summaryrefslogtreecommitdiffstats
path: root/js/src/wasm/WasmInstance.cpp
blob: d025c02c1603d5c2432da91825a933c1185473fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 *
 * Copyright 2016 Mozilla Foundation
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "wasm/WasmInstance-inl.h"

#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"

#include <algorithm>
#include <utility>

#include "jsmath.h"

#include "builtin/String.h"
#include "gc/Barrier.h"
#include "gc/Marking.h"
#include "jit/AtomicOperations.h"
#include "jit/Disassemble.h"
#include "jit/JitCommon.h"
#include "jit/JitRuntime.h"
#include "jit/Registers.h"
#include "js/ForOfIterator.h"
#include "js/friend/ErrorMessages.h"  // js::GetErrorMessage, JSMSG_*
#include "js/Stack.h"                 // JS::NativeStackLimitMin
#include "util/StringBuffer.h"
#include "util/Text.h"
#include "util/Unicode.h"
#include "vm/ArrayBufferObject.h"
#include "vm/BigIntType.h"
#include "vm/Compartment.h"
#include "vm/ErrorObject.h"
#include "vm/Interpreter.h"
#include "vm/Iteration.h"
#include "vm/JitActivation.h"
#include "vm/JSFunction.h"
#include "vm/PlainObject.h"  // js::PlainObject
#include "wasm/WasmBuiltins.h"
#include "wasm/WasmCode.h"
#include "wasm/WasmDebug.h"
#include "wasm/WasmDebugFrame.h"
#include "wasm/WasmInitExpr.h"
#include "wasm/WasmJS.h"
#include "wasm/WasmMemory.h"
#include "wasm/WasmModule.h"
#include "wasm/WasmModuleTypes.h"
#include "wasm/WasmStubs.h"
#include "wasm/WasmTypeDef.h"
#include "wasm/WasmValType.h"
#include "wasm/WasmValue.h"

#include "gc/Marking-inl.h"
#include "gc/StoreBuffer-inl.h"
#include "vm/ArrayBufferObject-inl.h"
#include "vm/JSObject-inl.h"
#include "wasm/WasmGcObject-inl.h"

using namespace js;
using namespace js::jit;
using namespace js::wasm;

using mozilla::BitwiseCast;
using mozilla::CheckedUint32;
using mozilla::DebugOnly;

// Instance must be aligned at least as much as any of the integer, float,
// or SIMD values that we'd like to store in it.
static_assert(alignof(Instance) >=
              std::max(sizeof(Registers::RegisterContent),
                       sizeof(FloatRegisters::RegisterContent)));

// The globalArea must be aligned at least as much as an instance. This is
// guaranteed to be sufficient for all data types we care about, including
// SIMD values. See the above assertion.
static_assert(Instance::offsetOfData() % alignof(Instance) == 0);

// We want the memory base to be the first field, and accessible with no
// offset. This incidentally is also an assertion that there is no superclass
// with fields.
static_assert(Instance::offsetOfMemory0Base() == 0);

// We want instance fields that are commonly accessed by the JIT to have
// compact encodings. A limit of less than 128 bytes is chosen to fit within
// the signed 8-bit mod r/m x86 encoding.
static_assert(Instance::offsetOfLastCommonJitField() < 128);

//////////////////////////////////////////////////////////////////////////////
//
// Functions and invocation.

TypeDefInstanceData* Instance::typeDefInstanceData(uint32_t typeIndex) const {
  TypeDefInstanceData* instanceData =
      (TypeDefInstanceData*)(data() + metadata().typeDefsOffsetStart);
  return &instanceData[typeIndex];
}

const void* Instance::addressOfGlobalCell(const GlobalDesc& global) const {
  const void* cell = data() + global.offset();
  // Indirect globals store a pointer to their cell in the instance global
  // data. Dereference it to find the real cell.
  if (global.isIndirect()) {
    cell = *(const void**)cell;
  }
  return cell;
}

FuncImportInstanceData& Instance::funcImportInstanceData(const FuncImport& fi) {
  return *(FuncImportInstanceData*)(data() + fi.instanceOffset());
}

MemoryInstanceData& Instance::memoryInstanceData(uint32_t memoryIndex) const {
  MemoryInstanceData* instanceData =
      (MemoryInstanceData*)(data() + metadata().memoriesOffsetStart);
  return instanceData[memoryIndex];
}

TableInstanceData& Instance::tableInstanceData(uint32_t tableIndex) const {
  TableInstanceData* instanceData =
      (TableInstanceData*)(data() + metadata().tablesOffsetStart);
  return instanceData[tableIndex];
}

TagInstanceData& Instance::tagInstanceData(uint32_t tagIndex) const {
  TagInstanceData* instanceData =
      (TagInstanceData*)(data() + metadata().tagsOffsetStart);
  return instanceData[tagIndex];
}

static bool UnpackResults(JSContext* cx, const ValTypeVector& resultTypes,
                          const Maybe<char*> stackResultsArea, uint64_t* argv,
                          MutableHandleValue rval) {
  if (!stackResultsArea) {
    MOZ_ASSERT(resultTypes.length() <= 1);
    // Result is either one scalar value to unpack to a wasm value, or
    // an ignored value for a zero-valued function.
    if (resultTypes.length() == 1) {
      return ToWebAssemblyValue(cx, rval, resultTypes[0], argv, true);
    }
    return true;
  }

  MOZ_ASSERT(stackResultsArea.isSome());
  Rooted<ArrayObject*> array(cx);
  if (!IterableToArray(cx, rval, &array)) {
    return false;
  }

  if (resultTypes.length() != array->length()) {
    UniqueChars expected(JS_smprintf("%zu", resultTypes.length()));
    UniqueChars got(JS_smprintf("%u", array->length()));
    if (!expected || !got) {
      ReportOutOfMemory(cx);
      return false;
    }

    JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                             JSMSG_WASM_WRONG_NUMBER_OF_VALUES, expected.get(),
                             got.get());
    return false;
  }

  DebugOnly<uint64_t> previousOffset = ~(uint64_t)0;

  ABIResultIter iter(ResultType::Vector(resultTypes));
  // The values are converted in the order they are pushed on the
  // abstract WebAssembly stack; switch to iterate in push order.
  while (!iter.done()) {
    iter.next();
  }
  DebugOnly<bool> seenRegisterResult = false;
  for (iter.switchToPrev(); !iter.done(); iter.prev()) {
    const ABIResult& result = iter.cur();
    MOZ_ASSERT(!seenRegisterResult);
    // Use rval as a scratch area to hold the extracted result.
    rval.set(array->getDenseElement(iter.index()));
    if (result.inRegister()) {
      // Currently, if a function type has results, there can be only
      // one register result.  If there is only one result, it is
      // returned as a scalar and not an iterable, so we don't get here.
      // If there are multiple results, we extract the register result
      // and set `argv[0]` set to the extracted result, to be returned by
      // register in the stub.  The register result follows any stack
      // results, so this preserves conversion order.
      if (!ToWebAssemblyValue(cx, rval, result.type(), argv, true)) {
        return false;
      }
      seenRegisterResult = true;
      continue;
    }
    uint32_t result_size = result.size();
    MOZ_ASSERT(result_size == 4 || result_size == 8);
#ifdef DEBUG
    if (previousOffset == ~(uint64_t)0) {
      previousOffset = (uint64_t)result.stackOffset();
    } else {
      MOZ_ASSERT(previousOffset - (uint64_t)result_size ==
                 (uint64_t)result.stackOffset());
      previousOffset -= (uint64_t)result_size;
    }
#endif
    char* loc = stackResultsArea.value() + result.stackOffset();
    if (!ToWebAssemblyValue(cx, rval, result.type(), loc, result_size == 8)) {
      return false;
    }
  }

  return true;
}

bool Instance::callImport(JSContext* cx, uint32_t funcImportIndex,
                          unsigned argc, uint64_t* argv) {
  AssertRealmUnchanged aru(cx);

  Tier tier = code().bestTier();

  const FuncImport& fi = metadata(tier).funcImports[funcImportIndex];
  const FuncType& funcType = metadata().getFuncImportType(fi);

  ArgTypeVector argTypes(funcType);
  InvokeArgs args(cx);
  if (!args.init(cx, argTypes.lengthWithoutStackResults())) {
    return false;
  }

  if (funcType.hasUnexposableArgOrRet()) {
    JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                             JSMSG_WASM_BAD_VAL_TYPE);
    return false;
  }

  MOZ_ASSERT(argTypes.lengthWithStackResults() == argc);
  Maybe<char*> stackResultPointer;
  size_t lastBoxIndexPlusOne = 0;
  {
    JS::AutoAssertNoGC nogc;
    for (size_t i = 0; i < argc; i++) {
      const void* rawArgLoc = &argv[i];
      if (argTypes.isSyntheticStackResultPointerArg(i)) {
        stackResultPointer = Some(*(char**)rawArgLoc);
        continue;
      }
      size_t naturalIndex = argTypes.naturalIndex(i);
      ValType type = funcType.args()[naturalIndex];
      // Avoid boxes creation not to trigger GC.
      if (ToJSValueMayGC(type)) {
        lastBoxIndexPlusOne = i + 1;
        continue;
      }
      MutableHandleValue argValue = args[naturalIndex];
      if (!ToJSValue(cx, rawArgLoc, type, argValue)) {
        return false;
      }
    }
  }

  // Visit arguments that need to perform allocation in a second loop
  // after the rest of arguments are converted.
  for (size_t i = 0; i < lastBoxIndexPlusOne; i++) {
    if (argTypes.isSyntheticStackResultPointerArg(i)) {
      continue;
    }
    const void* rawArgLoc = &argv[i];
    size_t naturalIndex = argTypes.naturalIndex(i);
    ValType type = funcType.args()[naturalIndex];
    if (!ToJSValueMayGC(type)) {
      continue;
    }
    MOZ_ASSERT(!type.isRefRepr());
    // The conversions are safe here because source values are not references
    // and will not be moved.
    MutableHandleValue argValue = args[naturalIndex];
    if (!ToJSValue(cx, rawArgLoc, type, argValue)) {
      return false;
    }
  }

  FuncImportInstanceData& import = funcImportInstanceData(fi);
  Rooted<JSObject*> importCallable(cx, import.callable);
  MOZ_ASSERT(cx->realm() == importCallable->nonCCWRealm());

  RootedValue fval(cx, ObjectValue(*importCallable));
  RootedValue thisv(cx, UndefinedValue());
  RootedValue rval(cx);
  if (!Call(cx, fval, thisv, args, &rval)) {
    return false;
  }

  if (!UnpackResults(cx, funcType.results(), stackResultPointer, argv, &rval)) {
    return false;
  }

  if (!JitOptions.enableWasmJitExit) {
    return true;
  }

  // The import may already have become optimized.
  for (auto t : code().tiers()) {
    void* jitExitCode = codeBase(t) + fi.jitExitCodeOffset();
    if (import.code == jitExitCode) {
      return true;
    }
  }

  void* jitExitCode = codeBase(tier) + fi.jitExitCodeOffset();

  if (!importCallable->is<JSFunction>()) {
    return true;
  }

  // Test if the function is JIT compiled.
  if (!importCallable->as<JSFunction>().hasBytecode()) {
    return true;
  }

  JSScript* script = importCallable->as<JSFunction>().nonLazyScript();
  if (!script->hasJitScript()) {
    return true;
  }

  // Skip if the function does not have a signature that allows for a JIT exit.
  if (!funcType.canHaveJitExit()) {
    return true;
  }

  // Let's optimize it!

  import.code = jitExitCode;
  return true;
}

/* static */ int32_t /* 0 to signal trap; 1 to signal OK */
Instance::callImport_general(Instance* instance, int32_t funcImportIndex,
                             int32_t argc, uint64_t* argv) {
  JSContext* cx = instance->cx();
  return instance->callImport(cx, funcImportIndex, argc, argv);
}

//////////////////////////////////////////////////////////////////////////////
//
// Atomic operations and shared memory.

template <typename ValT, typename PtrT>
static int32_t PerformWait(Instance* instance, uint32_t memoryIndex,
                           PtrT byteOffset, ValT value, int64_t timeout_ns) {
  JSContext* cx = instance->cx();

  if (!instance->memory(memoryIndex)->isShared()) {
    ReportTrapError(cx, JSMSG_WASM_NONSHARED_WAIT);
    return -1;
  }

  if (byteOffset & (sizeof(ValT) - 1)) {
    ReportTrapError(cx, JSMSG_WASM_UNALIGNED_ACCESS);
    return -1;
  }

  if (byteOffset + sizeof(ValT) >
      instance->memory(memoryIndex)->volatileMemoryLength()) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  mozilla::Maybe<mozilla::TimeDuration> timeout;
  if (timeout_ns >= 0) {
    timeout = mozilla::Some(
        mozilla::TimeDuration::FromMicroseconds(double(timeout_ns) / 1000));
  }

  MOZ_ASSERT(byteOffset <= SIZE_MAX, "Bounds check is broken");
  switch (atomics_wait_impl(cx, instance->sharedMemoryBuffer(memoryIndex),
                            size_t(byteOffset), value, timeout)) {
    case FutexThread::WaitResult::OK:
      return 0;
    case FutexThread::WaitResult::NotEqual:
      return 1;
    case FutexThread::WaitResult::TimedOut:
      return 2;
    case FutexThread::WaitResult::Error:
      return -1;
    default:
      MOZ_CRASH();
  }
}

/* static */ int32_t Instance::wait_i32_m32(Instance* instance,
                                            uint32_t byteOffset, int32_t value,
                                            int64_t timeout_ns,
                                            uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWaitI32M32.failureMode == FailureMode::FailOnNegI32);
  return PerformWait(instance, memoryIndex, byteOffset, value, timeout_ns);
}

/* static */ int32_t Instance::wait_i32_m64(Instance* instance,
                                            uint64_t byteOffset, int32_t value,
                                            int64_t timeout_ns,
                                            uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWaitI32M64.failureMode == FailureMode::FailOnNegI32);
  return PerformWait(instance, memoryIndex, byteOffset, value, timeout_ns);
}

/* static */ int32_t Instance::wait_i64_m32(Instance* instance,
                                            uint32_t byteOffset, int64_t value,
                                            int64_t timeout_ns,
                                            uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWaitI64M32.failureMode == FailureMode::FailOnNegI32);
  return PerformWait(instance, memoryIndex, byteOffset, value, timeout_ns);
}

/* static */ int32_t Instance::wait_i64_m64(Instance* instance,
                                            uint64_t byteOffset, int64_t value,
                                            int64_t timeout_ns,
                                            uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWaitI64M64.failureMode == FailureMode::FailOnNegI32);
  return PerformWait(instance, memoryIndex, byteOffset, value, timeout_ns);
}

template <typename PtrT>
static int32_t PerformWake(Instance* instance, PtrT byteOffset, int32_t count,
                           uint32_t memoryIndex) {
  JSContext* cx = instance->cx();

  // The alignment guard is not in the wasm spec as of 2017-11-02, but is
  // considered likely to appear, as 4-byte alignment is required for WAKE by
  // the spec's validation algorithm.

  if (byteOffset & 3) {
    ReportTrapError(cx, JSMSG_WASM_UNALIGNED_ACCESS);
    return -1;
  }

  if (byteOffset >= instance->memory(memoryIndex)->volatileMemoryLength()) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  if (!instance->memory(memoryIndex)->isShared()) {
    return 0;
  }

  MOZ_ASSERT(byteOffset <= SIZE_MAX, "Bounds check is broken");
  int64_t woken = atomics_notify_impl(instance->sharedMemoryBuffer(memoryIndex),
                                      size_t(byteOffset), int64_t(count));

  if (woken > INT32_MAX) {
    ReportTrapError(cx, JSMSG_WASM_WAKE_OVERFLOW);
    return -1;
  }

  return int32_t(woken);
}

/* static */ int32_t Instance::wake_m32(Instance* instance, uint32_t byteOffset,
                                        int32_t count, uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWakeM32.failureMode == FailureMode::FailOnNegI32);
  return PerformWake(instance, byteOffset, count, memoryIndex);
}

/* static */ int32_t Instance::wake_m64(Instance* instance, uint64_t byteOffset,
                                        int32_t count, uint32_t memoryIndex) {
  MOZ_ASSERT(SASigWakeM32.failureMode == FailureMode::FailOnNegI32);
  return PerformWake(instance, byteOffset, count, memoryIndex);
}

//////////////////////////////////////////////////////////////////////////////
//
// Bulk memory operations.

