1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
*
* Copyright 2019 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_gc_h
#define wasm_gc_h
#include "mozilla/BinarySearch.h"
#include "jit/ABIArgGenerator.h" // For ABIArgIter
#include "js/AllocPolicy.h"
#include "js/Vector.h"
#include "util/Memory.h"
#include "wasm/WasmBuiltins.h"
#include "wasm/WasmFrame.h"
#include "wasm/WasmSerialize.h"
namespace js {
namespace jit {
class Label;
class MacroAssembler;
} // namespace jit
namespace wasm {
class ArgTypeVector;
class BytecodeOffset;
using jit::Label;
using jit::MIRType;
using jit::Register;
// Definitions for stackmaps.
using ExitStubMapVector = Vector<bool, 32, SystemAllocPolicy>;
struct StackMapHeader {
explicit StackMapHeader(uint32_t numMappedWords = 0)
: numMappedWords(numMappedWords),
numExitStubWords(0),
frameOffsetFromTop(0),
hasDebugFrameWithLiveRefs(0) {}
// The total number of stack words covered by the map ..
static constexpr size_t MappedWordsBits = 30;
uint32_t numMappedWords : MappedWordsBits;
// .. of which this many are "exit stub" extras
static constexpr size_t ExitStubWordsBits = 6;
uint32_t numExitStubWords : ExitStubWordsBits;
// Where is Frame* relative to the top? This is an offset in words. On every
// platform, FrameOffsetBits needs to be at least
// ceil(log2(MaxParams*sizeof-biggest-param-type-in-words)). The most
// constraining platforms are 32-bit with SIMD support, currently x86-32.
static constexpr size_t FrameOffsetBits = 12;
uint32_t frameOffsetFromTop : FrameOffsetBits;
// Notes the presence of a DebugFrame with possibly-live references. A
// DebugFrame may or may not contain GC-managed data; in situations when it is
// possible that any pointers in the DebugFrame are non-null, the DebugFrame
// gets a stackmap.
uint32_t hasDebugFrameWithLiveRefs : 1;
WASM_CHECK_CACHEABLE_POD(numMappedWords, numExitStubWords, frameOffsetFromTop,
hasDebugFrameWithLiveRefs);
static constexpr uint32_t maxMappedWords = (1 << MappedWordsBits) - 1;
static constexpr uint32_t maxExitStubWords = (1 << ExitStubWordsBits) - 1;
static constexpr uint32_t maxFrameOffsetFromTop = (1 << FrameOffsetBits) - 1;
static constexpr size_t MaxParamSize =
std::max(sizeof(jit::FloatRegisters::RegisterContent),
sizeof(jit::Registers::RegisterContent));
// Add 16 words to account for the size of FrameWithInstances including any
// shadow stack (at worst 8 words total), and then a little headroom in case
// the argument area had to be aligned.
static_assert(FrameWithInstances::sizeOf() / sizeof(void*) <= 8);
static_assert(maxFrameOffsetFromTop >=
(MaxParams * MaxParamSize / sizeof(void*)) + 16,
"limited size of the offset field");
};
WASM_DECLARE_CACHEABLE_POD(StackMapHeader);
// This is the expected size for the header
static_assert(sizeof(StackMapHeader) == 8,
"wasm::StackMapHeader has unexpected size");
// A StackMap is a bit-array containing numMappedWords*2 bits, two bits per
// word of stack. Index zero is for the lowest addressed word in the range.
//
// This is a variable-length structure whose size must be known at creation
// time.
//
// Users of the map will know the address of the wasm::Frame that is covered
// by this map. In order that they can calculate the exact address range
// covered by the map, the map also stores the offset, from the highest
// addressed word of the map, of the embedded wasm::Frame. This is an offset
// down from the highest address, rather than up from the lowest, so as to
// limit its range to FrameOffsetBits bits.
//
// The stackmap may also cover a DebugFrame (all DebugFrames which may
// potentially contain live pointers into the JS heap get a map). If so, that
// can be noted, since users of the map need to trace pointers in a
// DebugFrame.
