
}
void** WasmFrameIter::unwoundAddressOfReturnAddress() const {
MOZ_ASSERT(done());
MOZ_ASSERT(unwind_ == Unwind::True);
MOZ_ASSERT(unwoundAddressOfReturnAddress_);
return unwoundAddressOfReturnAddress_;
}
bool WasmFrameIter::debugEnabled() const {
MOZ_ASSERT(!done());
// Metadata::debugEnabled is only set if debugging is actually enabled (both
// requested, and available via baseline compilation), and Tier::Debug code
// will be available.
if (!code_->metadata().debugEnabled) {
return false;
}
// Debug information is not available in prologue when the iterator is
// failing to unwind invalid signature trap.
if (failedUnwindSignatureMismatch_) {
return false;
}
// Only non-imported functions can have debug frames.
if (codeRange_->funcIndex() <
code_->metadata(Tier::Debug).funcImports.length()) {
return false;
}
#ifdef ENABLE_WASM_TAIL_CALLS
// Debug frame is not present at the return stub.
const CallSite* site = code_->lookupCallSite((void*)resumePCinCurrentFrame_);
if (site && site->kind() == CallSite::ReturnStub) {
return false;
}
#endif
return true;
}
DebugFrame* WasmFrameIter::debugFrame() const {
MOZ_ASSERT(!done());
return DebugFrame::from(fp_);
}
bool WasmFrameIter::hasUnwoundJitFrame() const {
return unwoundCallerFP_ && unwoundJitFrameType_.isSome();
}
jit::FrameType WasmFrameIter::unwoundJitFrameType() const {
MOZ_ASSERT(unwoundCallerFP_);
MOZ_ASSERT(unwoundJitFrameType_.isSome());
return *unwoundJitFrameType_;
}
uint8_t* WasmFrameIter::resumePCinCurrentFrame() const {
if (resumePCinCurrentFrame_) {
return resumePCinCurrentFrame_;
}
MOZ_ASSERT(activation_->isWasmTrapping());
// The next instruction is the instruction following the trap instruction.
return (uint8_t*)activation_->wasmTrapData().resumePC;
}
/*****************************************************************************/
// Prologue/epilogue code generation
// These constants reflect statically-determined offsets in the
// prologue/epilogue. The offsets are dynamically asserted during code
// generation.
#if defined(JS_CODEGEN_X64)
static const unsigned PushedRetAddr = 0;
static const unsigned PushedFP = 1;
static const unsigned SetFP = 4;
static const unsigned PoppedFP = 0;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_X86)
static const unsigned PushedRetAddr = 0;
static const unsigned PushedFP = 1;
static const unsigned SetFP = 3;
static const unsigned PoppedFP = 0;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_ARM)
static const unsigned BeforePushRetAddr = 0;
static const unsigned PushedRetAddr = 4;
static const unsigned PushedFP = 8;
static const unsigned SetFP = 12;
static const unsigned PoppedFP = 0;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_ARM64)
// On ARM64 we do not use push or pop; the prologues and epilogues are
// structured differently due to restrictions on SP alignment. Even so,
// PushedRetAddr and PushedFP are used in some restricted contexts
// and must be superficially meaningful.
static const unsigned BeforePushRetAddr = 0;
static const unsigned PushedRetAddr = 8;
static const unsigned PushedFP = 12;
static const unsigned SetFP = 16;
static const unsigned PoppedFP = 4;
static const unsigned PoppedFPJitEntry = 8;
static_assert(BeforePushRetAddr == 0, "Required by StartUnwinding");
static_assert(PushedFP > PushedRetAddr, "Required by StartUnwinding");
#elif defined(JS_CODEGEN_MIPS64)
static const unsigned PushedRetAddr = 8;
static const unsigned PushedFP = 16;
static const unsigned SetFP = 20;
static const unsigned PoppedFP = 4;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_LOONG64)
static const unsigned PushedRetAddr = 8;
static const unsigned PushedFP = 16;
static const unsigned SetFP = 20;
static const unsigned PoppedFP = 4;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_RISCV64)
static const unsigned PushedRetAddr = 8;
static const unsigned PushedFP = 16;
static const unsigned SetFP = 20;
static const unsigned PoppedFP = 4;
static const unsigned PoppedFPJitEntry = 0;
#elif defined(JS_CODEGEN_NONE) || defined(JS_CODEGEN_WASM32)
// Synthetic values to satisfy asserts and avoid compiler warnings.
static const unsigned PushedRetAddr = 0;
static const unsigned PushedFP = 1;
static const unsigned SetFP = 2;
static const unsigned PoppedFP = 3;
static const unsigned PoppedFPJitEntry = 4;
#else
# error "Unknown architecture!"
#endif
static void LoadActivation(MacroAssembler& masm, const Register& dest) {
// WasmCall pushes a JitActivation.
masm.loadPtr(Address(InstanceReg, wasm::Instance::offsetOfCx()), dest);
masm.loadPtr(Address(dest, JSContext::offsetOfActivation()), dest);
}
void wasm::SetExitFP(MacroAssembler& masm, ExitReason reason,
Register scratch) {
MOZ_ASSERT(!reason.isNone());
LoadActivation(masm, scratch);
masm.store32(
Imm32(reason.encode()),
Address(scratch, JitActivation::offsetOfEncodedWasmExitReason()));
masm.orPtr(Imm32(ExitFPTag), FramePointer);
masm.storePtr(FramePointer,
Address(scratch, JitActivation::offsetOfPackedExitFP()));
masm.andPtr(Imm32(int32_t(~ExitFPTag)), FramePointer);
}
void wasm::ClearExitFP(MacroAssembler& masm, Register scratch) {
LoadActivation(masm, scratch);
masm.storePtr(ImmWord(0x0),
Address(scratch, JitActivation::offsetOfPackedExitFP()));
masm.store32(
Imm32(0x0),
Address(scratch, JitActivation::offsetOfEncodedWasmExitReason()));
}
static void GenerateCallablePrologue(MacroAssembler& masm, uint32_t* entry) {
AutoCreatedBy acb(masm, "GenerateCallablePrologue");
masm.setFramePushed(0);
// ProfilingFrameIterator needs to know the offsets of several key
// instructions from entry. To save space, we make these offsets static
// constants and assert that they match the actual codegen below. On ARM,
// this requires AutoForbidPoolsAndNops to prevent a constant pool from being
// randomly inserted between two instructions.