/* static */ uint32_t Instance::memoryGrow_m32(Instance* instance,
                                               uint32_t delta,
                                               uint32_t memoryIndex) {
  MOZ_ASSERT(SASigMemoryGrowM32.failureMode == FailureMode::Infallible);
  MOZ_ASSERT(!instance->isAsmJS());

  JSContext* cx = instance->cx();
  Rooted<WasmMemoryObject*> memory(cx, instance->memory(memoryIndex));

  // It is safe to cast to uint32_t, as all limits have been checked inside
  // grow() and will not have been exceeded for a 32-bit memory.
  uint32_t ret = uint32_t(WasmMemoryObject::grow(memory, uint64_t(delta), cx));

  // If there has been a moving grow, this Instance should have been notified.
  MOZ_RELEASE_ASSERT(
      instance->memoryBase(memoryIndex) ==
      instance->memory(memoryIndex)->buffer().dataPointerEither());

  return ret;
}

/* static */ uint64_t Instance::memoryGrow_m64(Instance* instance,
                                               uint64_t delta,
                                               uint32_t memoryIndex) {
  MOZ_ASSERT(SASigMemoryGrowM64.failureMode == FailureMode::Infallible);
  MOZ_ASSERT(!instance->isAsmJS());

  JSContext* cx = instance->cx();
  Rooted<WasmMemoryObject*> memory(cx, instance->memory(memoryIndex));

  uint64_t ret = WasmMemoryObject::grow(memory, delta, cx);

  // If there has been a moving grow, this Instance should have been notified.
  MOZ_RELEASE_ASSERT(
      instance->memoryBase(memoryIndex) ==
      instance->memory(memoryIndex)->buffer().dataPointerEither());

  return ret;
}

/* static */ uint32_t Instance::memorySize_m32(Instance* instance,
                                               uint32_t memoryIndex) {
  MOZ_ASSERT(SASigMemorySizeM32.failureMode == FailureMode::Infallible);

  // This invariant must hold when running Wasm code. Assert it here so we can
  // write tests for cross-realm calls.
  DebugOnly<JSContext*> cx = instance->cx();
  MOZ_ASSERT(cx->realm() == instance->realm());

  Pages pages = instance->memory(memoryIndex)->volatilePages();
#ifdef JS_64BIT
  // Ensure that the memory size is no more than 4GiB.
  MOZ_ASSERT(pages <= Pages(MaxMemory32LimitField));
#endif
  return uint32_t(pages.value());
}

/* static */ uint64_t Instance::memorySize_m64(Instance* instance,
                                               uint32_t memoryIndex) {
  MOZ_ASSERT(SASigMemorySizeM64.failureMode == FailureMode::Infallible);

  // This invariant must hold when running Wasm code. Assert it here so we can
  // write tests for cross-realm calls.
  DebugOnly<JSContext*> cx = instance->cx();
  MOZ_ASSERT(cx->realm() == instance->realm());

  Pages pages = instance->memory(memoryIndex)->volatilePages();
#ifdef JS_64BIT
  MOZ_ASSERT(pages <= Pages(MaxMemory64LimitField));
#endif
  return pages.value();
}

template <typename PointerT, typename CopyFuncT, typename IndexT>
inline int32_t WasmMemoryCopy(JSContext* cx, PointerT dstMemBase,
                              PointerT srcMemBase, size_t dstMemLen,
                              size_t srcMemLen, IndexT dstByteOffset,
                              IndexT srcByteOffset, IndexT len,
                              CopyFuncT memMove) {
  if (!MemoryBoundsCheck(dstByteOffset, len, dstMemLen) ||
      !MemoryBoundsCheck(srcByteOffset, len, srcMemLen)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  memMove(dstMemBase + uintptr_t(dstByteOffset),
          srcMemBase + uintptr_t(srcByteOffset), size_t(len));
  return 0;
}

template <typename I>
inline int32_t MemoryCopy(JSContext* cx, I dstByteOffset, I srcByteOffset,
                          I len, uint8_t* memBase) {
  const WasmArrayRawBuffer* rawBuf = WasmArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->byteLength();
  return WasmMemoryCopy(cx, memBase, memBase, memLen, memLen, dstByteOffset,
                        srcByteOffset, len, memmove);
}

template <typename I>
inline int32_t MemoryCopyShared(JSContext* cx, I dstByteOffset, I srcByteOffset,
                                I len, uint8_t* memBase) {
  using RacyMemMove =
      void (*)(SharedMem<uint8_t*>, SharedMem<uint8_t*>, size_t);

  const WasmSharedArrayRawBuffer* rawBuf =
      WasmSharedArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->volatileByteLength();

  SharedMem<uint8_t*> sharedMemBase = SharedMem<uint8_t*>::shared(memBase);
  return WasmMemoryCopy<SharedMem<uint8_t*>, RacyMemMove>(
      cx, sharedMemBase, sharedMemBase, memLen, memLen, dstByteOffset,
      srcByteOffset, len, AtomicOperations::memmoveSafeWhenRacy);
}

/* static */ int32_t Instance::memCopy_m32(Instance* instance,
                                           uint32_t dstByteOffset,
                                           uint32_t srcByteOffset, uint32_t len,
                                           uint8_t* memBase) {
  MOZ_ASSERT(SASigMemCopyM32.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryCopy(cx, dstByteOffset, srcByteOffset, len, memBase);
}

/* static */ int32_t Instance::memCopyShared_m32(Instance* instance,
                                                 uint32_t dstByteOffset,
                                                 uint32_t srcByteOffset,
                                                 uint32_t len,
                                                 uint8_t* memBase) {
  MOZ_ASSERT(SASigMemCopySharedM32.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryCopyShared(cx, dstByteOffset, srcByteOffset, len, memBase);
}

/* static */ int32_t Instance::memCopy_m64(Instance* instance,
                                           uint64_t dstByteOffset,
                                           uint64_t srcByteOffset, uint64_t len,
                                           uint8_t* memBase) {
  MOZ_ASSERT(SASigMemCopyM64.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryCopy(cx, dstByteOffset, srcByteOffset, len, memBase);
}

/* static */ int32_t Instance::memCopyShared_m64(Instance* instance,
                                                 uint64_t dstByteOffset,
                                                 uint64_t srcByteOffset,
                                                 uint64_t len,
                                                 uint8_t* memBase) {
  MOZ_ASSERT(SASigMemCopySharedM64.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryCopyShared(cx, dstByteOffset, srcByteOffset, len, memBase);
}

// Dynamic dispatch to get the length of a memory given just the base and
// whether it is shared or not. This is only used for memCopy_any, where being
// slower is okay.
static inline size_t GetVolatileByteLength(uint8_t* memBase, bool isShared) {
  if (isShared) {
    return WasmSharedArrayRawBuffer::fromDataPtr(memBase)->volatileByteLength();
  }
  return WasmArrayRawBuffer::fromDataPtr(memBase)->byteLength();
}

/* static */ int32_t Instance::memCopy_any(Instance* instance,
                                           uint64_t dstByteOffset,
                                           uint64_t srcByteOffset, uint64_t len,
                                           uint32_t dstMemIndex,
                                           uint32_t srcMemIndex) {
  MOZ_ASSERT(SASigMemCopyAny.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();

  using RacyMemMove =
      void (*)(SharedMem<uint8_t*>, SharedMem<uint8_t*>, size_t);

  const MemoryInstanceData& dstMemory =
      instance->memoryInstanceData(dstMemIndex);
  const MemoryInstanceData& srcMemory =
      instance->memoryInstanceData(srcMemIndex);

  uint8_t* dstMemBase = dstMemory.base;
  uint8_t* srcMemBase = srcMemory.base;

  size_t dstMemLen = GetVolatileByteLength(dstMemBase, dstMemory.isShared);
  size_t srcMemLen = GetVolatileByteLength(srcMemBase, srcMemory.isShared);

  return WasmMemoryCopy<SharedMem<uint8_t*>, RacyMemMove>(
      cx, SharedMem<uint8_t*>::shared(dstMemBase),
      SharedMem<uint8_t*>::shared(srcMemBase), dstMemLen, srcMemLen,
      dstByteOffset, srcByteOffset, len, AtomicOperations::memmoveSafeWhenRacy);
}

template <typename T, typename F, typename I>
inline int32_t WasmMemoryFill(JSContext* cx, T memBase, size_t memLen,
                              I byteOffset, uint32_t value, I len, F memSet) {
  if (!MemoryBoundsCheck(byteOffset, len, memLen)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  // The required write direction is upward, but that is not currently
  // observable as there are no fences nor any read/write protect operation.
  memSet(memBase + uintptr_t(byteOffset), int(value), size_t(len));
  return 0;
}

template <typename I>
inline int32_t MemoryFill(JSContext* cx, I byteOffset, uint32_t value, I len,
                          uint8_t* memBase) {
  const WasmArrayRawBuffer* rawBuf = WasmArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->byteLength();
  return WasmMemoryFill(cx, memBase, memLen, byteOffset, value, len, memset);
}

template <typename I>
inline int32_t MemoryFillShared(JSContext* cx, I byteOffset, uint32_t value,
                                I len, uint8_t* memBase) {
  const WasmSharedArrayRawBuffer* rawBuf =
      WasmSharedArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->volatileByteLength();
  return WasmMemoryFill(cx, SharedMem<uint8_t*>::shared(memBase), memLen,
                        byteOffset, value, len,
                        AtomicOperations::memsetSafeWhenRacy);
}

/* static */ int32_t Instance::memFill_m32(Instance* instance,
                                           uint32_t byteOffset, uint32_t value,
                                           uint32_t len, uint8_t* memBase) {
  MOZ_ASSERT(SASigMemFillM32.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryFill(cx, byteOffset, value, len, memBase);
}

/* static */ int32_t Instance::memFillShared_m32(Instance* instance,
                                                 uint32_t byteOffset,
                                                 uint32_t value, uint32_t len,
                                                 uint8_t* memBase) {
  MOZ_ASSERT(SASigMemFillSharedM32.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryFillShared(cx, byteOffset, value, len, memBase);
}

/* static */ int32_t Instance::memFill_m64(Instance* instance,
                                           uint64_t byteOffset, uint32_t value,
                                           uint64_t len, uint8_t* memBase) {
  MOZ_ASSERT(SASigMemFillM64.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryFill(cx, byteOffset, value, len, memBase);
}

/* static */ int32_t Instance::memFillShared_m64(Instance* instance,
                                                 uint64_t byteOffset,
                                                 uint32_t value, uint64_t len,
                                                 uint8_t* memBase) {
  MOZ_ASSERT(SASigMemFillSharedM64.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();
  return MemoryFillShared(cx, byteOffset, value, len, memBase);
}

static bool BoundsCheckInit(uint32_t dstOffset, uint32_t srcOffset,
                            uint32_t len, size_t memLen, uint32_t segLen) {
  uint64_t dstOffsetLimit = uint64_t(dstOffset) + uint64_t(len);
  uint64_t srcOffsetLimit = uint64_t(srcOffset) + uint64_t(len);

  return dstOffsetLimit > memLen || srcOffsetLimit > segLen;
}

static bool BoundsCheckInit(uint64_t dstOffset, uint32_t srcOffset,
                            uint32_t len, size_t memLen, uint32_t segLen) {
  uint64_t dstOffsetLimit = dstOffset + uint64_t(len);
  uint64_t srcOffsetLimit = uint64_t(srcOffset) + uint64_t(len);

  return dstOffsetLimit < dstOffset || dstOffsetLimit > memLen ||
         srcOffsetLimit > segLen;
}

template <typename I>
static int32_t MemoryInit(JSContext* cx, Instance* instance,
                          uint32_t memoryIndex, I dstOffset, uint32_t srcOffset,
                          uint32_t len, const DataSegment* maybeSeg) {
  if (!maybeSeg) {
    if (len == 0 && srcOffset == 0) {
      return 0;
    }

    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  const DataSegment& seg = *maybeSeg;
  MOZ_RELEASE_ASSERT(!seg.active());

  const uint32_t segLen = seg.bytes.length();
  WasmMemoryObject* mem = instance->memory(memoryIndex);
  const size_t memLen = mem->volatileMemoryLength();

  // We are proposing to copy
  //
  //   seg.bytes.begin()[ srcOffset .. srcOffset + len - 1 ]
  // to
  //   memoryBase[ dstOffset .. dstOffset + len - 1 ]

  if (BoundsCheckInit(dstOffset, srcOffset, len, memLen, segLen)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  // The required read/write direction is upward, but that is not currently
  // observable as there are no fences nor any read/write protect operation.
  SharedMem<uint8_t*> dataPtr = mem->buffer().dataPointerEither();
  if (mem->isShared()) {
    AtomicOperations::memcpySafeWhenRacy(
        dataPtr + uintptr_t(dstOffset), (uint8_t*)seg.bytes.begin() + srcOffset,
        len);
  } else {
    uint8_t* rawBuf = dataPtr.unwrap(/*Unshared*/);
    memcpy(rawBuf + uintptr_t(dstOffset),
           (const char*)seg.bytes.begin() + srcOffset, len);
  }
  return 0;
}

/* static */ int32_t Instance::memInit_m32(Instance* instance,
                                           uint32_t dstOffset,
                                           uint32_t srcOffset, uint32_t len,
                                           uint32_t segIndex,
                                           uint32_t memIndex) {
  MOZ_ASSERT(SASigMemInitM32.failureMode == FailureMode::FailOnNegI32);
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveDataSegments_.length(),
                     "ensured by validation");

  JSContext* cx = instance->cx();
  return MemoryInit(cx, instance, memIndex, dstOffset, srcOffset, len,
                    instance->passiveDataSegments_[segIndex]);
}

/* static */ int32_t Instance::memInit_m64(Instance* instance,
                                           uint64_t dstOffset,
                                           uint32_t srcOffset, uint32_t len,
                                           uint32_t segIndex,
                                           uint32_t memIndex) {
  MOZ_ASSERT(SASigMemInitM64.failureMode == FailureMode::FailOnNegI32);
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveDataSegments_.length(),
                     "ensured by validation");

  JSContext* cx = instance->cx();
  return MemoryInit(cx, instance, memIndex, dstOffset, srcOffset, len,
                    instance->passiveDataSegments_[segIndex]);
}

//////////////////////////////////////////////////////////////////////////////
//
// Bulk table operations.