//
// Finally, for sanity checking only, for stackmaps associated with a wasm
// trap exit stub, the number of words used by the trap exit stub save area
// is also noted. This is used in Instance::traceFrame to check that the
// TrapExitDummyValue is in the expected place in the frame.
struct StackMap final {
// The header contains the constant-sized fields before the variable-sized
// bitmap that follows.
StackMapHeader header;
enum Kind : uint32_t {
POD = 0,
AnyRef = 1,
// The data pointer for a WasmArrayObject, which may be an interior pointer
// to the object itself. See WasmArrayObject::inlineStorage.
ArrayDataPointer = 2,
Limit,
};
private:
// The variable-sized bitmap.
uint32_t bitmap[1];
explicit StackMap(uint32_t numMappedWords) : header(numMappedWords) {
const uint32_t nBitmap = calcBitmapNumElems(header.numMappedWords);
memset(bitmap, 0, nBitmap * sizeof(bitmap[0]));
}
explicit StackMap(const StackMapHeader& header) : header(header) {
const uint32_t nBitmap = calcBitmapNumElems(header.numMappedWords);
memset(bitmap, 0, nBitmap * sizeof(bitmap[0]));
}
public:
static StackMap* create(uint32_t numMappedWords) {
size_t size = allocationSizeInBytes(numMappedWords);
char* buf = (char*)js_malloc(size);
if (!buf) {
return nullptr;
}
return ::new (buf) StackMap(numMappedWords);
}
static StackMap* create(const StackMapHeader& header) {
size_t size = allocationSizeInBytes(header.numMappedWords);
char* buf = (char*)js_malloc(size);
if (!buf) {
return nullptr;
}
return ::new (buf) StackMap(header);
}
void destroy() { js_free((char*)this); }
// Returns the size of a `StackMap` allocated with `numMappedWords`.
static size_t allocationSizeInBytes(uint32_t numMappedWords) {
uint32_t nBitmap = calcBitmapNumElems(numMappedWords);
return sizeof(StackMap) + (nBitmap - 1) * sizeof(bitmap[0]);
}
// Returns the allocated size of this `StackMap`.
size_t allocationSizeInBytes() const {
return allocationSizeInBytes(header.numMappedWords);
}
// Record the number of words in the map used as a wasm trap exit stub
// save area. See comment above.
void setExitStubWords(uint32_t nWords) {
MOZ_ASSERT(header.numExitStubWords == 0);
MOZ_RELEASE_ASSERT(nWords <= header.maxExitStubWords);
MOZ_ASSERT(nWords <= header.numMappedWords);
header.numExitStubWords = nWords;
}
// Record the offset from the highest-addressed word of the map, that the
// wasm::Frame lives at. See comment above.
void setFrameOffsetFromTop(uint32_t nWords) {
MOZ_ASSERT(header.frameOffsetFromTop == 0);
MOZ_RELEASE_ASSERT(nWords <= StackMapHeader::maxFrameOffsetFromTop);
MOZ_ASSERT(header.frameOffsetFromTop < header.numMappedWords);
header.frameOffsetFromTop = nWords;
}
// If the frame described by this StackMap includes a DebugFrame, call here to
// record that fact.