#if defined(JS_CODEGEN_MIPS64)
{
*entry = masm.currentOffset();
masm.ma_push(ra);
MOZ_ASSERT_IF(!masm.oom(), PushedRetAddr == masm.currentOffset() - *entry);
masm.ma_push(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), PushedFP == masm.currentOffset() - *entry);
masm.moveStackPtrTo(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - *entry);
}
#elif defined(JS_CODEGEN_LOONG64)
{
*entry = masm.currentOffset();
masm.ma_push(ra);
MOZ_ASSERT_IF(!masm.oom(), PushedRetAddr == masm.currentOffset() - *entry);
masm.ma_push(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), PushedFP == masm.currentOffset() - *entry);
masm.moveStackPtrTo(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - *entry);
}
#elif defined(JS_CODEGEN_RISCV64)
{
*entry = masm.currentOffset();
BlockTrampolinePoolScope block_trampoline_pool(&masm, 5);
masm.ma_push(ra);
MOZ_ASSERT_IF(!masm.oom(), PushedRetAddr == masm.currentOffset() - *entry);
masm.ma_push(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), PushedFP == masm.currentOffset() - *entry);
masm.moveStackPtrTo(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - *entry);
}
#elif defined(JS_CODEGEN_ARM64)
{
// We do not use the PseudoStackPointer. However, we may be called in a
// context -- compilation using Ion -- in which the PseudoStackPointer is
// in use. Rather than risk confusion in the uses of `masm` here, let's
// just switch in the real SP, do what we need to do, and restore the
// existing setting afterwards.
const vixl::Register stashedSPreg = masm.GetStackPointer64();
masm.SetStackPointer64(vixl::sp);
AutoForbidPoolsAndNops afp(&masm,
/* number of instructions in scope = */ 4);
*entry = masm.currentOffset();
masm.Sub(sp, sp, sizeof(Frame));
masm.Str(ARMRegister(lr, 64), MemOperand(sp, Frame::returnAddressOffset()));
MOZ_ASSERT_IF(!masm.oom(), PushedRetAddr == masm.currentOffset() - *entry);
masm.Str(ARMRegister(FramePointer, 64),
MemOperand(sp, Frame::callerFPOffset()));
MOZ_ASSERT_IF(!masm.oom(), PushedFP == masm.currentOffset() - *entry);
masm.Mov(ARMRegister(FramePointer, 64), sp);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - *entry);
// And restore the SP-reg setting, per comment above.
masm.SetStackPointer64(stashedSPreg);
}
#else
{
# if defined(JS_CODEGEN_ARM)
AutoForbidPoolsAndNops afp(&masm,
/* number of instructions in scope = */ 3);
*entry = masm.currentOffset();
static_assert(BeforePushRetAddr == 0);
masm.push(lr);
# else
*entry = masm.currentOffset();
// The x86/x64 call instruction pushes the return address.
# endif
MOZ_ASSERT_IF(!masm.oom(), PushedRetAddr == masm.currentOffset() - *entry);
masm.push(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), PushedFP == masm.currentOffset() - *entry);
masm.moveStackPtrTo(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - *entry);
}
#endif
}
static void GenerateCallableEpilogue(MacroAssembler& masm, unsigned framePushed,
ExitReason reason, uint32_t* ret) {
AutoCreatedBy acb(masm, "GenerateCallableEpilogue");
if (framePushed) {
masm.freeStack(framePushed);
}
if (!reason.isNone()) {
ClearExitFP(masm, ABINonArgReturnVolatileReg);
}
DebugOnly<uint32_t> poppedFP{};
#if defined(JS_CODEGEN_MIPS64)
masm.loadPtr(Address(StackPointer, Frame::callerFPOffset()), FramePointer);
poppedFP = masm.currentOffset();
masm.loadPtr(Address(StackPointer, Frame::returnAddressOffset()), ra);
*ret = masm.currentOffset();
masm.as_jr(ra);
masm.addToStackPtr(Imm32(sizeof(Frame)));
#elif defined(JS_CODEGEN_LOONG64)
masm.loadPtr(Address(StackPointer, Frame::callerFPOffset()), FramePointer);
poppedFP = masm.currentOffset();
masm.loadPtr(Address(StackPointer, Frame::returnAddressOffset()), ra);
*ret = masm.currentOffset();
masm.addToStackPtr(Imm32(sizeof(Frame)));
masm.as_jirl(zero, ra, BOffImm16(0));
#elif defined(JS_CODEGEN_RISCV64)
{
BlockTrampolinePoolScope block_trampoline_pool(&masm, 20);
masm.loadPtr(Address(StackPointer, Frame::callerFPOffset()), FramePointer);
poppedFP = masm.currentOffset();
masm.loadPtr(Address(StackPointer, Frame::returnAddressOffset()), ra);
*ret = masm.currentOffset();
masm.addToStackPtr(Imm32(sizeof(Frame)));
masm.jalr(zero, ra, 0);
masm.nop();
}
#elif defined(JS_CODEGEN_ARM64)
// See comment at equivalent place in |GenerateCallablePrologue| above.
const vixl::Register stashedSPreg = masm.GetStackPointer64();
masm.SetStackPointer64(vixl::sp);
AutoForbidPoolsAndNops afp(&masm, /* number of instructions in scope = */ 5);
masm.Ldr(ARMRegister(FramePointer, 64),
MemOperand(sp, Frame::callerFPOffset()));
poppedFP = masm.currentOffset();
masm.Ldr(ARMRegister(lr, 64), MemOperand(sp, Frame::returnAddressOffset()));
*ret = masm.currentOffset();
masm.Add(sp, sp, sizeof(Frame));
// Reinitialise PSP from SP. This is less than elegant because the prologue
// operates on the raw stack pointer SP and does not keep the PSP in sync.
// We can't use initPseudoStackPtr here because we just set up masm to not
// use it. Hence we have to do it "by hand".
masm.Mov(PseudoStackPointer64, vixl::sp);
masm.Ret(ARMRegister(lr, 64));
// See comment at equivalent place in |GenerateCallablePrologue| above.
masm.SetStackPointer64(stashedSPreg);
#else
// Forbid pools for the same reason as described in GenerateCallablePrologue.
# if defined(JS_CODEGEN_ARM)
AutoForbidPoolsAndNops afp(&masm, /* number of instructions in scope = */ 6);
# endif
// There is an important ordering constraint here: fp must be repointed to
// the caller's frame before any field of the frame currently pointed to by
// fp is popped: asynchronous signal handlers (which use stack space
// starting at sp) could otherwise clobber these fields while they are still
// accessible via fp (fp fields are read during frame iteration which is
// *also* done asynchronously).
masm.pop(FramePointer);
poppedFP = masm.currentOffset();
*ret = masm.currentOffset();
masm.ret();
#endif
MOZ_ASSERT_IF(!masm.oom(), PoppedFP == *ret - poppedFP);
}
void wasm::GenerateFunctionPrologue(MacroAssembler& masm,
const CallIndirectId& callIndirectId,
const Maybe<uint32_t>& tier1FuncIndex,
FuncOffsets* offsets) {
AutoCreatedBy acb(masm, "wasm::GenerateFunctionPrologue");
// We are going to generate this code layout:
// ---------------------------------------------
// checked call entry: callable prologue
// check signature
// jump functionBody ──┐
// unchecked call entry: callable prologue │
// functionBody <─────┘
// -----------------------------------------------
// checked call entry - used for call_indirect when we have to check the
// signature.
//
// unchecked call entry - used for regular direct same-instance calls.
// The checked call entry is a call target, so must have CodeAlignment.
// Its offset is normally zero.
static_assert(WasmCheckedCallEntryOffset % CodeAlignment == 0,
"code aligned");
// Flush pending pools so they do not get dumped between the 'begin' and
// 'uncheckedCallEntry' offsets since the difference must be less than
// UINT8_MAX to be stored in CodeRange::funcbeginToUncheckedCallEntry_.
// (Pending pools can be large.)
masm.flushBuffer();
masm.haltingAlign(CodeAlignment);
Label functionBody;
offsets->begin = masm.currentOffset();
// Only first-class functions (those that can be referenced in a table) need
// the checked call prologue w/ signature check. It is impossible to perform
// a checked call otherwise.
//
// asm.js function tables are homogeneous and don't need a signature check.
// However, they can be put in tables which expect a checked call entry point,
// so we generate a no-op entry point for consistency. If asm.js performance
// was important we could refine this in the future.
if (callIndirectId.kind() != CallIndirectIdKind::None) {
// Generate checked call entry. The BytecodeOffset of the trap is fixed up
// to be the bytecode offset of the callsite by
// JitActivation::startWasmTrap.