/* static */ int32_t Instance::tableCopy(Instance* instance, uint32_t dstOffset,
                                         uint32_t srcOffset, uint32_t len,
                                         uint32_t dstTableIndex,
                                         uint32_t srcTableIndex) {
  MOZ_ASSERT(SASigTableCopy.failureMode == FailureMode::FailOnNegI32);

  JSContext* cx = instance->cx();
  const SharedTable& srcTable = instance->tables()[srcTableIndex];
  uint32_t srcTableLen = srcTable->length();

  const SharedTable& dstTable = instance->tables()[dstTableIndex];
  uint32_t dstTableLen = dstTable->length();

  // Bounds check and deal with arithmetic overflow.
  uint64_t dstOffsetLimit = uint64_t(dstOffset) + len;
  uint64_t srcOffsetLimit = uint64_t(srcOffset) + len;

  if (dstOffsetLimit > dstTableLen || srcOffsetLimit > srcTableLen) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  bool isOOM = false;

  if (&srcTable == &dstTable && dstOffset > srcOffset) {
    for (uint32_t i = len; i > 0; i--) {
      if (!dstTable->copy(cx, *srcTable, dstOffset + (i - 1),
                          srcOffset + (i - 1))) {
        isOOM = true;
        break;
      }
    }
  } else if (&srcTable == &dstTable && dstOffset == srcOffset) {
    // No-op
  } else {
    for (uint32_t i = 0; i < len; i++) {
      if (!dstTable->copy(cx, *srcTable, dstOffset + i, srcOffset + i)) {
        isOOM = true;
        break;
      }
    }
  }

  if (isOOM) {
    return -1;
  }
  return 0;
}

#ifdef DEBUG
static bool AllSegmentsArePassive(const DataSegmentVector& vec) {
  for (const DataSegment* seg : vec) {
    if (seg->active()) {
      return false;
    }
  }
  return true;
}
#endif

bool Instance::initSegments(JSContext* cx,
                            const DataSegmentVector& dataSegments,
                            const ModuleElemSegmentVector& elemSegments) {
  MOZ_ASSERT_IF(metadata().memories.length() == 0,
                AllSegmentsArePassive(dataSegments));

  Rooted<WasmInstanceObject*> instanceObj(cx, object());

  // Write data/elem segments into memories/tables.

  for (const ModuleElemSegment& seg : elemSegments) {
    if (seg.active()) {
      RootedVal offsetVal(cx);
      if (!seg.offset().evaluate(cx, instanceObj, &offsetVal)) {
        return false;  // OOM
      }
      uint32_t offset = offsetVal.get().i32();

      uint32_t tableLength = tables()[seg.tableIndex]->length();
      if (offset > tableLength || tableLength - offset < seg.numElements()) {
        JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                                 JSMSG_WASM_OUT_OF_BOUNDS);
        return false;
      }

      if (!initElems(seg.tableIndex, seg, offset)) {
        return false;  // OOM
      }
    }
  }

  for (const DataSegment* seg : dataSegments) {
    if (!seg->active()) {
      continue;
    }

    Rooted<const WasmMemoryObject*> memoryObj(cx, memory(seg->memoryIndex));
    size_t memoryLength = memoryObj->volatileMemoryLength();
    uint8_t* memoryBase =
        memoryObj->buffer().dataPointerEither().unwrap(/* memcpy */);

    RootedVal offsetVal(cx);
    if (!seg->offset().evaluate(cx, instanceObj, &offsetVal)) {
      return false;  // OOM
    }
    uint64_t offset = memoryObj->indexType() == IndexType::I32
                          ? offsetVal.get().i32()
                          : offsetVal.get().i64();
    uint32_t count = seg->bytes.length();

    if (offset > memoryLength || memoryLength - offset < count) {
      JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                               JSMSG_WASM_OUT_OF_BOUNDS);
      return false;
    }
    memcpy(memoryBase + uintptr_t(offset), seg->bytes.begin(), count);
  }

  return true;
}

bool Instance::initElems(uint32_t tableIndex, const ModuleElemSegment& seg,
                         uint32_t dstOffset) {
  Table& table = *tables_[tableIndex];
  MOZ_ASSERT(dstOffset <= table.length());
  MOZ_ASSERT(seg.numElements() <= table.length() - dstOffset);

  if (seg.numElements() == 0) {
    return true;
  }

  Rooted<WasmInstanceObject*> instanceObj(cx(), object());

  if (table.isFunction() &&
      seg.encoding == ModuleElemSegment::Encoding::Indices) {
    // Initialize this table of functions without creating any intermediate
    // JSFunctions.
    bool ok = iterElemsFunctions(
        seg, [&](uint32_t i, void* code, Instance* instance) -> bool {
          table.setFuncRef(dstOffset + i, code, instance);
          return true;
        });
    if (!ok) {
      return false;
    }
  } else {
    bool ok = iterElemsAnyrefs(seg, [&](uint32_t i, AnyRef ref) -> bool {
      table.setRef(dstOffset + i, ref);
      return true;
    });
    if (!ok) {
      return false;
    }
  }

  return true;
}

template <typename F>
bool Instance::iterElemsFunctions(const ModuleElemSegment& seg,
                                  const F& onFunc) {
  // In the future, we could theoretically get function data (instance + code
  // pointer) from segments with the expression encoding without creating
  // JSFunctions. But that is not how it works today. We can only bypass the
  // creation of JSFunctions for the index encoding.
  MOZ_ASSERT(seg.encoding == ModuleElemSegment::Encoding::Indices);

  if (seg.numElements() == 0) {
    return true;
  }

  Tier tier = code().bestTier();
  const MetadataTier& metadataTier = metadata(tier);
  const FuncImportVector& funcImports = metadataTier.funcImports;
  const CodeRangeVector& codeRanges = metadataTier.codeRanges;
  const Uint32Vector& funcToCodeRange = metadataTier.funcToCodeRange;
  const Uint32Vector& elemIndices = seg.elemIndices;

  uint8_t* codeBaseTier = codeBase(tier);
  for (uint32_t i = 0; i < seg.numElements(); i++) {
    uint32_t elemIndex = elemIndices[i];
    if (elemIndex < metadataTier.funcImports.length()) {
      FuncImportInstanceData& import =
          funcImportInstanceData(funcImports[elemIndex]);
      MOZ_ASSERT(import.callable->isCallable());
      if (import.callable->is<JSFunction>()) {
        JSFunction* fun = &import.callable->as<JSFunction>();
        if (IsWasmExportedFunction(fun)) {
          // This element is a wasm function imported from another
          // instance. To preserve the === function identity required by
          // the JS embedding spec, we must get the imported function's
          // underlying CodeRange.funcCheckedCallEntry and Instance so that
          // future Table.get()s produce the same function object as was
          // imported.
          WasmInstanceObject* calleeInstanceObj =
              ExportedFunctionToInstanceObject(fun);
          Instance& calleeInstance = calleeInstanceObj->instance();
          Tier calleeTier = calleeInstance.code().bestTier();
          const CodeRange& calleeCodeRange =
              calleeInstanceObj->getExportedFunctionCodeRange(fun, calleeTier);
          void* code = calleeInstance.codeBase(calleeTier) +
                       calleeCodeRange.funcCheckedCallEntry();
          if (!onFunc(i, code, &calleeInstance)) {
            return false;
          }
          continue;
        }
      }
    }

    void* code = codeBaseTier +
                 codeRanges[funcToCodeRange[elemIndex]].funcCheckedCallEntry();
    if (!onFunc(i, code, this)) {
      return false;
    }
  }

  return true;
}

template <typename F>
bool Instance::iterElemsAnyrefs(const ModuleElemSegment& seg,
                                const F& onAnyRef) {
  if (seg.numElements() == 0) {
    return true;
  }

  switch (seg.encoding) {
    case ModuleElemSegment::Encoding::Indices: {
      // The only types of indices that exist right now are function indices, so
      // this code is specialized to functions.

      for (uint32_t i = 0; i < seg.numElements(); i++) {
        uint32_t funcIndex = seg.elemIndices[i];
        // Note, fnref must be rooted if we do anything more than just store it.
        void* fnref = Instance::refFunc(this, funcIndex);
        if (fnref == AnyRef::invalid().forCompiledCode()) {
          return false;  // OOM, which has already been reported.
        }
        if (!onAnyRef(i, AnyRef::fromCompiledCode(fnref))) {
          return false;
        }
      }
    } break;
    case ModuleElemSegment::Encoding::Expressions: {
      Rooted<WasmInstanceObject*> instanceObj(cx(), object());
      const ModuleElemSegment::Expressions& exprs = seg.elemExpressions;

      UniqueChars error;
      // The offset is a dummy because the expression has already been
      // validated.
      Decoder d(exprs.exprBytes.begin(), exprs.exprBytes.end(), 0, &error);
      for (uint32_t i = 0; i < seg.numElements(); i++) {
        RootedVal result(cx());
        if (!InitExpr::decodeAndEvaluate(cx(), instanceObj, d, seg.elemType,
                                         &result)) {
          MOZ_ASSERT(!error);  // The only possible failure should be OOM.
          return false;
        }
        // We would need to root this AnyRef if we were doing anything other
        // than storing it.
        AnyRef ref = result.get().ref();
        if (!onAnyRef(i, ref)) {
          return false;
        }
      }
    } break;
    default:
      MOZ_CRASH("unknown encoding type for element segment");
  }
  return true;
}

/* static */ int32_t Instance::tableInit(Instance* instance, uint32_t dstOffset,
                                         uint32_t srcOffset, uint32_t len,
                                         uint32_t segIndex,
                                         uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableInit.failureMode == FailureMode::FailOnNegI32);

  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveElemSegments_.length(),
                     "ensured by validation");

  JSContext* cx = instance->cx();

  const InstanceElemSegment& seg = instance->passiveElemSegments_[segIndex];
  const uint32_t segLen = seg.length();

  Table& table = *instance->tables()[tableIndex];
  const uint32_t tableLen = table.length();

  // We are proposing to copy
  //
  //   seg[ srcOffset .. srcOffset + len - 1 ]
  // to
  //   tableBase[ dstOffset .. dstOffset + len - 1 ]

  // Bounds check and deal with arithmetic overflow.
  uint64_t dstOffsetLimit = uint64_t(dstOffset) + uint64_t(len);
  uint64_t srcOffsetLimit = uint64_t(srcOffset) + uint64_t(len);

  if (dstOffsetLimit > tableLen || srcOffsetLimit > segLen) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  for (size_t i = 0; i < len; i++) {
    table.setRef(dstOffset + i, seg[srcOffset + i]);
  }

  return 0;
}

/* static */ int32_t Instance::tableFill(Instance* instance, uint32_t start,
                                         void* value, uint32_t len,
                                         uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableFill.failureMode == FailureMode::FailOnNegI32);

  JSContext* cx = instance->cx();
  Table& table = *instance->tables()[tableIndex];

  // Bounds check and deal with arithmetic overflow.
  uint64_t offsetLimit = uint64_t(start) + uint64_t(len);

  if (offsetLimit > table.length()) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  switch (table.repr()) {
    case TableRepr::Ref:
      table.fillAnyRef(start, len, AnyRef::fromCompiledCode(value));
      break;
    case TableRepr::Func:
      MOZ_RELEASE_ASSERT(!table.isAsmJS());
      table.fillFuncRef(start, len, FuncRef::fromCompiledCode(value), cx);
      break;
  }

  return 0;
}

template <typename I>
static bool WasmDiscardCheck(Instance* instance, I byteOffset, I byteLen,
                             size_t memLen, bool shared) {
  JSContext* cx = instance->cx();

  if (byteOffset % wasm::PageSize != 0 || byteLen % wasm::PageSize != 0) {
    ReportTrapError(cx, JSMSG_WASM_UNALIGNED_ACCESS);
    return false;
  }

  if (!MemoryBoundsCheck(byteOffset, byteLen, memLen)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  return true;
}

template <typename I>
static int32_t MemDiscardNotShared(Instance* instance, I byteOffset, I byteLen,
                                   uint8_t* memBase) {
  WasmArrayRawBuffer* rawBuf = WasmArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->byteLength();

  if (!WasmDiscardCheck(instance, byteOffset, byteLen, memLen, false)) {
    return -1;
  }
  rawBuf->discard(byteOffset, byteLen);

  return 0;
}

template <typename I>
static int32_t MemDiscardShared(Instance* instance, I byteOffset, I byteLen,
                                uint8_t* memBase) {
  WasmSharedArrayRawBuffer* rawBuf =
      WasmSharedArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->volatileByteLength();

  if (!WasmDiscardCheck(instance, byteOffset, byteLen, memLen, true)) {
    return -1;
  }
  rawBuf->discard(byteOffset, byteLen);

  return 0;
}

/* static */ int32_t Instance::memDiscard_m32(Instance* instance,
                                              uint32_t byteOffset,
                                              uint32_t byteLen,
                                              uint8_t* memBase) {
  return MemDiscardNotShared(instance, byteOffset, byteLen, memBase);
}

/* static */ int32_t Instance::memDiscard_m64(Instance* instance,
                                              uint64_t byteOffset,
                                              uint64_t byteLen,
                                              uint8_t* memBase) {
  return MemDiscardNotShared(instance, byteOffset, byteLen, memBase);
}

/* static */ int32_t Instance::memDiscardShared_m32(Instance* instance,
                                                    uint32_t byteOffset,
                                                    uint32_t byteLen,
                                                    uint8_t* memBase) {
  return MemDiscardShared(instance, byteOffset, byteLen, memBase);
}

/* static */ int32_t Instance::memDiscardShared_m64(Instance* instance,
                                                    uint64_t byteOffset,
                                                    uint64_t byteLen,
                                                    uint8_t* memBase) {
  return MemDiscardShared(instance, byteOffset, byteLen, memBase);
}

/* static */ void* Instance::tableGet(Instance* instance, uint32_t index,
                                      uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableGet.failureMode == FailureMode::FailOnInvalidRef);

  JSContext* cx = instance->cx();
  const Table& table = *instance->tables()[tableIndex];
  if (index >= table.length()) {
    ReportTrapError(cx, JSMSG_WASM_TABLE_OUT_OF_BOUNDS);
    return AnyRef::invalid().forCompiledCode();
  }

  switch (table.repr()) {
    case TableRepr::Ref:
      return table.getAnyRef(index).forCompiledCode();
    case TableRepr::Func: {
      MOZ_RELEASE_ASSERT(!table.isAsmJS());
      RootedFunction fun(cx);
      if (!table.getFuncRef(cx, index, &fun)) {
        return AnyRef::invalid().forCompiledCode();
      }
      return FuncRef::fromJSFunction(fun).forCompiledCode();
    }
  }
  MOZ_CRASH("Should not happen");
}

/* static */ uint32_t Instance::tableGrow(Instance* instance, void* initValue,
                                          uint32_t delta, uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableGrow.failureMode == FailureMode::Infallible);

  JSContext* cx = instance->cx();
  RootedAnyRef ref(cx, AnyRef::fromCompiledCode(initValue));
  Table& table = *instance->tables()[tableIndex];

  uint32_t oldSize = table.grow(delta);

  if (oldSize != uint32_t(-1) && initValue != nullptr) {
    table.fillUninitialized(oldSize, delta, ref, cx);
  }

#ifdef DEBUG
  if (!table.elemType().isNullable()) {
    table.assertRangeNotNull(oldSize, delta);
  }
#endif  // DEBUG
  return oldSize;
}

/* static */ int32_t Instance::tableSet(Instance* instance, uint32_t index,
                                        void* value, uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableSet.failureMode == FailureMode::FailOnNegI32);

  JSContext* cx = instance->cx();
  Table& table = *instance->tables()[tableIndex];

  if (index >= table.length()) {
    ReportTrapError(cx, JSMSG_WASM_TABLE_OUT_OF_BOUNDS);
    return -1;
  }

  switch (table.repr()) {
    case TableRepr::Ref:
      table.setAnyRef(index, AnyRef::fromCompiledCode(value));
      break;
    case TableRepr::Func:
      MOZ_RELEASE_ASSERT(!table.isAsmJS());
      table.fillFuncRef(index, 1, FuncRef::fromCompiledCode(value), cx);
      break;
  }

  return 0;
}

/* static */ uint32_t Instance::tableSize(Instance* instance,
                                          uint32_t tableIndex) {
  MOZ_ASSERT(SASigTableSize.failureMode == FailureMode::Infallible);
  Table& table = *instance->tables()[tableIndex];
  return table.length();
}

/* static */ void* Instance::refFunc(Instance* instance, uint32_t funcIndex) {
  MOZ_ASSERT(SASigRefFunc.failureMode == FailureMode::FailOnInvalidRef);
  JSContext* cx = instance->cx();

  Tier tier = instance->code().bestTier();
  const MetadataTier& metadataTier = instance->metadata(tier);
  const FuncImportVector& funcImports = metadataTier.funcImports;

  // If this is an import, we need to recover the original function to maintain
  // reference equality between a re-exported function and 'ref.func'. The
  // identity of the imported function object is stable across tiers, which is
  // what we want.
  //
  // Use the imported function only if it is an exported function, otherwise
  // fall through to get a (possibly new) exported function.
  if (funcIndex < funcImports.length()) {
    FuncImportInstanceData& import =
        instance->funcImportInstanceData(funcImports[funcIndex]);
    if (import.callable->is<JSFunction>()) {
      JSFunction* fun = &import.callable->as<JSFunction>();
      if (IsWasmExportedFunction(fun)) {
        return FuncRef::fromJSFunction(fun).forCompiledCode();
      }
    }
  }

  RootedFunction fun(cx);
  Rooted<WasmInstanceObject*> instanceObj(cx, instance->object());
  if (!WasmInstanceObject::getExportedFunction(cx, instanceObj, funcIndex,
                                               &fun)) {
    // Validation ensures that we always have a valid funcIndex, so we must
    // have OOM'ed
    ReportOutOfMemory(cx);
    return AnyRef::invalid().forCompiledCode();
  }

  return FuncRef::fromJSFunction(fun).forCompiledCode();
}

//////////////////////////////////////////////////////////////////////////////
//
// Segment management.