void setHasDebugFrameWithLiveRefs() {
MOZ_ASSERT(header.hasDebugFrameWithLiveRefs == 0);
header.hasDebugFrameWithLiveRefs = 1;
}
inline void set(uint32_t index, Kind kind) {
MOZ_ASSERT(index < header.numMappedWords);
MOZ_ASSERT(kind < Kind::Limit);
uint32_t wordIndex = index / mappedWordsPerBitmapElem;
uint32_t wordOffset = index % mappedWordsPerBitmapElem * bitsPerMappedWord;
bitmap[wordIndex] |= (kind << wordOffset);
}
inline Kind get(uint32_t index) const {
MOZ_ASSERT(index < header.numMappedWords);
uint32_t wordIndex = index / mappedWordsPerBitmapElem;
uint32_t wordOffset = index % mappedWordsPerBitmapElem * bitsPerMappedWord;
Kind result = Kind((bitmap[wordIndex] >> wordOffset) & valueMask);
return result;
}
inline uint8_t* rawBitmap() { return (uint8_t*)&bitmap; }
inline const uint8_t* rawBitmap() const { return (const uint8_t*)&bitmap; }
inline size_t rawBitmapLengthInBytes() const {
return calcBitmapNumElems(header.numMappedWords) * sizeof(bitmap[0]);
}
private:
static constexpr uint32_t bitsPerMappedWord = 2;
static constexpr uint32_t mappedWordsPerBitmapElem =
sizeof(bitmap[0]) * CHAR_BIT / bitsPerMappedWord;
static constexpr uint32_t valueMask = js::BitMask(bitsPerMappedWord);
static_assert(8 % bitsPerMappedWord == 0);
static_assert(Kind::Limit - 1 <= valueMask);
static uint32_t calcBitmapNumElems(uint32_t numMappedWords) {
MOZ_RELEASE_ASSERT(numMappedWords <= StackMapHeader::maxMappedWords);
uint32_t nBitmap = js::HowMany(numMappedWords, mappedWordsPerBitmapElem);
return nBitmap == 0 ? 1 : nBitmap;
}
};
// This is the expected size for a map that covers 32 or fewer words.
static_assert(sizeof(StackMap) == 12, "wasm::StackMap has unexpected size");
class StackMaps {
public:
// A Maplet holds a single code-address-to-map binding. Note that the
// code address is the lowest address of the instruction immediately
// following the instruction of interest, not of the instruction of
// interest itself. In practice (at least for the Wasm Baseline compiler)
// this means that |nextInsnAddr| points either immediately after a call
// instruction, after a trap instruction or after a no-op.
struct Maplet {
const uint8_t* nextInsnAddr;
StackMap* map;
Maplet(const uint8_t* nextInsnAddr, StackMap* map)
: nextInsnAddr(nextInsnAddr), map(map) {}
void offsetBy(uintptr_t delta) { nextInsnAddr += delta; }
bool operator<(const Maplet& other) const {
return uintptr_t(nextInsnAddr) < uintptr_t(other.nextInsnAddr);
}
};
private:
bool sorted_;
Vector<Maplet, 0, SystemAllocPolicy> mapping_;
public:
StackMaps() : sorted_(false) {}
~StackMaps() {
for (auto& maplet : mapping_) {
maplet.map->destroy();
maplet.map = nullptr;
}
}
[[nodiscard]] bool add(const uint8_t* nextInsnAddr, StackMap* map) {
MOZ_ASSERT(!sorted_);
return mapping_.append(Maplet(nextInsnAddr, map));
}
[[nodiscard]] bool add(const Maplet& maplet) {
return add(maplet.nextInsnAddr, maplet.map);
}
void clear() {
for (auto& maplet : mapping_) {
maplet.nextInsnAddr = nullptr;
maplet.map = nullptr;
}
mapping_.clear();
}
bool empty() const { return mapping_.empty(); }
size_t length() const { return mapping_.length(); }
Maplet* getRef(size_t i) { return &mapping_[i]; }
Maplet get(size_t i) const { return mapping_[i]; }
Maplet move(size_t i) {
Maplet m = mapping_[i];
mapping_[i].map = nullptr;
return m;
}
void offsetBy(uintptr_t delta) {
for (auto& maplet : mapping_) maplet.offsetBy(delta);
}
void finishAndSort() {
MOZ_ASSERT(!sorted_);
std::sort(mapping_.begin(), mapping_.end());
sorted_ = true;
}
void finishAlreadySorted() {
MOZ_ASSERT(!sorted_);
MOZ_ASSERT(std::is_sorted(mapping_.begin(), mapping_.end()));
sorted_ = true;
}
const StackMap* findMap(const uint8_t* nextInsnAddr) const {
struct Comparator {
int operator()(Maplet aVal) const {
if (uintptr_t(mTarget) < uintptr_t(aVal.nextInsnAddr)) {
return -1;
}
if (uintptr_t(mTarget) > uintptr_t(aVal.nextInsnAddr)) {
return 1;
}
return 0;
}
explicit Comparator(const uint8_t* aTarget) : mTarget(aTarget) {}
const uint8_t* mTarget;
};
size_t result;
if (mozilla::BinarySearchIf(mapping_, 0, mapping_.length(),
Comparator(nextInsnAddr), &result)) {
return mapping_[result].map;
}
return nullptr;
}
size_t sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const {
return mapping_.sizeOfExcludingThis(mallocSizeOf);
}
};
// Supporting code for creation of stackmaps.