MOZ_ASSERT_IF(!masm.oom(), masm.currentOffset() - offsets->begin ==
WasmCheckedCallEntryOffset);
uint32_t dummy;
GenerateCallablePrologue(masm, &dummy);
switch (callIndirectId.kind()) {
case CallIndirectIdKind::Global: {
Label fail;
Register scratch1 = WasmTableCallScratchReg0;
Register scratch2 = WasmTableCallScratchReg1;
// Check if this function's type is exactly the expected function type
masm.loadPtr(
Address(InstanceReg,
Instance::offsetInData(
callIndirectId.instanceDataOffset() +
offsetof(wasm::TypeDefInstanceData, superTypeVector))),
scratch1);
masm.branchPtr(Assembler::Condition::Equal, WasmTableCallSigReg,
scratch1, &functionBody);
// Otherwise, we need to see if this function's type is a sub type of
// the expected function type. This requires us to check if the
// expected's type is in the super type vector of this function's type.
//
// We can skip this if our function type has no super types.
if (callIndirectId.hasSuperType()) {
// Check if the expected function type was an immediate, not a
// type definition. Because we only allow the immediate form for
// final types without super types, this implies that we have a
// signature mismatch.
masm.branchTestPtr(Assembler::Condition::NonZero, WasmTableCallSigReg,
Imm32(FuncType::ImmediateBit), &fail);
// Load the subtyping depth of the expected function type. Re-use the
// index register, as it's no longer needed.
Register subTypingDepth = WasmTableCallIndexReg;
masm.load32(
Address(WasmTableCallSigReg,
int32_t(SuperTypeVector::offsetOfSubTypingDepth())),
subTypingDepth);
// Perform the check
masm.branchWasmSTVIsSubtypeDynamicDepth(scratch1, WasmTableCallSigReg,
subTypingDepth, scratch2,
&functionBody, true);
}
masm.bind(&fail);
masm.wasmTrap(Trap::IndirectCallBadSig, BytecodeOffset(0));
break;
}
case CallIndirectIdKind::Immediate: {
masm.branch32(Assembler::Condition::Equal, WasmTableCallSigReg,
Imm32(callIndirectId.immediate()), &functionBody);
masm.wasmTrap(Trap::IndirectCallBadSig, BytecodeOffset(0));
break;
}
case CallIndirectIdKind::AsmJS:
masm.jump(&functionBody);
break;
case CallIndirectIdKind::None:
break;
}
// The preceding code may have generated a small constant pool to support
// the comparison in the signature check. But if we flush the pool here we
// will also force the creation of an unused branch veneer in the pool for
// the jump to functionBody from the signature check on some platforms, thus
// needlessly inflating the size of the prologue.
//
// On no supported platform that uses a pool (arm, arm64) is there any risk
// at present of that branch or other elements in the pool going out of
// range while we're generating the following padding and prologue,
// therefore no pool elements will be emitted in the prologue, therefore it
// is safe not to flush here.
//
// We assert that this holds at runtime by comparing the expected entry
// offset to the recorded ditto; if they are not the same then
// GenerateCallablePrologue flushed a pool before the prologue code,
// contrary to assumption.
masm.nopAlign(CodeAlignment);
}
// Generate unchecked call entry:
DebugOnly<uint32_t> expectedEntry = masm.currentOffset();
GenerateCallablePrologue(masm, &offsets->uncheckedCallEntry);
MOZ_ASSERT(expectedEntry == offsets->uncheckedCallEntry);
masm.bind(&functionBody);
#ifdef JS_CODEGEN_ARM64
// GenerateCallablePrologue creates a prologue which operates on the raw
// stack pointer and does not keep the PSP in sync. So we have to resync it
// here. But we can't use initPseudoStackPtr here because masm may not be
// set up to use it, depending on which compiler is in use. Hence do it
// "manually".
masm.Mov(PseudoStackPointer64, vixl::sp);
#endif
// See comment block in WasmCompile.cpp for an explanation tiering.
if (tier1FuncIndex) {
Register scratch = ABINonArgReg0;
masm.loadPtr(Address(InstanceReg, Instance::offsetOfJumpTable()), scratch);
masm.jump(Address(scratch, *tier1FuncIndex * sizeof(uintptr_t)));
}
offsets->tierEntry = masm.currentOffset();
MOZ_ASSERT(masm.framePushed() == 0);
}
void wasm::GenerateFunctionEpilogue(MacroAssembler& masm, unsigned framePushed,
FuncOffsets* offsets) {
// Inverse of GenerateFunctionPrologue:
MOZ_ASSERT(masm.framePushed() == framePushed);
GenerateCallableEpilogue(masm, framePushed, ExitReason::None(),
&offsets->ret);
MOZ_ASSERT(masm.framePushed() == 0);
}
void wasm::GenerateExitPrologue(MacroAssembler& masm, unsigned framePushed,
ExitReason reason, CallableOffsets* offsets) {
masm.haltingAlign(CodeAlignment);
GenerateCallablePrologue(masm, &offsets->begin);
// This frame will be exiting compiled code to C++ so record the fp and
// reason in the JitActivation so the frame iterators can unwind.
SetExitFP(masm, reason, ABINonArgReturnVolatileReg);
MOZ_ASSERT(masm.framePushed() == 0);
masm.reserveStack(framePushed);
}
void wasm::GenerateExitEpilogue(MacroAssembler& masm, unsigned framePushed,
ExitReason reason, CallableOffsets* offsets) {
// Inverse of GenerateExitPrologue:
MOZ_ASSERT(masm.framePushed() == framePushed);
GenerateCallableEpilogue(masm, framePushed, reason, &offsets->ret);
MOZ_ASSERT(masm.framePushed() == 0);
}
static void AssertNoWasmExitFPInJitExit(MacroAssembler& masm) {
// As a general stack invariant, if Activation::packedExitFP is tagged as
// wasm, it must point to a valid wasm::Frame. The JIT exit stub calls into
// JIT code and thus does not really exit, thus, when entering/leaving the
// JIT exit stub from/to normal wasm code, packedExitFP is not tagged wasm.
#ifdef DEBUG
Register scratch = ABINonArgReturnReg0;
LoadActivation(masm, scratch);
Label ok;
masm.branchTestPtr(Assembler::Zero,
Address(scratch, JitActivation::offsetOfPackedExitFP()),
Imm32(ExitFPTag), &ok);
masm.breakpoint();
masm.bind(&ok);
#endif
}
void wasm::GenerateJitExitPrologue(MacroAssembler& masm, unsigned framePushed,
CallableOffsets* offsets) {
masm.haltingAlign(CodeAlignment);
GenerateCallablePrologue(masm, &offsets->begin);
AssertNoWasmExitFPInJitExit(masm);
MOZ_ASSERT(masm.framePushed() == 0);
masm.reserveStack(framePushed);
}
void wasm::GenerateJitExitEpilogue(MacroAssembler& masm, unsigned framePushed,
CallableOffsets* offsets) {
// Inverse of GenerateJitExitPrologue:
MOZ_ASSERT(masm.framePushed() == framePushed);
AssertNoWasmExitFPInJitExit(masm);
GenerateCallableEpilogue(masm, framePushed, ExitReason::None(),
&offsets->ret);
MOZ_ASSERT(masm.framePushed() == 0);
}
void wasm::GenerateJitEntryPrologue(MacroAssembler& masm,
CallableOffsets* offsets) {
masm.haltingAlign(CodeAlignment);
{
// Push the return address.