/* static */ int32_t Instance::elemDrop(Instance* instance, uint32_t segIndex) {
  MOZ_ASSERT(SASigElemDrop.failureMode == FailureMode::FailOnNegI32);

  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveElemSegments_.length(),
                     "ensured by validation");

  instance->passiveElemSegments_[segIndex].clearAndFree();
  return 0;
}

/* static */ int32_t Instance::dataDrop(Instance* instance, uint32_t segIndex) {
  MOZ_ASSERT(SASigDataDrop.failureMode == FailureMode::FailOnNegI32);

  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveDataSegments_.length(),
                     "ensured by validation");

  if (!instance->passiveDataSegments_[segIndex]) {
    return 0;
  }

  SharedDataSegment& segRefPtr = instance->passiveDataSegments_[segIndex];
  MOZ_RELEASE_ASSERT(!segRefPtr->active());

  // Drop this instance's reference to the DataSegment so it can be released.
  segRefPtr = nullptr;
  return 0;
}

//////////////////////////////////////////////////////////////////////////////
//
// AnyRef support.

/* static */ void Instance::postBarrier(Instance* instance, void** location) {
  MOZ_ASSERT(SASigPostBarrier.failureMode == FailureMode::Infallible);
  MOZ_ASSERT(location);
  instance->storeBuffer_->putWasmAnyRef(
      reinterpret_cast<wasm::AnyRef*>(location));
}

/* static */ void Instance::postBarrierPrecise(Instance* instance,
                                               void** location, void* prev) {
  MOZ_ASSERT(SASigPostBarrierPrecise.failureMode == FailureMode::Infallible);
  postBarrierPreciseWithOffset(instance, location, /*offset=*/0, prev);
}

/* static */ void Instance::postBarrierPreciseWithOffset(Instance* instance,
                                                         void** base,
                                                         uint32_t offset,
                                                         void* prev) {
  MOZ_ASSERT(SASigPostBarrierPreciseWithOffset.failureMode ==
             FailureMode::Infallible);
  MOZ_ASSERT(base);
  wasm::AnyRef* location = (wasm::AnyRef*)(uintptr_t(base) + size_t(offset));
  wasm::AnyRef next = *location;
  InternalBarrierMethods<AnyRef>::postBarrier(
      location, wasm::AnyRef::fromCompiledCode(prev), next);
}

//////////////////////////////////////////////////////////////////////////////
//
// GC and exception handling support.

/* static */
template <bool ZeroFields>
void* Instance::structNewIL(Instance* instance,
                            TypeDefInstanceData* typeDefData) {
  MOZ_ASSERT((ZeroFields ? SASigStructNewIL_true : SASigStructNewIL_false)
                 .failureMode == FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();
  // The new struct will be allocated in an initial heap as determined by
  // pretenuring logic as set up in `Instance::init`.
  return WasmStructObject::createStructIL<ZeroFields>(
      cx, typeDefData, typeDefData->allocSite.initialHeap());
}

template void* Instance::structNewIL<true>(Instance* instance,
                                           TypeDefInstanceData* typeDefData);
template void* Instance::structNewIL<false>(Instance* instance,
                                            TypeDefInstanceData* typeDefData);

/* static */
template <bool ZeroFields>
void* Instance::structNewOOL(Instance* instance,
                             TypeDefInstanceData* typeDefData) {
  MOZ_ASSERT((ZeroFields ? SASigStructNewOOL_true : SASigStructNewOOL_false)
                 .failureMode == FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();
  // The new struct will be allocated in an initial heap as determined by
  // pretenuring logic as set up in `Instance::init`.
  return WasmStructObject::createStructOOL<ZeroFields>(
      cx, typeDefData, typeDefData->allocSite.initialHeap());
}

template void* Instance::structNewOOL<true>(Instance* instance,
                                            TypeDefInstanceData* typeDefData);
template void* Instance::structNewOOL<false>(Instance* instance,
                                             TypeDefInstanceData* typeDefData);

/* static */
template <bool ZeroFields>
void* Instance::arrayNew(Instance* instance, uint32_t numElements,
                         TypeDefInstanceData* typeDefData) {
  MOZ_ASSERT(
      (ZeroFields ? SASigArrayNew_true : SASigArrayNew_false).failureMode ==
      FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();
  // The new array will be allocated in an initial heap as determined by
  // pretenuring logic as set up in `Instance::init`.
  return WasmArrayObject::createArray<ZeroFields>(
      cx, typeDefData, typeDefData->allocSite.initialHeap(), numElements);
}

template void* Instance::arrayNew<true>(Instance* instance,
                                        uint32_t numElements,
                                        TypeDefInstanceData* typeDefData);
template void* Instance::arrayNew<false>(Instance* instance,
                                         uint32_t numElements,
                                         TypeDefInstanceData* typeDefData);

// Copies from a data segment into a wasm GC array. Performs the necessary
// bounds checks, accounting for the array's element size. If this function
// returns false, it has already reported a trap error.
static bool ArrayCopyFromData(JSContext* cx, Handle<WasmArrayObject*> arrayObj,
                              const TypeDef* typeDef, uint32_t arrayIndex,
                              const DataSegment* seg, uint32_t segByteOffset,
                              uint32_t numElements) {
  // Compute the number of bytes to copy, ensuring it's below 2^32.
  CheckedUint32 numBytesToCopy =
      CheckedUint32(numElements) *
      CheckedUint32(typeDef->arrayType().elementType_.size());
  if (!numBytesToCopy.isValid()) {
    // Because the request implies that 2^32 or more bytes are to be copied.
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  // Range-check the copy.  The obvious thing to do is to compute the offset
  // of the last byte to copy, but that would cause underflow in the
  // zero-length-and-zero-offset case.  Instead, compute that value plus one;
  // in other words the offset of the first byte *not* to copy.
  CheckedUint32 lastByteOffsetPlus1 =
      CheckedUint32(segByteOffset) + numBytesToCopy;

  CheckedUint32 numBytesAvailable(seg->bytes.length());
  if (!lastByteOffsetPlus1.isValid() || !numBytesAvailable.isValid() ||
      lastByteOffsetPlus1.value() > numBytesAvailable.value()) {
    // Because the last byte to copy doesn't exist inside `seg->bytes`.
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  // Range check the destination array.
  uint64_t dstNumElements = uint64_t(arrayObj->numElements_);
  if (uint64_t(arrayIndex) + uint64_t(numElements) > dstNumElements) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  // Because `numBytesToCopy` is an in-range `CheckedUint32`, the cast to
  // `size_t` is safe even on a 32-bit target.
  if (numElements != 0) {
    memcpy(arrayObj->data_, &seg->bytes[segByteOffset],
           size_t(numBytesToCopy.value()));
  }

  return true;
}

// Copies from an element segment into a wasm GC array. Performs the necessary
// bounds checks, accounting for the array's element size. If this function
// returns false, it has already reported a trap error.
static bool ArrayCopyFromElem(JSContext* cx, Handle<WasmArrayObject*> arrayObj,
                              uint32_t arrayIndex,
                              const InstanceElemSegment& seg,
                              uint32_t segOffset, uint32_t numElements) {
  // Range-check the copy. As in ArrayCopyFromData, compute the index of the
  // last element to copy, plus one.
  CheckedUint32 lastIndexPlus1 =
      CheckedUint32(segOffset) + CheckedUint32(numElements);
  CheckedUint32 numElemsAvailable(seg.length());
  if (!lastIndexPlus1.isValid() || !numElemsAvailable.isValid() ||
      lastIndexPlus1.value() > numElemsAvailable.value()) {
    // Because the last element to copy doesn't exist inside the segment.
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  // Range check the destination array.
  uint64_t dstNumElements = uint64_t(arrayObj->numElements_);
  if (uint64_t(arrayIndex) + uint64_t(numElements) > dstNumElements) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return false;
  }

  GCPtr<AnyRef>* dst = reinterpret_cast<GCPtr<AnyRef>*>(arrayObj->data_);
  for (uint32_t i = 0; i < numElements; i++) {
    dst[i] = seg[segOffset + i];
  }

  return true;
}

// Creates an array (WasmArrayObject) containing `numElements` of type
// described by `typeDef`.  Initialises it with data copied from the data
// segment whose index is `segIndex`, starting at byte offset `segByteOffset`
// in the segment.  Traps if the segment doesn't hold enough bytes to fill the
// array.
/* static */ void* Instance::arrayNewData(Instance* instance,
                                          uint32_t segByteOffset,
                                          uint32_t numElements,
                                          TypeDefInstanceData* typeDefData,
                                          uint32_t segIndex) {
  MOZ_ASSERT(SASigArrayNewData.failureMode == FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();

  // Check that the data segment is valid for use.
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveDataSegments_.length(),
                     "ensured by validation");
  const DataSegment* seg = instance->passiveDataSegments_[segIndex];

  // `seg` will be nullptr if the segment has already been 'data.drop'ed
  // (either implicitly in the case of 'active' segments during instantiation,
  // or explicitly by the data.drop instruction.)  In that case we can
  // continue only if there's no need to copy any data out of it.
  if (!seg && (numElements != 0 || segByteOffset != 0)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return nullptr;
  }
  // At this point, if `seg` is null then `numElements` and `segByteOffset`
  // are both zero.

  const TypeDef* typeDef = typeDefData->typeDef;
  Rooted<WasmArrayObject*> arrayObj(
      cx,
      WasmArrayObject::createArray<true>(
          cx, typeDefData, typeDefData->allocSite.initialHeap(), numElements));
  if (!arrayObj) {
    // WasmArrayObject::createArray will have reported OOM.
    return nullptr;
  }
  MOZ_RELEASE_ASSERT(arrayObj->is<WasmArrayObject>());

  if (!seg) {
    // A zero-length array was requested and has been created, so we're done.
    return arrayObj;
  }

  if (!ArrayCopyFromData(cx, arrayObj, typeDef, 0, seg, segByteOffset,
                         numElements)) {
    // Trap errors will be reported by ArrayCopyFromData.
    return nullptr;
  }

  return arrayObj;
}

// This is almost identical to ::arrayNewData, apart from the final part that
// actually copies the data.  It creates an array (WasmArrayObject)
// containing `numElements` of type described by `typeDef`.  Initialises it
// with data copied from the element segment whose index is `segIndex`,
// starting at element number `srcOffset` in the segment.  Traps if the
// segment doesn't hold enough elements to fill the array.
/* static */ void* Instance::arrayNewElem(Instance* instance,
                                          uint32_t srcOffset,
                                          uint32_t numElements,
                                          TypeDefInstanceData* typeDefData,
                                          uint32_t segIndex) {
  MOZ_ASSERT(SASigArrayNewElem.failureMode == FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();

  // Check that the element segment is valid for use.
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveElemSegments_.length(),
                     "ensured by validation");
  const InstanceElemSegment& seg = instance->passiveElemSegments_[segIndex];

  const TypeDef* typeDef = typeDefData->typeDef;

  // Any data coming from an element segment will be an AnyRef. Writes into
  // array memory are done with raw pointers, so we must ensure here that the
  // destination size is correct.
  MOZ_RELEASE_ASSERT(typeDef->arrayType().elementType_.size() ==
                     sizeof(AnyRef));

  Rooted<WasmArrayObject*> arrayObj(
      cx,
      WasmArrayObject::createArray<true>(
          cx, typeDefData, typeDefData->allocSite.initialHeap(), numElements));
  if (!arrayObj) {
    // WasmArrayObject::createArray will have reported OOM.
    return nullptr;
  }
  MOZ_RELEASE_ASSERT(arrayObj->is<WasmArrayObject>());

  if (!ArrayCopyFromElem(cx, arrayObj, 0, seg, srcOffset, numElements)) {
    // Trap errors will be reported by ArrayCopyFromElems.
    return nullptr;
  }

  return arrayObj;
}

// Copies a range of the data segment `segIndex` into an array
// (WasmArrayObject), starting at offset `segByteOffset` in the data segment and
// index `index` in the array. `numElements` is the length of the copy in array
// elements, NOT bytes - the number of bytes will be computed based on the type
// of the array.
//
// Traps if accesses are out of bounds for either the data segment or the array,
// or if the array object is null.
/* static */ int32_t Instance::arrayInitData(
    Instance* instance, void* array, uint32_t index, uint32_t segByteOffset,
    uint32_t numElements, TypeDefInstanceData* typeDefData, uint32_t segIndex) {
  MOZ_ASSERT(SASigArrayInitData.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();

  // Check that the data segment is valid for use.
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveDataSegments_.length(),
                     "ensured by validation");
  const DataSegment* seg = instance->passiveDataSegments_[segIndex];

  // `seg` will be nullptr if the segment has already been 'data.drop'ed
  // (either implicitly in the case of 'active' segments during instantiation,
  // or explicitly by the data.drop instruction.)  In that case we can
  // continue only if there's no need to copy any data out of it.
  if (!seg && (numElements != 0 || segByteOffset != 0)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }
  // At this point, if `seg` is null then `numElements` and `segByteOffset`
  // are both zero.

  // Trap if the array is null.
  if (!array) {
    ReportTrapError(cx, JSMSG_WASM_DEREF_NULL);
    return -1;
  }

  if (!seg) {
    // A zero-length init was requested, so we're done.
    return 0;
  }

  // Get hold of the array.
  const TypeDef* typeDef = typeDefData->typeDef;
  Rooted<WasmArrayObject*> arrayObj(cx, static_cast<WasmArrayObject*>(array));
  MOZ_RELEASE_ASSERT(arrayObj->is<WasmArrayObject>());

  if (!ArrayCopyFromData(cx, arrayObj, typeDef, index, seg, segByteOffset,
                         numElements)) {
    // Trap errors will be reported by ArrayCopyFromData.
    return -1;
  }

  return 0;
}

// Copies a range of the element segment `segIndex` into an array
// (WasmArrayObject), starting at offset `segOffset` in the elem segment and
// index `index` in the array. `numElements` is the length of the copy.
//
// Traps if accesses are out of bounds for either the elem segment or the array,
// or if the array object is null.
/* static */ int32_t Instance::arrayInitElem(Instance* instance, void* array,
                                             uint32_t index, uint32_t segOffset,
                                             uint32_t numElements,
                                             TypeDefInstanceData* typeDefData,
                                             uint32_t segIndex) {
  MOZ_ASSERT(SASigArrayInitElem.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();

  // Check that the element segment is valid for use.
  MOZ_RELEASE_ASSERT(size_t(segIndex) < instance->passiveElemSegments_.length(),
                     "ensured by validation");
  const InstanceElemSegment& seg = instance->passiveElemSegments_[segIndex];

  // Trap if the array is null.
  if (!array) {
    ReportTrapError(cx, JSMSG_WASM_DEREF_NULL);
    return -1;
  }

  const TypeDef* typeDef = typeDefData->typeDef;

  // Any data coming from an element segment will be an AnyRef. Writes into
  // array memory are done with raw pointers, so we must ensure here that the
  // destination size is correct.
  MOZ_RELEASE_ASSERT(typeDef->arrayType().elementType_.size() ==
                     sizeof(AnyRef));

  // Get hold of the array.
  Rooted<WasmArrayObject*> arrayObj(cx, static_cast<WasmArrayObject*>(array));
  MOZ_RELEASE_ASSERT(arrayObj->is<WasmArrayObject>());

  if (!ArrayCopyFromElem(cx, arrayObj, index, seg, segOffset, numElements)) {
    // Trap errors will be reported by ArrayCopyFromElems.
    return -1;
  }

  return 0;
}

/* static */ int32_t Instance::arrayCopy(Instance* instance, void* dstArray,
                                         uint32_t dstIndex, void* srcArray,
                                         uint32_t srcIndex,
                                         uint32_t numElements,
                                         uint32_t elementSize) {
  MOZ_ASSERT(SASigArrayCopy.failureMode == FailureMode::FailOnNegI32);
  JSContext* cx = instance->cx();

  // At the entry point, `elementSize` may be negative to indicate
  // reftyped-ness of array elements.  That is done in order to avoid having
  // to pass yet another (boolean) parameter here.