// StackArgAreaSizeUnaligned returns the size, in bytes, of the stack arg area
// size needed to pass |argTypes|, excluding any alignment padding beyond the
// size of the area as a whole. The size is as determined by the platforms
// native ABI.
//
// StackArgAreaSizeAligned returns the same, but rounded up to the nearest 16
// byte boundary.
//
// Note, StackArgAreaSize{Unaligned,Aligned}() must process all the arguments
// in order to take into account all necessary alignment constraints. The
// signature must include any receiver argument -- in other words, it must be
// the complete native-ABI-level call signature.
template <class T>
static inline size_t StackArgAreaSizeUnaligned(const T& argTypes) {
jit::WasmABIArgIter<const T> i(argTypes);
while (!i.done()) {
i++;
}
return i.stackBytesConsumedSoFar();
}
static inline size_t StackArgAreaSizeUnaligned(
const SymbolicAddressSignature& saSig) {
// WasmABIArgIter::ABIArgIter wants the items to be iterated over to be
// presented in some type that has methods length() and operator[]. So we
// have to wrap up |saSig|'s array of types in this API-matching class.
class MOZ_STACK_CLASS ItemsAndLength {
const MIRType* items_;
size_t length_;
public:
ItemsAndLength(const MIRType* items, size_t length)
: items_(items), length_(length) {}
size_t length() const { return length_; }
MIRType operator[](size_t i) const { return items_[i]; }
};
// Assert, at least crudely, that we're not accidentally going to run off
// the end of the array of types, nor into undefined parts of it, while
// iterating.
MOZ_ASSERT(saSig.numArgs <
sizeof(saSig.argTypes) / sizeof(saSig.argTypes[0]));
MOZ_ASSERT(saSig.argTypes[saSig.numArgs] == MIRType::None /*the end marker*/);
ItemsAndLength itemsAndLength(saSig.argTypes, saSig.numArgs);
return StackArgAreaSizeUnaligned(itemsAndLength);
}
static inline size_t AlignStackArgAreaSize(size_t unalignedSize) {
return AlignBytes(unalignedSize, jit::WasmStackAlignment);
}
// Generate a stackmap for a function's stack-overflow-at-entry trap, with
// the structure:
//
// <reg dump area>
// | ++ <space reserved before trap, if any>
// | ++ <space for Frame>
// | ++ <inbound arg area>
// | |
// Lowest Addr Highest Addr
//
// The caller owns the resulting stackmap. This assumes a grow-down stack.
//
// For non-debug builds, if the stackmap would contain no pointers, no
// stackmap is created, and nullptr is returned. For a debug build, a
// stackmap is always created and returned.
//
// The "space reserved before trap" is the space reserved by
// MacroAssembler::wasmReserveStackChecked, in the case where the frame is
// "small", as determined by that function.
[[nodiscard]] bool CreateStackMapForFunctionEntryTrap(
const ArgTypeVector& argTypes, const jit::RegisterOffsets& trapExitLayout,
size_t trapExitLayoutWords, size_t nBytesReservedBeforeTrap,
size_t nInboundStackArgBytes, wasm::StackMap** result);
// At a resumable wasm trap, the machine's registers are saved on the stack by
// (code generated by) GenerateTrapExit(). This function writes into |args| a
// vector of booleans describing the ref-ness of the saved integer registers.