#if defined(JS_CODEGEN_ARM)
AutoForbidPoolsAndNops afp(&masm,
/* number of instructions in scope = */ 3);
offsets->begin = masm.currentOffset();
static_assert(BeforePushRetAddr == 0);
masm.push(lr);
#elif defined(JS_CODEGEN_MIPS64)
offsets->begin = masm.currentOffset();
masm.push(ra);
#elif defined(JS_CODEGEN_LOONG64)
offsets->begin = masm.currentOffset();
masm.push(ra);
#elif defined(JS_CODEGEN_RISCV64)
BlockTrampolinePoolScope block_trampoline_pool(&masm, 10);
offsets->begin = masm.currentOffset();
masm.push(ra);
#elif defined(JS_CODEGEN_ARM64)
{
AutoForbidPoolsAndNops afp(&masm,
/* number of instructions in scope = */ 4);
offsets->begin = masm.currentOffset();
static_assert(BeforePushRetAddr == 0);
// Subtract from SP first as SP must be aligned before offsetting.
masm.Sub(sp, sp, 16);
static_assert(JitFrameLayout::offsetOfReturnAddress() == 8);
masm.Str(ARMRegister(lr, 64), MemOperand(sp, 8));
}
#else
// The x86/x64 call instruction pushes the return address.
offsets->begin = masm.currentOffset();
#endif
MOZ_ASSERT_IF(!masm.oom(),
PushedRetAddr == masm.currentOffset() - offsets->begin);
// Save jit frame pointer, so unwinding from wasm to jit frames is trivial.
#if defined(JS_CODEGEN_ARM64)
static_assert(JitFrameLayout::offsetOfCallerFramePtr() == 0);
masm.Str(ARMRegister(FramePointer, 64), MemOperand(sp, 0));
#else
masm.Push(FramePointer);
#endif
MOZ_ASSERT_IF(!masm.oom(),
PushedFP == masm.currentOffset() - offsets->begin);
masm.moveStackPtrTo(FramePointer);
MOZ_ASSERT_IF(!masm.oom(), SetFP == masm.currentOffset() - offsets->begin);
}
masm.setFramePushed(0);
}
void wasm::GenerateJitEntryEpilogue(MacroAssembler& masm,
CallableOffsets* offsets) {
DebugOnly<uint32_t> poppedFP{};
#ifdef JS_CODEGEN_ARM64
{
RegisterOrSP sp = masm.getStackPointer();
AutoForbidPoolsAndNops afp(&masm,
/* number of instructions in scope = */ 5);
masm.loadPtr(Address(sp, 8), lr);
masm.loadPtr(Address(sp, 0), FramePointer);
poppedFP = masm.currentOffset();
masm.addToStackPtr(Imm32(2 * sizeof(void*)));
// Copy SP into PSP to enforce return-point invariants (SP == PSP).
// `addToStackPtr` won't sync them because SP is the active pointer here.
// For the same reason, we can't use initPseudoStackPtr to do the sync, so
// we have to do it "by hand". Omitting this causes many tests to segfault.
masm.moveStackPtrTo(PseudoStackPointer);
offsets->ret = masm.currentOffset();
masm.Ret(ARMRegister(lr, 64));
masm.setFramePushed(0);
}
#else
// Forbid pools for the same reason as described in GenerateCallablePrologue.
# if defined(JS_CODEGEN_ARM)
AutoForbidPoolsAndNops afp(&masm, /* number of instructions in scope = */ 2);
# endif
masm.pop(FramePointer);
poppedFP = masm.currentOffset();
offsets->ret = masm.currentOffset();
masm.ret();
#endif
MOZ_ASSERT_IF(!masm.oom(), PoppedFPJitEntry == offsets->ret - poppedFP);
}
/*****************************************************************************/
// ProfilingFrameIterator
ProfilingFrameIterator::ProfilingFrameIterator()
: code_(nullptr),
codeRange_(nullptr),
callerFP_(nullptr),
callerPC_(nullptr),
stackAddress_(nullptr),
unwoundJitCallerFP_(nullptr),
exitReason_(ExitReason::Fixed::None) {
MOZ_ASSERT(done());
}
ProfilingFrameIterator::ProfilingFrameIterator(const JitActivation& activation)
: code_(nullptr),
codeRange_(nullptr),
callerFP_(nullptr),
callerPC_(nullptr),
stackAddress_(nullptr),
unwoundJitCallerFP_(nullptr),
exitReason_(activation.wasmExitReason()) {
initFromExitFP(activation.wasmExitFP());
}
ProfilingFrameIterator::ProfilingFrameIterator(const Frame* fp)
: code_(nullptr),
codeRange_(nullptr),
callerFP_(nullptr),
callerPC_(nullptr),
stackAddress_(nullptr),
unwoundJitCallerFP_(nullptr),
exitReason_(ExitReason::Fixed::ImportJit) {
MOZ_ASSERT(fp);
initFromExitFP(fp);
}
static inline void AssertMatchesCallSite(void* callerPC, uint8_t* callerFP) {
#ifdef DEBUG
const CodeRange* callerCodeRange;
const Code* code = LookupCode(callerPC, &callerCodeRange);
if (!code) {
AssertDirectJitCall(callerFP);
return;
}
MOZ_ASSERT(callerCodeRange);
if (callerCodeRange->isInterpEntry()) {
// callerFP is the value of the frame pointer register when we were called
// from C++.
return;
}
if (callerCodeRange->isJitEntry()) {
MOZ_ASSERT(callerFP != nullptr);
return;
}
const CallSite* callsite = code->lookupCallSite(callerPC);
MOZ_ASSERT(callsite);
#endif
}
void ProfilingFrameIterator::initFromExitFP(const Frame* fp) {
MOZ_ASSERT(fp);
stackAddress_ = (void*)fp;
endStackAddress_ = stackAddress_;
code_ = LookupCode(fp->returnAddress(), &codeRange_);
if (!code_) {
// This is a direct call from the JIT, the caller FP is pointing to the JIT
// caller's frame.
AssertDirectJitCall(fp->jitEntryCaller());
unwoundJitCallerFP_ = fp->jitEntryCaller();
MOZ_ASSERT(done());
return;
}
MOZ_ASSERT(codeRange_);
// Since we don't have the pc for fp, start unwinding at the caller of fp.
// This means that the innermost frame is skipped. This is fine because:
// - for import exit calls, the innermost frame is a thunk, so the first
// frame that shows up is the function calling the import;
// - for Math and other builtin calls, we note the absence of an exit
// reason and inject a fake "builtin" frame; and
switch (codeRange_->kind()) {
case CodeRange::InterpEntry:
callerPC_ = nullptr;
callerFP_ = nullptr;
break;
case CodeRange::JitEntry:
callerPC_ = nullptr;
callerFP_ = fp->rawCaller();
break;
case CodeRange::Function:
fp = fp->wasmCaller();
callerPC_ = fp->returnAddress();
callerFP_ = fp->rawCaller();
AssertMatchesCallSite(callerPC_, callerFP_);
break;
case CodeRange::ImportJitExit:
case CodeRange::ImportInterpExit:
case CodeRange::BuiltinThunk:
case CodeRange::TrapExit:
case CodeRange::DebugTrap:
case CodeRange::Throw:
case CodeRange::FarJumpIsland:
MOZ_CRASH("Unexpected CodeRange kind");
}
MOZ_ASSERT(!done());
}
static bool IsSignatureCheckFail(uint32_t offsetInCode,
const CodeRange* codeRange) {
if (!codeRange->isFunction()) {
return false;
}
// checked call entry: 1. push Frame
// 2. set FP
// 3. signature check <--- check if we are here.