  // "traps if either array is null"
  if (!srcArray || !dstArray) {
    ReportTrapError(cx, JSMSG_WASM_DEREF_NULL);
    return -1;
  }

  bool elemsAreRefTyped = false;
  if (int32_t(elementSize) < 0) {
    elemsAreRefTyped = true;
    elementSize = uint32_t(-int32_t(elementSize));
  }
  MOZ_ASSERT(elementSize >= 1 && elementSize <= 16);

  // Get hold of the two arrays.
  Rooted<WasmArrayObject*> dstArrayObj(cx,
                                       static_cast<WasmArrayObject*>(dstArray));
  MOZ_RELEASE_ASSERT(dstArrayObj->is<WasmArrayObject>());

  Rooted<WasmArrayObject*> srcArrayObj(cx,
                                       static_cast<WasmArrayObject*>(srcArray));
  MOZ_RELEASE_ASSERT(srcArrayObj->is<WasmArrayObject>());

  // If WasmArrayObject::numElements() is changed to return 64 bits, the
  // following checking logic will be incorrect.
  STATIC_ASSERT_WASMARRAYELEMENTS_NUMELEMENTS_IS_U32;

  // "traps if destination + length > len(array1)"
  uint64_t dstNumElements = uint64_t(dstArrayObj->numElements_);
  if (uint64_t(dstIndex) + uint64_t(numElements) > dstNumElements) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  // "traps if source + length > len(array2)"
  uint64_t srcNumElements = uint64_t(srcArrayObj->numElements_);
  if (uint64_t(srcIndex) + uint64_t(numElements) > srcNumElements) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  // trap if we're asked to copy 2^32 or more bytes on a 32-bit target.
  uint64_t numBytesToCopy = uint64_t(numElements) * uint64_t(elementSize);
#ifndef JS_64BIT
  if (numBytesToCopy > uint64_t(UINT32_MAX)) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }
#endif
  // We're now assured that `numBytesToCopy` can be cast to `size_t` without
  // overflow.

  // Actually do the copy, taking care to handle cases where the src and dst
  // areas overlap.
  uint8_t* srcBase = srcArrayObj->data_;
  uint8_t* dstBase = dstArrayObj->data_;
  srcBase += size_t(srcIndex) * size_t(elementSize);
  dstBase += size_t(dstIndex) * size_t(elementSize);

  if (numBytesToCopy == 0 || srcBase == dstBase) {
    // Early exit if there's no work to do.
    return 0;
  }

  if (!elemsAreRefTyped) {
    // Hand off to memmove, which is presumably highly optimized.
    memmove(dstBase, srcBase, size_t(numBytesToCopy));
    return 0;
  }

  // We're copying refs; doing that needs suitable GC barrier-ing.
  uint8_t* nextSrc;
  uint8_t* nextDst;
  intptr_t step;
  if (dstBase < srcBase) {
    // Moving data backwards in the address space; so iterate forwards through
    // the array.
    step = intptr_t(elementSize);
    nextSrc = srcBase;
    nextDst = dstBase;
  } else {
    // Moving data forwards; so iterate backwards.
    step = -intptr_t(elementSize);
    nextSrc = srcBase + size_t(numBytesToCopy) - size_t(elementSize);
    nextDst = dstBase + size_t(numBytesToCopy) - size_t(elementSize);
  }
  // We don't know the type of the elems, only that they are refs.  No matter,
  // we can simply make up a type.
  RefType aRefType = RefType::eq();
  // Do the iteration
  for (size_t i = 0; i < size_t(numElements); i++) {
    // Copy `elementSize` bytes from `nextSrc` to `nextDst`.
    RootedVal value(cx, aRefType);
    value.get().readFromHeapLocation(nextSrc);
    value.get().writeToHeapLocation(nextDst);
    nextSrc += step;
    nextDst += step;
  }

  return 0;
}

/* static */ void* Instance::exceptionNew(Instance* instance, void* tagArg) {
  MOZ_ASSERT(SASigExceptionNew.failureMode == FailureMode::FailOnNullPtr);
  JSContext* cx = instance->cx();
  AnyRef tag = AnyRef::fromCompiledCode(tagArg);
  Rooted<WasmTagObject*> tagObj(cx, &tag.toJSObject().as<WasmTagObject>());
  RootedObject proto(cx, &cx->global()->getPrototype(JSProto_WasmException));
  RootedObject stack(cx, nullptr);
  // An OOM will result in null which will be caught on the wasm side.
  return AnyRef::fromJSObjectOrNull(
             WasmExceptionObject::create(cx, tagObj, stack, proto))
      .forCompiledCode();
}

/* static */ int32_t Instance::throwException(Instance* instance,
                                              void* exceptionArg) {
  MOZ_ASSERT(SASigThrowException.failureMode == FailureMode::FailOnNegI32);

  JSContext* cx = instance->cx();
  AnyRef exception = AnyRef::fromCompiledCode(exceptionArg);
  RootedValue exnVal(cx, exception.toJSValue());
  cx->setPendingException(exnVal, nullptr);

  // By always returning -1, we trigger a wasmTrap(Trap::ThrowReported),
  // and use that to trigger the stack walking for this exception.
  return -1;
}

/* static */ int32_t Instance::intrI8VecMul(Instance* instance, uint32_t dest,
                                            uint32_t src1, uint32_t src2,
                                            uint32_t len, uint8_t* memBase) {
  MOZ_ASSERT(SASigIntrI8VecMul.failureMode == FailureMode::FailOnNegI32);

  JSContext* cx = instance->cx();
  const WasmArrayRawBuffer* rawBuf = WasmArrayRawBuffer::fromDataPtr(memBase);
  size_t memLen = rawBuf->byteLength();

  // Bounds check and deal with arithmetic overflow.
  uint64_t destLimit = uint64_t(dest) + uint64_t(len);
  uint64_t src1Limit = uint64_t(src1) + uint64_t(len);
  uint64_t src2Limit = uint64_t(src2) + uint64_t(len);
  if (destLimit > memLen || src1Limit > memLen || src2Limit > memLen) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  // Basic dot product
  uint8_t* destPtr = &memBase[dest];
  uint8_t* src1Ptr = &memBase[src1];
  uint8_t* src2Ptr = &memBase[src2];
  while (len > 0) {
    *destPtr = (*src1Ptr) * (*src2Ptr);

    destPtr++;
    src1Ptr++;
    src2Ptr++;
    len--;
  }

  return 0;
}

// TODO: this cast is irregular and not representable in wasm, as it does not
// take into account the enclosing recursion group of the type. This is
// temporary until builtin module functions can specify a precise array type
// for params/results.
template <bool isMutable>
static WasmArrayObject* UncheckedCastToArrayI16(HandleAnyRef ref) {
  JSObject& object = ref.toJSObject();
  WasmArrayObject& array = object.as<WasmArrayObject>();
  DebugOnly<const ArrayType*> type(&array.typeDef().arrayType());
  MOZ_ASSERT(type->elementType_ == StorageType::I16);
  MOZ_ASSERT(type->isMutable_ == isMutable);
  return &array;
}

/* static */
int32_t Instance::stringTest(Instance* instance, void* stringArg) {
  AnyRef string = AnyRef::fromCompiledCode(stringArg);
  if (string.isNull() || !string.isJSString()) {
    return 0;
  }
  return 1;
}

/* static */
void* Instance::stringCast(Instance* instance, void* stringArg) {
  AnyRef string = AnyRef::fromCompiledCode(stringArg);
  if (string.isNull() || !string.isJSString()) {
    ReportTrapError(instance->cx(), JSMSG_WASM_BAD_CAST);
    return nullptr;
  }
  return string.forCompiledCode();
}

/* static */
void* Instance::stringFromCharCodeArray(Instance* instance, void* arrayArg,
                                        uint32_t arrayStart,
                                        uint32_t arrayCount) {
  JSContext* cx = instance->cx();
  RootedAnyRef arrayRef(cx, AnyRef::fromCompiledCode(arrayArg));
  Rooted<WasmArrayObject*> array(cx, UncheckedCastToArrayI16<true>(arrayRef));

  CheckedUint32 lastIndexPlus1 =
      CheckedUint32(arrayStart) + CheckedUint32(arrayCount);
  if (!lastIndexPlus1.isValid() ||
      lastIndexPlus1.value() > array->numElements_) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return nullptr;
  }

  // GC is disabled on this call since it can cause the array to move,
  // invalidating the data pointer we pass as a parameter
  JSLinearString* string = NewStringCopyN<NoGC, char16_t>(
      cx, (char16_t*)array->data_ + arrayStart, arrayCount);
  if (!string) {
    return nullptr;
  }
  return AnyRef::fromJSString(string).forCompiledCode();
}

/* static */
int32_t Instance::stringIntoCharCodeArray(Instance* instance, void* stringArg,
                                          void* arrayArg, uint32_t arrayStart) {
  JSContext* cx = instance->cx();
  AnyRef stringRef = AnyRef::fromCompiledCode(stringArg);
  if (!stringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return -1;
  }
  Rooted<JSString*> string(cx, stringRef.toJSString());
  size_t stringLength = string->length();

  RootedAnyRef arrayRef(cx, AnyRef::fromCompiledCode(arrayArg));
  Rooted<WasmArrayObject*> array(cx, UncheckedCastToArrayI16<true>(arrayRef));

  CheckedUint32 lastIndexPlus1 = CheckedUint32(arrayStart) + stringLength;
  if (!lastIndexPlus1.isValid() ||
      lastIndexPlus1.value() > array->numElements_) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  JSLinearString* linearStr = string->ensureLinear(cx);
  if (!linearStr) {
    return -1;
  }
  char16_t* arrayData = reinterpret_cast<char16_t*>(array->data_);
  CopyChars(arrayData + arrayStart, *linearStr);
  return stringLength;
}

void* Instance::stringFromCharCode(Instance* instance, uint32_t charCode) {
  JSContext* cx = instance->cx();

  JSString* str = StringFromCharCode(cx, int32_t(charCode));
  if (!str) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return nullptr;
  }

  return AnyRef::fromJSString(str).forCompiledCode();
}

void* Instance::stringFromCodePoint(Instance* instance, uint32_t codePoint) {
  JSContext* cx = instance->cx();

  // Check for any error conditions before calling fromCodePoint so we report
  // the correct error
  if (codePoint > unicode::NonBMPMax) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CODEPOINT);
    return nullptr;
  }

  JSString* str = StringFromCodePoint(cx, char32_t(codePoint));
  if (!str) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return nullptr;
  }

  return AnyRef::fromJSString(str).forCompiledCode();
}

int32_t Instance::stringCharCodeAt(Instance* instance, void* stringArg,
                                   uint32_t index) {
  JSContext* cx = instance->cx();
  AnyRef stringRef = AnyRef::fromCompiledCode(stringArg);
  if (!stringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return -1;
  }

  Rooted<JSString*> string(cx, stringRef.toJSString());
  if (index >= string->length()) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  char16_t c;
  if (!string->getChar(cx, index, &c)) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return false;
  }
  return c;
}

int32_t Instance::stringCodePointAt(Instance* instance, void* stringArg,
                                    uint32_t index) {
  JSContext* cx = instance->cx();
  AnyRef stringRef = AnyRef::fromCompiledCode(stringArg);
  if (!stringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return -1;
  }

  Rooted<JSString*> string(cx, stringRef.toJSString());
  if (index >= string->length()) {
    ReportTrapError(cx, JSMSG_WASM_OUT_OF_BOUNDS);
    return -1;
  }

  char32_t c;
  if (!string->getCodePoint(cx, index, &c)) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return false;
  }
  return c;
}

int32_t Instance::stringLength(Instance* instance, void* stringArg) {
  JSContext* cx = instance->cx();
  AnyRef stringRef = AnyRef::fromCompiledCode(stringArg);
  if (!stringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return -1;
  }

  static_assert(JS::MaxStringLength <= INT32_MAX);
  return (int32_t)stringRef.toJSString()->length();
}

void* Instance::stringConcat(Instance* instance, void* firstStringArg,
                             void* secondStringArg) {
  JSContext* cx = instance->cx();

  AnyRef firstStringRef = AnyRef::fromCompiledCode(firstStringArg);
  AnyRef secondStringRef = AnyRef::fromCompiledCode(secondStringArg);
  if (!firstStringRef.isJSString() || !secondStringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return nullptr;
  }

  Rooted<JSString*> firstString(cx, firstStringRef.toJSString());
  Rooted<JSString*> secondString(cx, secondStringRef.toJSString());
  JSString* result = ConcatStrings<CanGC>(cx, firstString, secondString);
  if (!result) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return nullptr;
  }
  return AnyRef::fromJSString(result).forCompiledCode();
}

void* Instance::stringSubstring(Instance* instance, void* stringArg,
                                int32_t startIndex, int32_t endIndex) {
  JSContext* cx = instance->cx();

  AnyRef stringRef = AnyRef::fromCompiledCode(stringArg);
  if (!stringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return nullptr;
  }

  RootedString string(cx, stringRef.toJSString());
  static_assert(JS::MaxStringLength <= INT32_MAX);
  if ((uint32_t)startIndex > string->length() ||
      (uint32_t)endIndex > string->length() || startIndex > endIndex) {
    return AnyRef::fromJSString(cx->names().empty_).forCompiledCode();
  }

  JSString* result =
      SubstringKernel(cx, string, startIndex, endIndex - startIndex);
  if (!result) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return nullptr;
  }
  return AnyRef::fromJSString(result).forCompiledCode();
}

int32_t Instance::stringEquals(Instance* instance, void* firstStringArg,
                               void* secondStringArg) {
  JSContext* cx = instance->cx();

  AnyRef firstStringRef = AnyRef::fromCompiledCode(firstStringArg);
  AnyRef secondStringRef = AnyRef::fromCompiledCode(secondStringArg);
  if (!firstStringRef.isJSString() || !secondStringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return -1;
  }

  bool equals;
  if (!EqualStrings(cx, firstStringRef.toJSString(),
                    secondStringRef.toJSString(), &equals)) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return -1;
  }
  return equals ? 1 : 0;
}

int32_t Instance::stringCompare(Instance* instance, void* firstStringArg,
                                void* secondStringArg) {
  JSContext* cx = instance->cx();

  AnyRef firstStringRef = AnyRef::fromCompiledCode(firstStringArg);
  AnyRef secondStringRef = AnyRef::fromCompiledCode(secondStringArg);
  if (!firstStringRef.isJSString() || !secondStringRef.isJSString()) {
    ReportTrapError(cx, JSMSG_WASM_BAD_CAST);
    return INT32_MAX;
  }

  int32_t result;
  if (!CompareStrings(cx, firstStringRef.toJSString(),
                      secondStringRef.toJSString(), &result)) {
    MOZ_ASSERT(cx->isThrowingOutOfMemory());
    return INT32_MAX;
  }

  if (result < 0) {
    return -1;
  }
  if (result > 0) {
    return 1;
  }
  return result;
}

//////////////////////////////////////////////////////////////////////////////
//
// Instance creation and related.