// |args[0]| corresponds to the low addressed end of the described section of
// the save area.
[[nodiscard]] bool GenerateStackmapEntriesForTrapExit(
const ArgTypeVector& args, const jit::RegisterOffsets& trapExitLayout,
const size_t trapExitLayoutNumWords, ExitStubMapVector* extras);
// Shared write barrier code.
//
// A barriered store looks like this:
//
// Label skipPreBarrier;
// EmitWasmPreBarrierGuard(..., &skipPreBarrier);
// <COMPILER-SPECIFIC ACTIONS HERE>
// EmitWasmPreBarrierCall(...);
// bind(&skipPreBarrier);
//
// <STORE THE VALUE IN MEMORY HERE>
//
// Label skipPostBarrier;
// <COMPILER-SPECIFIC ACTIONS HERE>
// EmitWasmPostBarrierGuard(..., &skipPostBarrier);
// <CALL POST-BARRIER HERE IN A COMPILER-SPECIFIC WAY>
// bind(&skipPostBarrier);
//
// The actions are divided up to allow other actions to be placed between them,
// such as saving and restoring live registers. The postbarrier call invokes
// C++ and will kill all live registers.
// Before storing a GC pointer value in memory, skip to `skipBarrier` if the
// prebarrier is not needed. Will clobber `scratch`.
//
// It is OK for `instance` and `scratch` to be the same register.
//
// If `trapOffset` is non-null, then metadata to catch a null access and emit
// a null pointer exception will be emitted. This will only catch a null access
// due to an incremental GC being in progress, the write that follows this
// pre-barrier guard must also be guarded against null.
template <class Addr>
void EmitWasmPreBarrierGuard(jit::MacroAssembler& masm, Register instance,
Register scratch, Addr addr, Label* skipBarrier,
BytecodeOffset* trapOffset);
// Before storing a GC pointer value in memory, call out-of-line prebarrier
// code. This assumes `PreBarrierReg` contains the address that will be updated.
// On ARM64 it also assums that x28 (the PseudoStackPointer) has the same value
// as SP. `PreBarrierReg` is preserved by the barrier function. Will clobber
// `scratch`.
//
// It is OK for `instance` and `scratch` to be the same register.
void EmitWasmPreBarrierCallImmediate(jit::MacroAssembler& masm,
Register instance, Register scratch,
Register valueAddr, size_t valueOffset);
// The equivalent of EmitWasmPreBarrierCallImmediate, but for a jit::BaseIndex.
// Will clobber `scratch1` and `scratch2`.
//
// It is OK for `instance` and `scratch1` to be the same register.
void EmitWasmPreBarrierCallIndex(jit::MacroAssembler& masm, Register instance,
Register scratch1, Register scratch2,
jit::BaseIndex addr);
// After storing a GC pointer value in memory, skip to `skipBarrier` if a
// postbarrier is not needed. If the location being set is in an heap-allocated
// object then `object` must reference that object; otherwise it should be None.
// The value that was stored is `setValue`. Will clobber `otherScratch` and
// will use other available scratch registers.
//
// `otherScratch` cannot be a designated scratch register.
void EmitWasmPostBarrierGuard(jit::MacroAssembler& masm,
const mozilla::Maybe<Register>& object,
Register otherScratch, Register setValue,
Label* skipBarrier);
#ifdef DEBUG
// Check (approximately) whether `nextPC` is a valid code address for a
// stackmap created by this compiler. This is done by examining the
// instruction at `nextPC`. The matching is inexact, so it may err on the
// side of returning `true` if it doesn't know. Doing so reduces the
// effectiveness of the MOZ_ASSERTs that use this function, so at least for
// the four primary platforms we should keep it as exact as possible.
bool IsPlausibleStackMapKey(const uint8_t* nextPC);
#endif
} // namespace wasm
} // namespace js
#endif // wasm_gc_h
|