// 4. jump 7
// unchecked call entry: 5. push Frame
// 6. set FP
// 7. function's code
return offsetInCode < codeRange->funcUncheckedCallEntry() &&
(offsetInCode - codeRange->funcCheckedCallEntry()) > SetFP;
}
static bool CanUnwindSignatureCheck(uint8_t* fp) {
const auto* frame = Frame::fromUntaggedWasmExitFP(fp);
uint8_t* const pc = frame->returnAddress();
const CodeRange* codeRange;
const Code* code = LookupCode(pc, &codeRange);
// If a JIT call or JIT/interpreter entry was found,
// unwinding is not possible.
return code && !codeRange->isEntry();
}
static bool GetUnwindInfo(const CodeSegment* codeSegment,
const CodeRange* codeRange, uint8_t* pc,
const CodeRangeUnwindInfo** info) {
if (!codeSegment->isModule()) {
return false;
}
if (!codeRange->isFunction() || !codeRange->funcHasUnwindInfo()) {
return false;
}
const ModuleSegment* segment = codeSegment->asModule();
*info = segment->code().lookupUnwindInfo(pc);
return *info;
}
const Instance* js::wasm::GetNearestEffectiveInstance(const Frame* fp) {
while (true) {
uint8_t* returnAddress = fp->returnAddress();
const CodeRange* codeRange = nullptr;
const Code* code = LookupCode(returnAddress, &codeRange);
if (!code) {
// It is a direct call from JIT.
AssertDirectJitCall(fp->jitEntryCaller());
return ExtractCalleeInstanceFromFrameWithInstances(fp);
}
MOZ_ASSERT(codeRange);
if (codeRange->isEntry()) {
return ExtractCalleeInstanceFromFrameWithInstances(fp);
}
MOZ_ASSERT(codeRange->kind() == CodeRange::Function);
MOZ_ASSERT(code);
const CallSite* callsite = code->lookupCallSite(returnAddress);
if (callsite->mightBeCrossInstance()) {
return ExtractCalleeInstanceFromFrameWithInstances(fp);
}
fp = fp->wasmCaller();
}
}
Instance* js::wasm::GetNearestEffectiveInstance(Frame* fp) {
return const_cast<Instance*>(
GetNearestEffectiveInstance(const_cast<const Frame*>(fp)));
}
bool js::wasm::StartUnwinding(const RegisterState& registers,
UnwindState* unwindState, bool* unwoundCaller) {
// Shorthands.
uint8_t* const pc = (uint8_t*)registers.pc;
void** const sp = (void**)registers.sp;
// The frame pointer might be:
// - in the process of tagging/untagging when calling into C++ code (this
// happens in wasm::SetExitFP); make sure it's untagged.
// - unreliable if it's not been set yet, in prologues.
uint8_t* fp = Frame::isExitFP(registers.fp)
? Frame::untagExitFP(registers.fp)
: reinterpret_cast<uint8_t*>(registers.fp);
// Get the CodeRange describing pc and the base address to which the
// CodeRange is relative. If the pc is not in a wasm module or a builtin
// thunk, then execution must be entering from or leaving to the C++ caller
// that pushed the JitActivation.
const CodeRange* codeRange;
uint8_t* codeBase;
const Code* code = nullptr;
const CodeSegment* codeSegment = LookupCodeSegment(pc, &codeRange);
if (codeSegment) {
code = &codeSegment->code();
codeBase = codeSegment->base();
MOZ_ASSERT(codeRange);
} else if (!LookupBuiltinThunk(pc, &codeRange, &codeBase)) {
return false;
}
// When the pc is inside the prologue/epilogue, the innermost call's Frame
// is not complete and thus fp points to the second-to-innermost call's
// Frame. Since fp can only tell you about its caller, naively unwinding
// while pc is in the prologue/epilogue would skip the second-to-innermost
// call. To avoid this problem, we use the static structure of the code in
// the prologue and epilogue to do the Right Thing.
uint32_t offsetInCode = pc - codeBase;
MOZ_ASSERT(offsetInCode >= codeRange->begin());
MOZ_ASSERT(offsetInCode < codeRange->end());
// Compute the offset of the pc from the (unchecked call) entry of the code
// range. The checked call entry and the unchecked call entry have common
// prefix, so pc before signature check in the checked call entry is
// equivalent to the pc of the unchecked-call-entry. Thus, we can simplify the
// below case analysis by redirecting all pc-in-checked-call-entry before
// signature check cases to the pc-at-unchecked-call-entry case.
uint32_t offsetFromEntry;
if (codeRange->isFunction()) {
if (offsetInCode < codeRange->funcUncheckedCallEntry()) {
offsetFromEntry = offsetInCode - codeRange->funcCheckedCallEntry();
} else {
offsetFromEntry = offsetInCode - codeRange->funcUncheckedCallEntry();
}
} else {
offsetFromEntry = offsetInCode - codeRange->begin();
}
// Most cases end up unwinding to the caller state; not unwinding is the
// exception here.
*unwoundCaller = true;
uint8_t* fixedFP = nullptr;
void* fixedPC = nullptr;
switch (codeRange->kind()) {
case CodeRange::Function:
case CodeRange::FarJumpIsland:
case CodeRange::ImportJitExit:
case CodeRange::ImportInterpExit:
case CodeRange::BuiltinThunk:
case CodeRange::DebugTrap:
#if defined(JS_CODEGEN_MIPS64)
if (codeRange->isThunk()) {
// The FarJumpIsland sequence temporary scrambles ra.
// Don't unwind to caller.
fixedPC = pc;
fixedFP = fp;
*unwoundCaller = false;
AssertMatchesCallSite(
Frame::fromUntaggedWasmExitFP(fp)->returnAddress(),
Frame::fromUntaggedWasmExitFP(fp)->rawCaller());
} else if (offsetFromEntry < PushedFP) {
// On MIPS we rely on register state instead of state saved on
// stack until the wasm::Frame is completely built.
// On entry the return address is in ra (registers.lr) and
// fp holds the caller's fp.
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else
#elif defined(JS_CODEGEN_LOONG64)
if (codeRange->isThunk()) {
// The FarJumpIsland sequence temporary scrambles ra.
// Don't unwind to caller.
fixedPC = pc;
fixedFP = fp;
*unwoundCaller = false;
AssertMatchesCallSite(
Frame::fromUntaggedWasmExitFP(fp)->returnAddress(),
Frame::fromUntaggedWasmExitFP(fp)->rawCaller());
} else if (offsetFromEntry < PushedFP) {
// On LoongArch we rely on register state instead of state saved on
// stack until the wasm::Frame is completely built.
// On entry the return address is in ra (registers.lr) and
// fp holds the caller's fp.
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else
#elif defined(JS_CODEGEN_RISCV64)
if (codeRange->isThunk()) {
// The FarJumpIsland sequence temporary scrambles ra.
// Don't unwind to caller.
fixedPC = pc;
fixedFP = fp;
*unwoundCaller = false;
AssertMatchesCallSite(
Frame::fromUntaggedWasmExitFP(fp)->returnAddress(),
Frame::fromUntaggedWasmExitFP(fp)->rawCaller());
} else if (offsetFromEntry < PushedFP) {
// On Riscv64 we rely on register state instead of state saved on
// stack until the wasm::Frame is completely built.