Instance::Instance(JSContext* cx, Handle<WasmInstanceObject*> object,
                   const SharedCode& code, SharedTableVector&& tables,
                   UniqueDebugState maybeDebug)
    : realm_(cx->realm()),
      jsJitArgsRectifier_(
          cx->runtime()->jitRuntime()->getArgumentsRectifier().value),
      jsJitExceptionHandler_(
          cx->runtime()->jitRuntime()->getExceptionTail().value),
      preBarrierCode_(
          cx->runtime()->jitRuntime()->preBarrier(MIRType::WasmAnyRef).value),
      storeBuffer_(&cx->runtime()->gc.storeBuffer()),
      object_(object),
      code_(std::move(code)),
      tables_(std::move(tables)),
      maybeDebug_(std::move(maybeDebug)),
      debugFilter_(nullptr),
      maxInitializedGlobalsIndexPlus1_(0) {
  for (size_t i = 0; i < N_BASELINE_SCRATCH_WORDS; i++) {
    baselineScratchWords_[i] = 0;
  }
}

Instance* Instance::create(JSContext* cx, Handle<WasmInstanceObject*> object,
                           const SharedCode& code, uint32_t instanceDataLength,
                           SharedTableVector&& tables,
                           UniqueDebugState maybeDebug) {
  void* base = js_calloc(alignof(Instance) + offsetof(Instance, data_) +
                         instanceDataLength);
  if (!base) {
    ReportOutOfMemory(cx);
    return nullptr;
  }
  void* aligned = (void*)AlignBytes(uintptr_t(base), alignof(Instance));

  auto* instance = new (aligned)
      Instance(cx, object, code, std::move(tables), std::move(maybeDebug));
  instance->allocatedBase_ = base;
  return instance;
}

void Instance::destroy(Instance* instance) {
  instance->~Instance();
  js_free(instance->allocatedBase_);
}

bool Instance::init(JSContext* cx, const JSObjectVector& funcImports,
                    const ValVector& globalImportValues,
                    Handle<WasmMemoryObjectVector> memories,
                    const WasmGlobalObjectVector& globalObjs,
                    const WasmTagObjectVector& tagObjs,
                    const DataSegmentVector& dataSegments,
                    const ModuleElemSegmentVector& elemSegments) {
  MOZ_ASSERT(!!maybeDebug_ == metadata().debugEnabled);

#ifdef DEBUG
  for (auto t : code_->tiers()) {
    MOZ_ASSERT(funcImports.length() == metadata(t).funcImports.length());
  }
#endif
  MOZ_ASSERT(tables_.length() == metadata().tables.length());

  cx_ = cx;
  valueBoxClass_ = AnyRef::valueBoxClass();
  resetInterrupt(cx);
  jumpTable_ = code_->tieringJumpTable();
  debugFilter_ = nullptr;
  addressOfNeedsIncrementalBarrier_ =
      cx->compartment()->zone()->addressOfNeedsIncrementalBarrier();
  addressOfNurseryPosition_ = cx->nursery().addressOfPosition();
#ifdef JS_GC_ZEAL
  addressOfGCZealModeBits_ = cx->runtime()->gc.addressOfZealModeBits();
#endif

  // Initialize type definitions in the instance data.
  const SharedTypeContext& types = metadata().types;
  Zone* zone = realm()->zone();
  for (uint32_t typeIndex = 0; typeIndex < types->length(); typeIndex++) {
    const TypeDef& typeDef = types->type(typeIndex);
    TypeDefInstanceData* typeDefData = typeDefInstanceData(typeIndex);

    // Set default field values.
    new (typeDefData) TypeDefInstanceData();

    // Store the runtime type for this type index
    typeDefData->typeDef = &typeDef;
    typeDefData->superTypeVector = typeDef.superTypeVector();

    if (typeDef.kind() == TypeDefKind::Struct ||
        typeDef.kind() == TypeDefKind::Array) {
      // Compute the parameters that allocation will use.  First, the class
      // and alloc kind for the type definition.
      const JSClass* clasp;
      gc::AllocKind allocKind;

      if (typeDef.kind() == TypeDefKind::Struct) {
        clasp = WasmStructObject::classForTypeDef(&typeDef);
        allocKind = WasmStructObject::allocKindForTypeDef(&typeDef);

        // Move the alloc kind to background if possible
        if (CanChangeToBackgroundAllocKind(allocKind, clasp)) {
          allocKind = ForegroundToBackgroundAllocKind(allocKind);
        }
      } else {
        clasp = &WasmArrayObject::class_;
        allocKind = gc::AllocKind::INVALID;
      }

      // Find the shape using the class and recursion group
      const ObjectFlags objectFlags = {ObjectFlag::NotExtensible};
      typeDefData->shape =
          WasmGCShape::getShape(cx, clasp, cx->realm(), TaggedProto(),
                                &typeDef.recGroup(), objectFlags);
      if (!typeDefData->shape) {
        return false;
      }

      typeDefData->clasp = clasp;
      typeDefData->allocKind = allocKind;

      // Initialize the allocation site for pre-tenuring.
      typeDefData->allocSite.initWasm(zone);

      // If `typeDef` is a struct, cache its size here, so that allocators
      // don't have to chase back through `typeDef` to determine that.
      // Similarly, if `typeDef` is an array, cache its array element size
      // here.
      MOZ_ASSERT(typeDefData->unused == 0);
      if (typeDef.kind() == TypeDefKind::Struct) {
        typeDefData->structTypeSize = typeDef.structType().size_;
        // StructLayout::close ensures this is an integral number of words.
        MOZ_ASSERT((typeDefData->structTypeSize % sizeof(uintptr_t)) == 0);
      } else {
        uint32_t arrayElemSize = typeDef.arrayType().elementType_.size();
        typeDefData->arrayElemSize = arrayElemSize;
        MOZ_ASSERT(arrayElemSize == 16 || arrayElemSize == 8 ||
                   arrayElemSize == 4 || arrayElemSize == 2 ||
                   arrayElemSize == 1);
      }
    } else if (typeDef.kind() == TypeDefKind::Func) {
      // Nothing to do; the default values are OK.
    } else {
      MOZ_ASSERT(typeDef.kind() == TypeDefKind::None);
      MOZ_CRASH();
    }
  }

  // Initialize function imports in the instance data
  Tier callerTier = code_->bestTier();
  for (size_t i = 0; i < metadata(callerTier).funcImports.length(); i++) {
    JSObject* f = funcImports[i];
    MOZ_ASSERT(f->isCallable());
    const FuncImport& fi = metadata(callerTier).funcImports[i];
    const FuncType& funcType = metadata().getFuncImportType(fi);
    FuncImportInstanceData& import = funcImportInstanceData(fi);
    import.callable = f;
    if (f->is<JSFunction>()) {
      JSFunction* fun = &f->as<JSFunction>();
      if (!isAsmJS() && IsWasmExportedFunction(fun)) {
        WasmInstanceObject* calleeInstanceObj =
            ExportedFunctionToInstanceObject(fun);
        Instance& calleeInstance = calleeInstanceObj->instance();
        Tier calleeTier = calleeInstance.code().bestTier();
        const CodeRange& codeRange =
            calleeInstanceObj->getExportedFunctionCodeRange(
                &f->as<JSFunction>(), calleeTier);
        import.instance = &calleeInstance;
        import.realm = fun->realm();
        import.code = calleeInstance.codeBase(calleeTier) +
                      codeRange.funcUncheckedCallEntry();
      } else if (void* thunk = MaybeGetBuiltinThunk(fun, funcType)) {
        import.instance = this;
        import.realm = fun->realm();
        import.code = thunk;
      } else {
        import.instance = this;
        import.realm = fun->realm();
        import.code = codeBase(callerTier) + fi.interpExitCodeOffset();
      }
    } else {
      import.instance = this;
      import.realm = f->nonCCWRealm();
      import.code = codeBase(callerTier) + fi.interpExitCodeOffset();
    }
  }

  // Initialize globals in the instance data.
  //
  // This must be performed after we have initialized runtime types as a global
  // initializer may reference them.
  //
  // We increment `maxInitializedGlobalsIndexPlus1_` every iteration of the
  // loop, as we call out to `InitExpr::evaluate` which may call
  // `constantGlobalGet` which uses this value to assert we're never accessing
  // uninitialized globals.
  maxInitializedGlobalsIndexPlus1_ = 0;
  for (size_t i = 0; i < metadata().globals.length();
       i++, maxInitializedGlobalsIndexPlus1_ = i) {
    const GlobalDesc& global = metadata().globals[i];

    // Constants are baked into the code, never stored in the global area.
    if (global.isConstant()) {
      continue;
    }

    uint8_t* globalAddr = data() + global.offset();
    switch (global.kind()) {
      case GlobalKind::Import: {
        size_t imported = global.importIndex();
        if (global.isIndirect()) {
          *(void**)globalAddr =
              (void*)&globalObjs[imported]->val().get().cell();
        } else {
          globalImportValues[imported].writeToHeapLocation(globalAddr);
        }
        break;
      }
      case GlobalKind::Variable: {
        RootedVal val(cx);
        const InitExpr& init = global.initExpr();
        Rooted<WasmInstanceObject*> instanceObj(cx, object());
        if (!init.evaluate(cx, instanceObj, &val)) {
          return false;
        }

        if (global.isIndirect()) {
          // Initialize the cell
          globalObjs[i]->setVal(val);

          // Link to the cell
          *(void**)globalAddr = globalObjs[i]->addressOfCell();
        } else {
          val.get().writeToHeapLocation(globalAddr);
        }
        break;
      }
      case GlobalKind::Constant: {
        MOZ_CRASH("skipped at the top");
      }
    }
  }

  // All globals were initialized
  MOZ_ASSERT(maxInitializedGlobalsIndexPlus1_ == metadata().globals.length());

  // Initialize memories in the instance data
  for (size_t i = 0; i < memories.length(); i++) {
    const MemoryDesc& md = metadata().memories[i];
    MemoryInstanceData& data = memoryInstanceData(i);
    WasmMemoryObject* memory = memories.get()[i];

    data.memory = memory;
    data.base = memory->buffer().dataPointerEither().unwrap();
    size_t limit = memory->boundsCheckLimit();
#if !defined(JS_64BIT)
    // We assume that the limit is a 32-bit quantity
    MOZ_ASSERT(limit <= UINT32_MAX);
#endif
    data.boundsCheckLimit = limit;
    data.isShared = md.isShared();

    // Add observer if our memory base may grow
    if (memory && memory->movingGrowable() &&
        !memory->addMovingGrowObserver(cx, object_)) {
      return false;
    }
  }

  // Cache the default memory's values
  if (memories.length() > 0) {
    MemoryInstanceData& data = memoryInstanceData(0);
    memory0Base_ = data.base;
    memory0BoundsCheckLimit_ = data.boundsCheckLimit;
  } else {
    memory0Base_ = nullptr;
    memory0BoundsCheckLimit_ = 0;
  }

  // Initialize tables in the instance data
  for (size_t i = 0; i < tables_.length(); i++) {
    const TableDesc& td = metadata().tables[i];
    TableInstanceData& table = tableInstanceData(i);
    table.length = tables_[i]->length();
    table.elements = tables_[i]->instanceElements();
    // Non-imported tables, with init_expr, has to be initialized with
    // the evaluated value.
    if (!td.isImported && td.initExpr) {
      Rooted<WasmInstanceObject*> instanceObj(cx, object());
      RootedVal val(cx);
      if (!td.initExpr->evaluate(cx, instanceObj, &val)) {
        return false;
      }
      RootedAnyRef ref(cx, val.get().ref());
      tables_[i]->fillUninitialized(0, tables_[i]->length(), ref, cx);
    }
  }

#ifdef DEBUG
  // All (linked) tables with non-nullable types must be initialized.
  for (size_t i = 0; i < tables_.length(); i++) {
    const TableDesc& td = metadata().tables[i];
    if (!td.elemType.isNullable()) {
      tables_[i]->assertRangeNotNull(0, tables_[i]->length());
    }
  }
#endif  // DEBUG

  // Initialize tags in the instance data
  for (size_t i = 0; i < metadata().tags.length(); i++) {
    MOZ_ASSERT(tagObjs[i] != nullptr);
    tagInstanceData(i).object = tagObjs[i];
  }
  pendingException_ = nullptr;
  pendingExceptionTag_ = nullptr;

  // Add debug filtering table.
  if (metadata().debugEnabled) {
    size_t numFuncs = metadata().debugNumFuncs();
    size_t numWords = std::max<size_t>((numFuncs + 31) / 32, 1);
    debugFilter_ = (uint32_t*)js_calloc(numWords, sizeof(uint32_t));
    if (!debugFilter_) {
      ReportOutOfMemory(cx);
      return false;
    }
  }

  // Add observers if our tables may grow
  for (const SharedTable& table : tables_) {
    if (table->movingGrowable() && !table->addMovingGrowObserver(cx, object_)) {
      return false;
    }
  }

  // Take references to the passive data segments
  if (!passiveDataSegments_.resize(dataSegments.length())) {
    ReportOutOfMemory(cx);
    return false;
  }
  for (size_t i = 0; i < dataSegments.length(); i++) {
    if (!dataSegments[i]->active()) {
      passiveDataSegments_[i] = dataSegments[i];
    }
  }

  // Create InstanceElemSegments for any passive element segments, since these
  // are the ones available at runtime.
  if (!passiveElemSegments_.resize(elemSegments.length())) {
    ReportOutOfMemory(cx);
    return false;
  }
  for (size_t i = 0; i < elemSegments.length(); i++) {
    const ModuleElemSegment& seg = elemSegments[i];
    if (seg.kind == ModuleElemSegment::Kind::Passive) {
      passiveElemSegments_[i] = InstanceElemSegment();
      InstanceElemSegment& instanceSeg = passiveElemSegments_[i];
      if (!instanceSeg.reserve(seg.numElements())) {
        ReportOutOfMemory(cx);
        return false;
      }

      bool ok = iterElemsAnyrefs(seg, [&](uint32_t _, AnyRef ref) -> bool {
        instanceSeg.infallibleAppend(ref);
        return true;
      });
      if (!ok) {
        return false;
      }
    }
  }

  return true;
}

Instance::~Instance() {
  realm_->wasm.unregisterInstance(*this);

  if (debugFilter_) {
    js_free(debugFilter_);
  }

  // Any pending exceptions should have been consumed.
  MOZ_ASSERT(pendingException_.isNull());
}

void Instance::setInterrupt() {
  interrupt_ = true;
  stackLimit_ = JS::NativeStackLimitMin;
}

bool Instance::isInterrupted() const {
  return interrupt_ || stackLimit_ == JS::NativeStackLimitMin;
}

void Instance::resetInterrupt(JSContext* cx) {
  interrupt_ = false;
  stackLimit_ = cx->stackLimitForJitCode(JS::StackForUntrustedScript);
}

bool Instance::debugFilter(uint32_t funcIndex) const {
  return (debugFilter_[funcIndex / 32] >> funcIndex % 32) & 1;
}

void Instance::setDebugFilter(uint32_t funcIndex, bool value) {
  if (value) {
    debugFilter_[funcIndex / 32] |= (1 << funcIndex % 32);
  } else {
    debugFilter_[funcIndex / 32] &= ~(1 << funcIndex % 32);
  }
}

bool Instance::memoryAccessInGuardRegion(const uint8_t* addr,
                                         unsigned numBytes) const {
  MOZ_ASSERT(numBytes > 0);

  for (uint32_t memoryIndex = 0; memoryIndex < metadata().memories.length();
       memoryIndex++) {
    uint8_t* base = memoryBase(memoryIndex).unwrap(/* comparison */);
    if (addr < base) {
      continue;
    }

    WasmMemoryObject* mem = memory(memoryIndex);
    size_t lastByteOffset = addr - base + (numBytes - 1);
    if (lastByteOffset >= mem->volatileMemoryLength() &&
        lastByteOffset < mem->buffer().wasmMappedSize()) {
      return true;
    }
  }
  return false;
}

void Instance::tracePrivate(JSTracer* trc) {
  // This method is only called from WasmInstanceObject so the only reason why
  // TraceEdge is called is so that the pointer can be updated during a moving
  // GC.
  MOZ_ASSERT_IF(trc->isMarkingTracer(), gc::IsMarked(trc->runtime(), object_));
  TraceEdge(trc, &object_, "wasm instance object");