// On entry the return address is in ra (registers.lr) and
// fp holds the caller's fp.
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else
#elif defined(JS_CODEGEN_ARM64)
if (offsetFromEntry < PushedFP || codeRange->isThunk()) {
// Constraints above ensure that this covers BeforePushRetAddr and
// PushedRetAddr.
//
// On ARM64 we subtract the size of the Frame from SP and then store
// values into the stack. Execution can be interrupted at various
// places in that sequence. We rely on the register state for our
// values.
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else
#elif defined(JS_CODEGEN_ARM)
if (offsetFromEntry == BeforePushRetAddr || codeRange->isThunk()) {
// The return address is still in lr and fp holds the caller's fp.
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else
#endif
if (offsetFromEntry == PushedRetAddr || codeRange->isThunk()) {
// The return address has been pushed on the stack but fp still
// points to the caller's fp.
fixedPC = sp[0];
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else if (offsetFromEntry == PushedFP) {
// The full Frame has been pushed; fp is still the caller's fp.
const auto* frame = Frame::fromUntaggedWasmExitFP(sp);
MOZ_ASSERT(frame->rawCaller() == fp);
fixedPC = frame->returnAddress();
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#if defined(JS_CODEGEN_MIPS64)
} else if (offsetInCode >= codeRange->ret() - PoppedFP &&
offsetInCode <= codeRange->ret()) {
// The fixedFP field of the Frame has been loaded into fp.
// The ra and instance might also be loaded, but the Frame structure is
// still on stack, so we can acess the ra form there.
MOZ_ASSERT(*sp == fp);
fixedPC = Frame::fromUntaggedWasmExitFP(sp)->returnAddress();
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#elif defined(JS_CODEGEN_LOONG64)
} else if (offsetInCode >= codeRange->ret() - PoppedFP &&
offsetInCode <= codeRange->ret()) {
// The fixedFP field of the Frame has been loaded into fp.
// The ra might also be loaded, but the Frame structure is still on
// stack, so we can acess the ra from there.
MOZ_ASSERT(*sp == fp);
fixedPC = Frame::fromUntaggedWasmExitFP(sp)->returnAddress();
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#elif defined(JS_CODEGEN_RISCV64)
} else if (offsetInCode >= codeRange->ret() - PoppedFP &&
offsetInCode <= codeRange->ret()) {
// The fixedFP field of the Frame has been loaded into fp.
// The ra might also be loaded, but the Frame structure is still on
// stack, so we can acess the ra from there.
MOZ_ASSERT(*sp == fp);
fixedPC = Frame::fromUntaggedWasmExitFP(sp)->returnAddress();
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#elif defined(JS_CODEGEN_ARM64)
// The stack pointer does not move until all values have
// been restored so several cases can be coalesced here.
} else if (offsetInCode >= codeRange->ret() - PoppedFP &&
offsetInCode <= codeRange->ret()) {
fixedPC = Frame::fromUntaggedWasmExitFP(sp)->returnAddress();
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#else
} else if (offsetInCode >= codeRange->ret() - PoppedFP &&
offsetInCode < codeRange->ret()) {
// The fixedFP field of the Frame has been popped into fp.
fixedPC = sp[1];
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
} else if (offsetInCode == codeRange->ret()) {
// Both the instance and fixedFP fields have been popped and fp now
// points to the caller's frame.
fixedPC = sp[0];
fixedFP = fp;
AssertMatchesCallSite(fixedPC, fixedFP);
#endif
} else {
if (IsSignatureCheckFail(offsetInCode, codeRange) &&
CanUnwindSignatureCheck(fp)) {
// Frame has been pushed and FP has been set.
const auto* frame = Frame::fromUntaggedWasmExitFP(fp);
fixedFP = frame->rawCaller();
fixedPC = frame->returnAddress();
AssertMatchesCallSite(fixedPC, fixedFP);
break;
}
const CodeRangeUnwindInfo* unwindInfo;
if (codeSegment &&
GetUnwindInfo(codeSegment, codeRange, pc, &unwindInfo)) {
switch (unwindInfo->unwindHow()) {
case CodeRangeUnwindInfo::RestoreFpRa:
fixedPC = (uint8_t*)registers.tempRA;
fixedFP = (uint8_t*)registers.tempFP;
break;
case CodeRangeUnwindInfo::RestoreFp:
fixedPC = sp[0];
fixedFP = (uint8_t*)registers.tempFP;
break;
case CodeRangeUnwindInfo::UseFpLr:
fixedPC = (uint8_t*)registers.lr;
fixedFP = fp;
break;
case CodeRangeUnwindInfo::UseFp:
fixedPC = sp[0];
fixedFP = fp;
break;
default:
MOZ_CRASH();
}
MOZ_ASSERT(fixedPC && fixedFP);
break;
}
// Not in the prologue/epilogue.
fixedPC = pc;
fixedFP = fp;
*unwoundCaller = false;
AssertMatchesCallSite(
Frame::fromUntaggedWasmExitFP(fp)->returnAddress(),
Frame::fromUntaggedWasmExitFP(fp)->rawCaller());
break;
}
break;
case CodeRange::TrapExit:
// These code stubs execute after the prologue/epilogue have completed
// so pc/fp contains the right values here.
fixedPC = pc;
fixedFP = fp;
*unwoundCaller = false;
AssertMatchesCallSite(Frame::fromUntaggedWasmExitFP(fp)->returnAddress(),
Frame::fromUntaggedWasmExitFP(fp)->rawCaller());
break;
case CodeRange::InterpEntry:
// The entry trampoline is the final frame in an wasm JitActivation. The
// entry trampoline also doesn't GeneratePrologue/Epilogue so we can't
// use the general unwinding logic above.
break;
case CodeRange::JitEntry:
// There's a jit frame above the current one; we don't care about pc
// since the Jit entry frame is a jit frame which can be considered as
// an exit frame.
if (offsetFromEntry < PushedFP) {
// We haven't pushed the jit caller's frame pointer yet, thus the jit
// frame is incomplete. During profiling frame iteration, it means that
// the jit profiling frame iterator won't be able to unwind this frame;
// drop it.
return false;
}
if (offsetInCode >= codeRange->ret() - PoppedFPJitEntry &&
offsetInCode <= codeRange->ret()) {
// We've popped FP but still have to return. Similar to the
// |offsetFromEntry < PushedFP| case above, the JIT frame is now
// incomplete and we can't unwind.
return false;
}
// Set fixedFP to the address of the JitFrameLayout on the stack.
if (offsetFromEntry < SetFP) {
fixedFP = reinterpret_cast<uint8_t*>(sp);
} else {
fixedFP = fp;
}
fixedPC = nullptr;
break;
case CodeRange::Throw:
// The throw stub executes a small number of instructions before popping
// the entire activation. To simplify testing, we simply pretend throw
// stubs have already popped the entire stack.
return false;
}
unwindState->code = code;
unwindState->codeRange = codeRange;
unwindState->fp = fixedFP;
unwindState->pc = fixedPC;
return true;
}
ProfilingFrameIterator::ProfilingFrameIterator(const JitActivation& activation,
const RegisterState& state)
: code_(nullptr),
codeRange_(nullptr),
callerFP_(nullptr),
callerPC_(nullptr),
stackAddress_(nullptr),
unwoundJitCallerFP_(nullptr),
exitReason_(ExitReason::Fixed::None) {
// Let wasmExitFP take precedence to StartUnwinding when it is set since
// during the body of an exit stub, the register state may not be valid
// causing StartUnwinding() to abandon unwinding this activation.
if (activation.hasWasmExitFP()) {
exitReason_ = activation.wasmExitReason();
initFromExitFP(activation.wasmExitFP());
return;
}
bool unwoundCaller;
UnwindState unwindState;
if (!StartUnwinding(state, &unwindState, &unwoundCaller)) {
MOZ_ASSERT(done());
return;
}
MOZ_ASSERT(unwindState.codeRange);
if (unwoundCaller) {
callerFP_ = unwindState.fp;
callerPC_ = unwindState.pc;
} else {
callerFP_ = Frame::fromUntaggedWasmExitFP(unwindState.fp)->rawCaller();
callerPC_ = Frame::fromUntaggedWasmExitFP(unwindState.fp)->returnAddress();
}
code_ = unwindState.code;
codeRange_ = unwindState.codeRange;
stackAddress_ = state.sp;
endStackAddress_ = state.sp;
MOZ_ASSERT(!done());
}
void ProfilingFrameIterator::operator++() {
MOZ_ASSERT(!done());
MOZ_ASSERT(!unwoundJitCallerFP_);
if (!exitReason_.isNone()) {
exitReason_ = ExitReason::None();
MOZ_ASSERT(codeRange_);
MOZ_ASSERT(!done());
return;
}
if (codeRange_->isInterpEntry()) {
codeRange_ = nullptr;
MOZ_ASSERT(done());
return;
}
if (codeRange_->isJitEntry()) {
MOZ_ASSERT(callerFP_);
unwoundJitCallerFP_ = callerFP_;
callerPC_ = nullptr;
callerFP_ = nullptr;
codeRange_ = nullptr;
MOZ_ASSERT(done());
return;
}
MOZ_RELEASE_ASSERT(callerPC_);
code_ = LookupCode(callerPC_, &codeRange_);
if (!code_) {
// The parent frame is an inlined wasm call, callerFP_ points to the fake
// exit frame.
MOZ_ASSERT(!codeRange_);
AssertDirectJitCall(callerFP_);
unwoundJitCallerFP_ = callerFP_;
MOZ_ASSERT(done());
return;
}
MOZ_ASSERT(codeRange_);
if (codeRange_->isInterpEntry()) {
callerPC_ = nullptr;
callerFP_ = nullptr;
MOZ_ASSERT(!done());
return;
}
if (codeRange_->isJitEntry()) {
MOZ_ASSERT(!done());
return;
}
MOZ_ASSERT(code_ == &GetNearestEffectiveInstance(
Frame::fromUntaggedWasmExitFP(callerFP_))
->code());
switch (codeRange_->kind()) {
case CodeRange::Function:
case CodeRange::ImportJitExit:
case CodeRange::ImportInterpExit:
case CodeRange::BuiltinThunk:
case CodeRange::TrapExit:
case CodeRange::DebugTrap:
case CodeRange::FarJumpIsland: {
stackAddress_ = callerFP_;
const auto* frame = Frame::fromUntaggedWasmExitFP(callerFP_);
callerPC_ = frame->returnAddress();
AssertMatchesCallSite(callerPC_, frame->rawCaller());
callerFP_ = frame->rawCaller();
break;
}
case CodeRange::InterpEntry:
case CodeRange::JitEntry:
MOZ_CRASH("should have been guarded above");
case CodeRange::Throw:
MOZ_CRASH("code range doesn't have frame");
}
MOZ_ASSERT(!done());
}
static const char* ThunkedNativeToDescription(SymbolicAddress func) {
MOZ_ASSERT(NeedsBuiltinThunk(func));
switch (func) {
case SymbolicAddress::HandleDebugTrap:
case SymbolicAddress::HandleThrow:
case SymbolicAddress::HandleTrap:
case SymbolicAddress::CallImport_General:
case SymbolicAddress::CoerceInPlace_ToInt32:
case SymbolicAddress::CoerceInPlace_ToNumber:
case SymbolicAddress::CoerceInPlace_ToBigInt:
case SymbolicAddress::BoxValue_Anyref:
MOZ_ASSERT(!NeedsBuiltinThunk(func),
"not in sync with NeedsBuiltinThunk");
break;
case SymbolicAddress::ToInt32:
return "call to asm.js native ToInt32 coercion (in wasm)";
case SymbolicAddress::DivI64:
return "call to native i64.div_s (in wasm)";
case SymbolicAddress::UDivI64:
return "call to native i64.div_u (in wasm)";
case SymbolicAddress::ModI64:
return "call to native i64.rem_s (in wasm)";
case SymbolicAddress::UModI64:
return "call to native i64.rem_u (in wasm)";
case SymbolicAddress::TruncateDoubleToUint64:
return "call to native i64.trunc_f64_u (in wasm)";
case SymbolicAddress::TruncateDoubleToInt64:
return "call to native i64.trunc_f64_s (in wasm)";
case SymbolicAddress::SaturatingTruncateDoubleToUint64:
return "call to native i64.trunc_sat_f64_u (in wasm)";
case SymbolicAddress::SaturatingTruncateDoubleToInt64:
return "call to native i64.trunc_sat_f64_s (in wasm)";
case SymbolicAddress::Uint64ToDouble:
return "call to native f64.convert_i64_u (in wasm)";
case SymbolicAddress::Uint64ToFloat32:
return "call to native f32.convert_i64_u (in wasm)";
case SymbolicAddress::Int64ToDouble:
return "call to native f64.convert_i64_s (in wasm)";
case SymbolicAddress::Int64ToFloat32:
return "call to native f32.convert_i64_s (in wasm)";
#if defined(JS_CODEGEN_ARM)
case SymbolicAddress::aeabi_idivmod:
return "call to native i32.div_s (in wasm)";
case SymbolicAddress::aeabi_uidivmod:
return "call to native i32.div_u (in wasm)";
#endif
case SymbolicAddress::AllocateBigInt:
return "call to native newCell<BigInt, NoGC> (in wasm)";
case SymbolicAddress::ModD:
return "call to asm.js native f64 % (mod)";
case SymbolicAddress::SinNativeD:
return "call to asm.js native f64 Math.sin";
case SymbolicAddress::SinFdlibmD:
return "call to asm.js fdlibm f64 Math.sin";
case SymbolicAddress::CosNativeD:
return "call to asm.js native f64 Math.cos";
case SymbolicAddress::CosFdlibmD:
return "call to asm.js fdlibm f64 Math.cos";
case SymbolicAddress::TanNativeD:
return "call to asm.js native f64 Math.tan";
case SymbolicAddress::TanFdlibmD:
return "call to asm.js fdlibm f64 Math.tan";
case SymbolicAddress::ASinD:
return "call to asm.js native f64 Math.asin";
case SymbolicAddress::ACosD:
return "call to asm.js native f64 Math.acos";
case SymbolicAddress::ATanD:
return "call to asm.js native f64 Math.atan";
case SymbolicAddress::CeilD:
return "call to native f64.ceil (in wasm)";
case SymbolicAddress::CeilF:
return "call to native f32.ceil (in wasm)";
case SymbolicAddress::FloorD:
return "call to native f64.floor (in wasm)";
case SymbolicAddress::FloorF:
return "call to native f32.floor (in wasm)";
case SymbolicAddress::TruncD:
return "call to native f64.trunc (in wasm)";
case SymbolicAddress::TruncF:
return "call to native f32.trunc (in wasm)";
case SymbolicAddress::NearbyIntD:
return "call to native f64.nearest (in wasm)";
case SymbolicAddress::NearbyIntF:
return "call to native f32.nearest (in wasm)";
case SymbolicAddress::ExpD:
return "call to asm.js native f64 Math.exp";
case SymbolicAddress::LogD:
return "call to asm.js native f64 Math.log";
case SymbolicAddress::PowD:
return "call to asm.js native f64 Math.pow";
case SymbolicAddress::ATan2D:
return "call to asm.js native f64 Math.atan2";
case SymbolicAddress::MemoryGrowM32:
return "call to native memory.grow m32 (in wasm)";
case SymbolicAddress::MemoryGrowM64:
return "call to native memory.grow m64 (in wasm)";
case SymbolicAddress::MemorySizeM32:
return "call to native memory.size m32 (in wasm)";
case SymbolicAddress::MemorySizeM64:
return "call to native memory.size m64 (in wasm)";
case SymbolicAddress::WaitI32M32:
return "call to native i32.wait m32 (in wasm)";
case SymbolicAddress::WaitI32M64:
return "call to native i32.wait m64 (in wasm)";
case SymbolicAddress::WaitI64M32:
return "call to native i64.wait m32 (in wasm)";
case SymbolicAddress::WaitI64M64:
return "call to native i64.wait m64 (in wasm)";
case SymbolicAddress::WakeM32:
return "call to native wake m32 (in wasm)";
case SymbolicAddress::WakeM64:
return "call to native wake m64 (in wasm)";
case SymbolicAddress::CoerceInPlace_JitEntry:
return "out-of-line coercion for jit entry arguments (in wasm)";
case SymbolicAddress::ReportV128JSCall:
return "jit call to v128 wasm function";
case SymbolicAddress::MemCopyM32:
case SymbolicAddress::MemCopySharedM32:
return "call to native memory.copy m32 function";
case SymbolicAddress::MemCopyM64:
case SymbolicAddress::MemCopySharedM64:
return "call to native memory.copy m64 function";
case SymbolicAddress::MemCopyAny:
return "call to native memory.copy any function";
case SymbolicAddress::DataDrop:
return "call to native data.drop function";
case SymbolicAddress::MemFillM32:
case SymbolicAddress::MemFillSharedM32:
return "call to native memory.fill m32 function";
case SymbolicAddress::MemFillM64:
case SymbolicAddress::MemFillSharedM64:
return "call to native memory.fill m64 function";
case SymbolicAddress::MemInitM32:
return "call to native memory.init m32 function";
case SymbolicAddress::MemInitM64:
return "call to native memory.init m64 function";
case SymbolicAddress::TableCopy:
return "call to native table.copy function";
case SymbolicAddress::TableFill:
return "call to native table.fill function";
case SymbolicAddress::MemDiscardM32:
case SymbolicAddress::MemDiscardSharedM32:
return "call to native memory.discard m32 function";
case SymbolicAddress::MemDiscardM64:
case SymbolicAddress::MemDiscardSharedM64:
return "call to native memory.discard m64 function";
case SymbolicAddress::ElemDrop:
return "call to native elem.drop function";
case SymbolicAddress::TableGet:
return "call to native table.get function";
case SymbolicAddress::TableGrow:
return "call to native table.grow function";
case SymbolicAddress::TableInit:
return "call to native table.init function";
case SymbolicAddress::TableSet:
return "call to native table.set function";
case SymbolicAddress::TableSize:
return "call to native table.size function";
case SymbolicAddress::RefFunc:
return "call to native ref.func function";
case SymbolicAddress::PostBarrier:
case SymbolicAddress::PostBarrierPrecise:
case SymbolicAddress::PostBarrierPreciseWithOffset:
return "call to native GC postbarrier (in wasm)";
case SymbolicAddress::ExceptionNew:
return "call to native exception new (in wasm)";
case SymbolicAddress::ThrowException:
return "call to native throw exception (in wasm)";
case SymbolicAddress::StructNewIL_true:
case SymbolicAddress::StructNewIL_false:
case SymbolicAddress::StructNewOOL_true:
case SymbolicAddress::StructNewOOL_false:
return "call to native struct.new (in wasm)";
case SymbolicAddress::ArrayNew_true:
case SymbolicAddress::ArrayNew_false:
return "call to native array.new (in wasm)";
case SymbolicAddress::ArrayNewData:
return "call to native array.new_data function";
case SymbolicAddress::ArrayNewElem:
return "call to native array.new_elem function";
case SymbolicAddress::ArrayInitData:
return "call to native array.init_data function";
case SymbolicAddress::ArrayInitElem:
return "call to native array.init_elem function";
case SymbolicAddress::ArrayCopy:
return "call to native array.copy function";
case SymbolicAddress::SlotsToAllocKindBytesTable:
MOZ_CRASH(
"symbolic address was not code and should not have appeared here");
#define VISIT_BUILTIN_FUNC(op, export, sa_name, ...) \
case SymbolicAddress::sa_name: \
return "call to native " #op " builtin (in wasm)";
FOR_EACH_BUILTIN_MODULE_FUNC(VISIT_BUILTIN_FUNC)
#undef VISIT_BUILTIN_FUNC
#ifdef WASM_CODEGEN_DEBUG
case SymbolicAddress::PrintI32:
case SymbolicAddress::PrintPtr:
case SymbolicAddress::PrintF32:
case SymbolicAddress::PrintF64:
case SymbolicAddress::PrintText:
#endif
case SymbolicAddress::Limit:
break;
}
return "?";
}
const char* ProfilingFrameIterator::label() const {
MOZ_ASSERT(!done());
// Use the same string for both time inside and under so that the two
// entries will be coalesced by the profiler.
// Must be kept in sync with /tools/profiler/tests/test_asm.js
static const char importJitDescription[] = "fast exit trampoline (in wasm)";
static const char importInterpDescription[] =
"slow exit trampoline (in wasm)";
static const char builtinNativeDescription[] =
"fast exit trampoline to native (in wasm)";
static const char trapDescription[] = "trap handling (in wasm)";
static const char debugTrapDescription[] = "debug trap handling (in wasm)";
if (!exitReason_.isFixed()) {
return ThunkedNativeToDescription(exitReason_.symbolic());
}
switch (exitReason_.fixed()) {
case ExitReason::Fixed::None:
break;
case ExitReason::Fixed::ImportJit:
return importJitDescription;
case ExitReason::Fixed::ImportInterp:
return importInterpDescription;
case ExitReason::Fixed::BuiltinNative:
return builtinNativeDescription;
case ExitReason::Fixed::Trap:
return trapDescription;
case ExitReason::Fixed::DebugTrap:
return debugTrapDescription;
}
switch (codeRange_->kind()) {
case CodeRange::Function:
return code_->profilingLabel(codeRange_->funcIndex());
case CodeRange::InterpEntry:
return "slow entry trampoline (in wasm)";
case CodeRange::JitEntry:
return "fast entry trampoline (in wasm)";
case CodeRange::ImportJitExit:
return importJitDescription;
case CodeRange::BuiltinThunk:
return builtinNativeDescription;
case CodeRange::ImportInterpExit:
return importInterpDescription;
case CodeRange::TrapExit:
return trapDescription;
case CodeRange::DebugTrap:
return debugTrapDescription;
case CodeRange::FarJumpIsland:
return "interstitial (in wasm)";
case CodeRange::Throw:
MOZ_CRASH("does not have a frame");
}
MOZ_CRASH("bad code range kind");
}
|