  // OK to just do one tier here; though the tiers have different funcImports
  // tables, they share the instance object.
  for (const FuncImport& fi : metadata(code().stableTier()).funcImports) {
    TraceNullableEdge(trc, &funcImportInstanceData(fi).callable, "wasm import");
  }

  for (uint32_t memoryIndex = 0;
       memoryIndex < code().metadata().memories.length(); memoryIndex++) {
    MemoryInstanceData& memoryData = memoryInstanceData(memoryIndex);
    TraceNullableEdge(trc, &memoryData.memory, "wasm memory object");
  }

  for (const SharedTable& table : tables_) {
    table->trace(trc);
  }

  for (const GlobalDesc& global : code().metadata().globals) {
    // Indirect reference globals get traced by the owning WebAssembly.Global.
    if (!global.type().isRefRepr() || global.isConstant() ||
        global.isIndirect()) {
      continue;
    }
    GCPtr<AnyRef>* obj = (GCPtr<AnyRef>*)(data() + global.offset());
    TraceNullableEdge(trc, obj, "wasm reference-typed global");
  }

  for (uint32_t tagIndex = 0; tagIndex < code().metadata().tags.length();
       tagIndex++) {
    TraceNullableEdge(trc, &tagInstanceData(tagIndex).object, "wasm tag");
  }

  const SharedTypeContext& types = metadata().types;
  for (uint32_t typeIndex = 0; typeIndex < types->length(); typeIndex++) {
    TypeDefInstanceData* typeDefData = typeDefInstanceData(typeIndex);
    TraceNullableEdge(trc, &typeDefData->shape, "wasm shape");
  }

  TraceNullableEdge(trc, &pendingException_, "wasm pending exception value");
  TraceNullableEdge(trc, &pendingExceptionTag_, "wasm pending exception tag");

  passiveElemSegments_.trace(trc);

  if (maybeDebug_) {
    maybeDebug_->trace(trc);
  }
}

void js::wasm::TraceInstanceEdge(JSTracer* trc, Instance* instance,
                                 const char* name) {
  if (IsTracerKind(trc, JS::TracerKind::Moving)) {
    // Compacting GC: The Instance does not move so there is nothing to do here.
    // Reading the object from the instance below would be a data race during
    // multi-threaded updates. Compacting GC does not rely on graph traversal
    // to find all edges that need to be updated.
    return;
  }

  // Instance fields are traced by the owning WasmInstanceObject's trace
  // hook. Tracing this ensures they are traced once.
  JSObject* object = instance->objectUnbarriered();
  TraceManuallyBarrieredEdge(trc, &object, name);
}

static uintptr_t* GetFrameScanStartForStackMap(
    const Frame* frame, const StackMap* map,
    uintptr_t* highestByteVisitedInPrevFrame) {
  // |frame| points somewhere in the middle of the area described by |map|.
  // We have to calculate |scanStart|, the lowest address that is described by
  // |map|, by consulting |map->frameOffsetFromTop|.

  const size_t numMappedBytes = map->header.numMappedWords * sizeof(void*);
  const uintptr_t scanStart = uintptr_t(frame) +
                              (map->header.frameOffsetFromTop * sizeof(void*)) -
                              numMappedBytes;
  MOZ_ASSERT(0 == scanStart % sizeof(void*));

  // Do what we can to assert that, for consecutive wasm frames, their stack
  // maps also abut exactly.  This is a useful sanity check on the sizing of
  // stackmaps.
  //
  // In debug builds, the stackmap construction machinery goes to considerable
  // efforts to ensure that the stackmaps for consecutive frames abut exactly.
  // This is so as to ensure there are no areas of stack inadvertently ignored
  // by a stackmap, nor covered by two stackmaps.  Hence any failure of this
  // assertion is serious and should be investigated.
#ifndef JS_CODEGEN_ARM64
  MOZ_ASSERT_IF(
      highestByteVisitedInPrevFrame && *highestByteVisitedInPrevFrame != 0,
      *highestByteVisitedInPrevFrame + 1 == scanStart);
#endif

  if (highestByteVisitedInPrevFrame) {
    *highestByteVisitedInPrevFrame = scanStart + numMappedBytes - 1;
  }

  // If we have some exit stub words, this means the map also covers an area
  // created by a exit stub, and so the highest word of that should be a
  // constant created by (code created by) GenerateTrapExit.
  MOZ_ASSERT_IF(map->header.numExitStubWords > 0,
                ((uintptr_t*)scanStart)[map->header.numExitStubWords - 1 -
                                        TrapExitDummyValueOffsetFromTop] ==
                    TrapExitDummyValue);

  return (uintptr_t*)scanStart;
}

uintptr_t Instance::traceFrame(JSTracer* trc, const wasm::WasmFrameIter& wfi,
                               uint8_t* nextPC,
                               uintptr_t highestByteVisitedInPrevFrame) {
  const StackMap* map = code().lookupStackMap(nextPC);
  if (!map) {
    return 0;
  }
  Frame* frame = wfi.frame();
  uintptr_t* stackWords =
      GetFrameScanStartForStackMap(frame, map, &highestByteVisitedInPrevFrame);

  // Hand refs off to the GC.
  for (uint32_t i = 0; i < map->header.numMappedWords; i++) {
    if (map->get(i) != StackMap::Kind::AnyRef) {
      continue;
    }

    TraceNullableRoot(trc, (AnyRef*)&stackWords[i],
                      "Instance::traceWasmFrame: normal word");
  }

  // Deal with any GC-managed fields in the DebugFrame, if it is
  // present and those fields may be live.
  if (map->header.hasDebugFrameWithLiveRefs) {
    DebugFrame* debugFrame = DebugFrame::from(frame);
    char* debugFrameP = (char*)debugFrame;

    for (size_t i = 0; i < MaxRegisterResults; i++) {
      if (debugFrame->hasSpilledRegisterRefResult(i)) {
        char* resultRefP = debugFrameP + DebugFrame::offsetOfRegisterResult(i);
        TraceNullableRoot(
            trc, (AnyRef*)resultRefP,
            "Instance::traceWasmFrame: DebugFrame::resultResults_");
      }
    }

    if (debugFrame->hasCachedReturnJSValue()) {
      char* cachedReturnJSValueP =
          debugFrameP + DebugFrame::offsetOfCachedReturnJSValue();
      TraceRoot(trc, (js::Value*)cachedReturnJSValueP,
                "Instance::traceWasmFrame: DebugFrame::cachedReturnJSValue_");
    }
  }

  return highestByteVisitedInPrevFrame;
}

void Instance::updateFrameForMovingGC(const wasm::WasmFrameIter& wfi,
                                      uint8_t* nextPC) {
  const StackMap* map = code().lookupStackMap(nextPC);
  if (!map) {
    return;
  }
  Frame* frame = wfi.frame();
  uintptr_t* stackWords = GetFrameScanStartForStackMap(frame, map, nullptr);

  // Update interior array data pointers for any inline-storage arrays that
  // moved.
  for (uint32_t i = 0; i < map->header.numMappedWords; i++) {
    if (map->get(i) != StackMap::Kind::ArrayDataPointer) {
      continue;
    }

    uint8_t** addressOfArrayDataPointer = (uint8_t**)&stackWords[i];
    if (WasmArrayObject::isDataInline(*addressOfArrayDataPointer)) {
      WasmArrayObject* oldArray =
          WasmArrayObject::fromInlineDataPointer(*addressOfArrayDataPointer);
      WasmArrayObject* newArray =
          (WasmArrayObject*)gc::MaybeForwarded(oldArray);
      *addressOfArrayDataPointer =
          WasmArrayObject::addressOfInlineData(newArray);
    }
  }
}

WasmMemoryObject* Instance::memory(uint32_t memoryIndex) const {
  return memoryInstanceData(memoryIndex).memory;
}

SharedMem<uint8_t*> Instance::memoryBase(uint32_t memoryIndex) const {
  MOZ_ASSERT_IF(
      memoryIndex == 0,
      memory0Base_ == memory(memoryIndex)->buffer().dataPointerEither());
  return memory(memoryIndex)->buffer().dataPointerEither();
}

SharedArrayRawBuffer* Instance::sharedMemoryBuffer(uint32_t memoryIndex) const {
  MOZ_ASSERT(memory(memoryIndex)->isShared());
  return memory(memoryIndex)->sharedArrayRawBuffer();
}

WasmInstanceObject* Instance::objectUnbarriered() const {
  return object_.unbarrieredGet();
}

WasmInstanceObject* Instance::object() const { return object_; }

static bool EnsureEntryStubs(const Instance& instance, uint32_t funcIndex,
                             const FuncExport** funcExport,
                             void** interpEntry) {
  Tier tier = instance.code().bestTier();

  size_t funcExportIndex;
  *funcExport =
      &instance.metadata(tier).lookupFuncExport(funcIndex, &funcExportIndex);

  const FuncExport& fe = **funcExport;
  if (fe.hasEagerStubs()) {
    *interpEntry = instance.codeBase(tier) + fe.eagerInterpEntryOffset();
    return true;
  }

  MOZ_ASSERT(!instance.isAsmJS(), "only wasm can lazily export functions");

  // If the best tier is Ion, life is simple: background compilation has
  // already completed and has been committed, so there's no risk of race
  // conditions here.
  //
  // If the best tier is Baseline, there could be a background compilation
  // happening at the same time. The background compilation will lock the
  // first tier lazy stubs first to stop new baseline stubs from being
  // generated, then the second tier stubs to generate them.
  //
  // - either we take the tier1 lazy stub lock before the background
  // compilation gets it, then we generate the lazy stub for tier1. When the
  // background thread gets the tier1 lazy stub lock, it will see it has a
  // lazy stub and will recompile it for tier2.
  // - or we don't take the lock here first. Background compilation won't
  // find a lazy stub for this function, thus won't generate it. So we'll do
  // it ourselves after taking the tier2 lock.
  //
  // Also see doc block for stubs in WasmJS.cpp.

  auto stubs = instance.code(tier).lazyStubs().writeLock();
  *interpEntry = stubs->lookupInterpEntry(fe.funcIndex());
  if (*interpEntry) {
    return true;
  }

  // The best tier might have changed after we've taken the lock.
  Tier prevTier = tier;
  tier = instance.code().bestTier();
  const Metadata& metadata = instance.metadata();
  const CodeTier& codeTier = instance.code(tier);
  if (tier == prevTier) {
    if (!stubs->createOneEntryStub(funcExportIndex, metadata, codeTier)) {
      return false;
    }

    *interpEntry = stubs->lookupInterpEntry(fe.funcIndex());
    MOZ_ASSERT(*interpEntry);
    return true;
  }

  MOZ_RELEASE_ASSERT(prevTier == Tier::Baseline && tier == Tier::Optimized);
  auto stubs2 = instance.code(tier).lazyStubs().writeLock();

  // If it didn't have a stub in the first tier, background compilation
  // shouldn't have made one in the second tier.
  MOZ_ASSERT(!stubs2->hasEntryStub(fe.funcIndex()));

  if (!stubs2->createOneEntryStub(funcExportIndex, metadata, codeTier)) {
    return false;
  }

  *interpEntry = stubs2->lookupInterpEntry(fe.funcIndex());
  MOZ_ASSERT(*interpEntry);
  return true;
}

static bool GetInterpEntryAndEnsureStubs(JSContext* cx, Instance& instance,
                                         uint32_t funcIndex, CallArgs args,
                                         void** interpEntry,
                                         const FuncType** funcType) {
  const FuncExport* funcExport;
  if (!EnsureEntryStubs(instance, funcIndex, &funcExport, interpEntry)) {
    return false;
  }

  *funcType = &instance.metadata().getFuncExportType(*funcExport);

#ifdef DEBUG
  // EnsureEntryStubs() has ensured proper jit-entry stubs have been created and
  // installed in funcIndex's JumpTable entry, so check against the presence of
  // the provisional lazy stub.  See also
  // WasmInstanceObject::getExportedFunction().
  if (!funcExport->hasEagerStubs() && (*funcType)->canHaveJitEntry()) {
    if (!EnsureBuiltinThunksInitialized()) {
      return false;
    }
    JSFunction& callee = args.callee().as<JSFunction>();
    void* provisionalLazyJitEntryStub = ProvisionalLazyJitEntryStub();
    MOZ_ASSERT(provisionalLazyJitEntryStub);
    MOZ_ASSERT(callee.isWasmWithJitEntry());
    MOZ_ASSERT(*callee.wasmJitEntry() != provisionalLazyJitEntryStub);
  }
#endif
  return true;
}

bool wasm::ResultsToJSValue(JSContext* cx, ResultType type,
                            void* registerResultLoc,
                            Maybe<char*> stackResultsLoc,
                            MutableHandleValue rval, CoercionLevel level) {
  if (type.empty()) {
    // No results: set to undefined, and we're done.
    rval.setUndefined();
    return true;
  }

  // If we added support for multiple register results, we'd need to establish a
  // convention for how to store them to memory in registerResultLoc.  For now
  // we can punt.
  static_assert(MaxRegisterResults == 1);

  // Stack results written to stackResultsLoc; register result written
  // to registerResultLoc.

  // First, convert the register return value, and prepare to iterate in
  // push order.  Note that if the register result is a reference type,
  // it may be unrooted, so ToJSValue_anyref must not GC in that case.
  ABIResultIter iter(type);
  DebugOnly<bool> usedRegisterResult = false;
  for (; !iter.done(); iter.next()) {
    if (iter.cur().inRegister()) {
      MOZ_ASSERT(!usedRegisterResult);
      if (!ToJSValue<DebugCodegenVal>(cx, registerResultLoc, iter.cur().type(),
                                      rval, level)) {
        return false;
      }
      usedRegisterResult = true;
    }
  }
  MOZ_ASSERT(usedRegisterResult);

  MOZ_ASSERT((stackResultsLoc.isSome()) == (iter.count() > 1));
  if (!stackResultsLoc) {
    // A single result: we're done.
    return true;
  }

  // Otherwise, collect results in an array, in push order.
  Rooted<ArrayObject*> array(cx, NewDenseEmptyArray(cx));
  if (!array) {
    return false;
  }
  RootedValue tmp(cx);
  for (iter.switchToPrev(); !iter.done(); iter.prev()) {
    const ABIResult& result = iter.cur();
    if (result.onStack()) {
      char* loc = stackResultsLoc.value() + result.stackOffset();
      if (!ToJSValue<DebugCodegenVal>(cx, loc, result.type(), &tmp, level)) {
        return false;
      }
      if (!NewbornArrayPush(cx, array, tmp)) {
        return false;
      }
    } else {
      if (!NewbornArrayPush(cx, array, rval)) {
        return false;
      }
    }
  }
  rval.set(ObjectValue(*array));
  return true;
}

class MOZ_RAII ReturnToJSResultCollector {
  class MOZ_RAII StackResultsRooter : public JS::CustomAutoRooter {
    ReturnToJSResultCollector& collector_;

   public:
    StackResultsRooter(JSContext* cx, ReturnToJSResultCollector& collector)
        : JS::CustomAutoRooter(cx), collector_(collector) {}

    void trace(JSTracer* trc) final {
      for (ABIResultIter iter(collector_.type_); !iter.done(); iter.next()) {
        const ABIResult& result = iter.cur();
        if (result.onStack() && result.type().isRefRepr()) {
          char* loc = collector_.stackResultsArea_.get() + result.stackOffset();
          AnyRef* refLoc = reinterpret_cast<AnyRef*>(loc);
          TraceNullableRoot(trc, refLoc, "StackResultsRooter::trace");
        }
      }
    }
  };
  friend class StackResultsRooter;

  ResultType type_;
  UniquePtr<char[], JS::FreePolicy> stackResultsArea_;
  Maybe<StackResultsRooter> rooter_;

 public:
  explicit ReturnToJSResultCollector(const ResultType& type) : type_(type){};
  bool init(JSContext* cx) {
    bool needRooter = false;
    ABIResultIter iter(type_);
    for (; !iter.done(); iter.next()) {
      const ABIResult& result = iter.cur();
      if (result.onStack() && result.type().isRefRepr()) {
        needRooter = true;
      }
    }
    uint32_t areaBytes = iter.stackBytesConsumedSoFar();
    MOZ_ASSERT_IF(needRooter, areaBytes > 0);
    if (areaBytes > 0) {
      // It is necessary to zero storage for ref results, and it doesn't
      // hurt to do so for other POD results.
      stackResultsArea_ = cx->make_zeroed_pod_array<char>(areaBytes);
      if (!stackResultsArea_) {
        return false;
      }
      if (needRooter) {
        rooter_.emplace(cx, *this);
      }
    }
    return true;
  }

  void* stackResultsArea() {
    MOZ_ASSERT(stackResultsArea_);
    return stackResultsArea_.get();
  }

  bool collect(JSContext* cx, void* registerResultLoc, MutableHandleValue rval,
               CoercionLevel level) {
    Maybe<char*> stackResultsLoc =
        stackResultsArea_ ? Some(stackResultsArea_.get()) : Nothing();
    return ResultsToJSValue(cx, type_, registerResultLoc, stackResultsLoc, rval,
                            level);
  }
};

bool Instance::callExport(JSContext* cx, uint32_t funcIndex, CallArgs args,
                          CoercionLevel level) {
  if (memory0Base_) {
    // If there has been a moving grow, this Instance should have been notified.
    MOZ_RELEASE_ASSERT(memoryBase(0).unwrap() == memory0Base_);
  }

  void* interpEntry;
  const FuncType* funcType;
  if (!GetInterpEntryAndEnsureStubs(cx, *this, funcIndex, args, &interpEntry,
                                    &funcType)) {
    return false;
  }

  // Lossless coercions can handle unexposable arguments or returns. This is
  // only available in testing code.
  if (level != CoercionLevel::Lossless && funcType->hasUnexposableArgOrRet()) {
    JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr,
                             JSMSG_WASM_BAD_VAL_TYPE);
    return false;
  }

  ArgTypeVector argTypes(*funcType);
  ResultType resultType(ResultType::Vector(funcType->results()));
  ReturnToJSResultCollector results(resultType);
  if (!results.init(cx)) {
    return false;
  }

  // The calling convention for an external call into wasm is to pass an
  // array of 16-byte values where each value contains either a coerced int32
  // (in the low word), or a double value (in the low dword) value, with the
  // coercions specified by the wasm signature. The external entry point
  // unpacks this array into the system-ABI-specified registers and stack
  // memory and then calls into the internal entry point. The return value is
  // stored in the first element of the array (which, therefore, must have
  // length >= 1).
  Vector<ExportArg, 8> exportArgs(cx);
  if (!exportArgs.resize(
          std::max<size_t>(1, argTypes.lengthWithStackResults()))) {
    return false;
  }

  Rooted<GCVector<AnyRef, 8, SystemAllocPolicy>> refs(cx);

  DebugCodegen(DebugChannel::Function, "wasm-function[%d] arguments [",
               funcIndex);
  RootedValue v(cx);
  for (size_t i = 0; i < argTypes.lengthWithStackResults(); ++i) {
    void* rawArgLoc = &exportArgs[i];
    if (argTypes.isSyntheticStackResultPointerArg(i)) {
      *reinterpret_cast<void**>(rawArgLoc) = results.stackResultsArea();
      continue;
    }
    size_t naturalIdx = argTypes.naturalIndex(i);
    v = naturalIdx < args.length() ? args[naturalIdx] : UndefinedValue();
    ValType type = funcType->arg(naturalIdx);
    if (!ToWebAssemblyValue<DebugCodegenVal>(cx, v, type, rawArgLoc, true,
                                             level)) {
      return false;
    }
    if (type.isRefRepr()) {
      void* ptr = *reinterpret_cast<void**>(rawArgLoc);
      // Store in rooted array until no more GC is possible.
      RootedAnyRef ref(cx, AnyRef::fromCompiledCode(ptr));
      if (!refs.emplaceBack(ref.get())) {
        return false;
      }
      DebugCodegen(DebugChannel::Function, "/(#%d)", int(refs.length() - 1));
    }
  }

  // Copy over reference values from the rooted array, if any.
  if (refs.length() > 0) {
    DebugCodegen(DebugChannel::Function, "; ");
    size_t nextRef = 0;
    for (size_t i = 0; i < argTypes.lengthWithStackResults(); ++i) {
      if (argTypes.isSyntheticStackResultPointerArg(i)) {
        continue;
      }
      size_t naturalIdx = argTypes.naturalIndex(i);
      ValType type = funcType->arg(naturalIdx);
      if (type.isRefRepr()) {
        AnyRef* rawArgLoc = (AnyRef*)&exportArgs[i];
        *rawArgLoc = refs[nextRef++];
        DebugCodegen(DebugChannel::Function, " ref(#%d) := %p ",
                     int(nextRef - 1), *(void**)rawArgLoc);
      }
    }
    refs.clear();
  }

  DebugCodegen(DebugChannel::Function, "]\n");

  // Ensure pending exception is cleared before and after (below) call.
  MOZ_ASSERT(pendingException_.isNull());

  {
    JitActivation activation(cx);

    // Call the per-exported-function trampoline created by GenerateEntry.
    auto funcPtr = JS_DATA_TO_FUNC_PTR(ExportFuncPtr, interpEntry);
    if (!CALL_GENERATED_2(funcPtr, exportArgs.begin(), this)) {
      return false;
    }
  }

  MOZ_ASSERT(pendingException_.isNull());

  if (isAsmJS() && args.isConstructing()) {
    // By spec, when a JS function is called as a constructor and this
    // function returns a primary type, which is the case for all asm.js
    // exported functions, the returned value is discarded and an empty
    // object is returned instead.
    PlainObject* obj = NewPlainObject(cx);
    if (!obj) {
      return false;
    }
    args.rval().set(ObjectValue(*obj));
    return true;
  }

  // Note that we're not rooting the register result, if any; we depend
  // on ResultsCollector::collect to root the value on our behalf,
  // before causing any GC.
  void* registerResultLoc = &exportArgs[0];
  DebugCodegen(DebugChannel::Function, "wasm-function[%d]; results [",
               funcIndex);
  if (!results.collect(cx, registerResultLoc, args.rval(), level)) {
    return false;
  }
  DebugCodegen(DebugChannel::Function, "]\n");

  return true;
}

void Instance::setPendingException(Handle<WasmExceptionObject*> exn) {
  pendingException_ = AnyRef::fromJSObject(*exn.get());
  pendingExceptionTag_ =
      AnyRef::fromJSObject(exn->as<WasmExceptionObject>().tag());
}

void Instance::constantGlobalGet(uint32_t globalIndex,
                                 MutableHandleVal result) {
  MOZ_RELEASE_ASSERT(globalIndex < maxInitializedGlobalsIndexPlus1_);
  const GlobalDesc& global = metadata().globals[globalIndex];

  // Constant globals are baked into the code and never stored in global data.
  if (global.isConstant()) {
    // We can just re-evaluate the global initializer to get the value.
    result.set(Val(global.constantValue()));
    return;
  }

  // Otherwise, we need to load the initialized value from its cell.
  const void* cell = addressOfGlobalCell(global);
  result.address()->initFromHeapLocation(global.type(), cell);
}

bool Instance::constantRefFunc(uint32_t funcIndex,
                               MutableHandleFuncRef result) {
  void* fnref = Instance::refFunc(this, funcIndex);
  if (fnref == AnyRef::invalid().forCompiledCode()) {
    return false;  // OOM, which has already been reported.
  }
  result.set(FuncRef::fromCompiledCode(fnref));
  return true;
}

WasmStructObject* Instance::constantStructNewDefault(JSContext* cx,
                                                     uint32_t typeIndex) {
  // We assume that constant structs will have a long lifetime and hence
  // allocate them directly in the tenured heap.  Also, we have to dynamically
  // decide whether an OOL storage area is required.  This is slow(er); do not
  // call here from generated code.
  TypeDefInstanceData* typeDefData = typeDefInstanceData(typeIndex);
  const wasm::TypeDef* typeDef = typeDefData->typeDef;
  MOZ_ASSERT(typeDef->kind() == wasm::TypeDefKind::Struct);
  uint32_t totalBytes = typeDef->structType().size_;

  bool needsOOL = WasmStructObject::requiresOutlineBytes(totalBytes);
  return needsOOL ? WasmStructObject::createStructOOL<true>(cx, typeDefData,
                                                            gc::Heap::Tenured)
                  : WasmStructObject::createStructIL<true>(cx, typeDefData,
                                                           gc::Heap::Tenured);
}

WasmArrayObject* Instance::constantArrayNewDefault(JSContext* cx,
                                                   uint32_t typeIndex,
                                                   uint32_t numElements) {
  TypeDefInstanceData* typeDefData = typeDefInstanceData(typeIndex);
  // We assume that constant arrays will have a long lifetime and hence
  // allocate them directly in the tenured heap.
  return WasmArrayObject::createArray<true>(cx, typeDefData, gc::Heap::Tenured,
                                            numElements);
}

JSAtom* Instance::getFuncDisplayAtom(JSContext* cx, uint32_t funcIndex) const {
  // The "display name" of a function is primarily shown in Error.stack which
  // also includes location, so use getFuncNameBeforeLocation.
  UTF8Bytes name;
  if (!metadata().getFuncNameBeforeLocation(funcIndex, &name)) {
    return nullptr;
  }

  return AtomizeUTF8Chars(cx, name.begin(), name.length());
}

void Instance::ensureProfilingLabels(bool profilingEnabled) const {
  return code_->ensureProfilingLabels(profilingEnabled);
}

void Instance::onMovingGrowMemory(const WasmMemoryObject* memory) {
  MOZ_ASSERT(!isAsmJS());
  MOZ_ASSERT(!memory->isShared());

  for (uint32_t i = 0; i < metadata().memories.length(); i++) {
    MemoryInstanceData& md = memoryInstanceData(i);
    if (memory != md.memory) {
      continue;
    }
    ArrayBufferObject& buffer = md.memory->buffer().as<ArrayBufferObject>();

    md.base = buffer.dataPointer();
    size_t limit = md.memory->boundsCheckLimit();
#if !defined(JS_64BIT)
    // We assume that the limit is a 32-bit quantity
    MOZ_ASSERT(limit <= UINT32_MAX);
#endif
    md.boundsCheckLimit = limit;

    if (i == 0) {
      memory0Base_ = md.base;
      memory0BoundsCheckLimit_ = md.boundsCheckLimit;
    }
  }
}

void Instance::onMovingGrowTable(const Table* table) {
  MOZ_ASSERT(!isAsmJS());

  // `table` has grown and we must update cached data for it.  Importantly,
  // we can have cached those data in more than one location: we'll have
  // cached them once for each time the table was imported into this instance.
  //
  // When an instance is registered as an observer of a table it is only
  // registered once, regardless of how many times the table was imported.
  // Thus when a table is grown, onMovingGrowTable() is only invoked once for
  // the table.
  //
  // Ergo we must go through the entire list of tables in the instance here
  // and check for the table in all the cached-data slots; we can't exit after
  // the first hit.

  for (uint32_t i = 0; i < tables_.length(); i++) {
    if (tables_[i] != table) {
      continue;
    }
    TableInstanceData& table = tableInstanceData(i);
    table.length = tables_[i]->length();
    table.elements = tables_[i]->instanceElements();
  }
}

JSString* Instance::createDisplayURL(JSContext* cx) {
  // In the best case, we simply have a URL, from a streaming compilation of a
  // fetched Response.

  if (metadata().filenameIsURL) {
    const char* filename = metadata().filename.get();
    return NewStringCopyUTF8N(cx, JS::UTF8Chars(filename, strlen(filename)));
  }

  // Otherwise, build wasm module URL from following parts:
  // - "wasm:" as protocol;
  // - URI encoded filename from metadata (if can be encoded), plus ":";
  // - 64-bit hash of the module bytes (as hex dump).

  JSStringBuilder result(cx);
  if (!result.append("wasm:")) {
    return nullptr;
  }

  if (const char* filename = metadata().filename.get()) {
    // EncodeURI returns false due to invalid chars or OOM -- fail only
    // during OOM.
    JSString* filenamePrefix = EncodeURI(cx, filename, strlen(filename));
    if (!filenamePrefix) {
      if (cx->isThrowingOutOfMemory()) {
        return nullptr;
      }

      MOZ_ASSERT(!cx->isThrowingOverRecursed());
      cx->clearPendingException();
      return nullptr;
    }

    if (!result.append(filenamePrefix)) {
      return nullptr;
    }
  }

  if (metadata().debugEnabled) {
    if (!result.append(":")) {
      return nullptr;
    }

    const ModuleHash& hash = metadata().debugHash;
    for (unsigned char byte : hash) {
      unsigned char digit1 = byte / 16, digit2 = byte % 16;
      if (!result.append(
              (char)(digit1 < 10 ? digit1 + '0' : digit1 + 'a' - 10))) {
        return nullptr;
      }
      if (!result.append(
              (char)(digit2 < 10 ? digit2 + '0' : digit2 + 'a' - 10))) {
        return nullptr;
      }
    }
  }

  return result.finishString();
}

WasmBreakpointSite* Instance::getOrCreateBreakpointSite(JSContext* cx,
                                                        uint32_t offset) {
  MOZ_ASSERT(debugEnabled());
  return debug().getOrCreateBreakpointSite(cx, this, offset);
}

void Instance::destroyBreakpointSite(JS::GCContext* gcx, uint32_t offset) {
  MOZ_ASSERT(debugEnabled());
  return debug().destroyBreakpointSite(gcx, this, offset);
}

void Instance::disassembleExport(JSContext* cx, uint32_t funcIndex, Tier tier,
                                 PrintCallback printString) const {
  const MetadataTier& metadataTier = metadata(tier);
  const FuncExport& funcExport = metadataTier.lookupFuncExport(funcIndex);
  const CodeRange& range = metadataTier.codeRange(funcExport);
  const CodeTier& codeTier = code(tier);
  const ModuleSegment& segment = codeTier.segment();

  MOZ_ASSERT(range.begin() < segment.length());
  MOZ_ASSERT(range.end() < segment.length());

  uint8_t* functionCode = segment.base() + range.begin();
  jit::Disassemble(functionCode, range.end() - range.begin(), printString);
}

void Instance::addSizeOfMisc(MallocSizeOf mallocSizeOf,
                             Metadata::SeenSet* seenMetadata,
                             Code::SeenSet* seenCode,
                             Table::SeenSet* seenTables, size_t* code,
                             size_t* data) const {
  *data += mallocSizeOf(this);
  for (const SharedTable& table : tables_) {
    *data += table->sizeOfIncludingThisIfNotSeen(mallocSizeOf, seenTables);
  }

  if (maybeDebug_) {
    maybeDebug_->addSizeOfMisc(mallocSizeOf, seenMetadata, seenCode, code,
                               data);
  }

  code_->addSizeOfMiscIfNotSeen(mallocSizeOf, seenMetadata, seenCode, code,
                                data);
}

//////////////////////////////////////////////////////////////////////////////
//
// Reporting of errors that are traps.

void wasm::ReportTrapError(JSContext* cx, unsigned errorNumber) {
  JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, errorNumber);

  if (cx->isThrowingOutOfMemory()) {
    return;
  }

  // Mark the exception as thrown from a trap to prevent if from being handled
  // by wasm exception handlers.
  RootedValue exn(cx);
  if (!cx->getPendingException(&exn)) {
    return;
  }

  MOZ_ASSERT(exn.isObject() && exn.toObject().is<ErrorObject>());
  exn.toObject().as<ErrorObject>().setFromWasmTrap();
}