1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "wasm/WasmSummarizeInsn.h"
using mozilla::Maybe;
using mozilla::Nothing;
using mozilla::Some;
namespace js {
namespace wasm {
// Sources of documentation of instruction-set encoding:
//
// Documentation for the ARM instruction sets can be found at
// https://developer.arm.com/documentation/ddi0487/latest. The documentation
// is vast -- more than 10000 pages. When looking up an instruction, be sure
// to look in the correct section for the target word size -- AArch64 (arm64)
// and AArch32 (arm32) instructions are listed in different sections. And for
// AArch32, be sure to look only at the "A<digit> variant/encoding" and not at
// the "T<digit>" ones. The latter are for Thumb encodings, which we don't
// generate.
//
// The Intel documentation is similarly comprehensive: search for "Intel® 64
// and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1,
// 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4". It's easy to find.
#if defined(DEBUG)
// ===================================================== x86_32 and x86_64 ====
# if defined(JS_CODEGEN_X64) || defined(JS_CODEGEN_X86)
// Returns true iff a "Mod R/M" byte indicates a memory transaction.
static bool ModRMisM(uint8_t modrm) {
return (modrm & 0b11'000'000) != 0b11'000'000;
}
// Returns bits 6:4 of a Mod R/M byte, which (for our very limited purposes)
// is sometimes interpreted as an opcode extension.
static uint8_t ModRMmid3(uint8_t modrm) { return (modrm >> 3) & 0b00000111; }
// Some simple helpers for dealing with (bitsets of) instruction prefixes.
enum Prefix : uint32_t {
PfxLock = 1 << 0,
Pfx66 = 1 << 1,
PfxF2 = 1 << 2,
PfxF3 = 1 << 3,
PfxRexW = 1 << 4,
PfxVexL = 1 << 5
};
static bool isEmpty(uint32_t set) { return set == 0; }
static bool hasAllOf(uint32_t set, uint32_t mustBePresent) {
return (set & mustBePresent) == mustBePresent;
}
static bool hasNoneOf(uint32_t set, uint32_t mustNotBePresent) {
return (set & mustNotBePresent) == 0;
}
static bool hasOnly(uint32_t set, uint32_t onlyTheseMayBePresent) {
return (set & ~onlyTheseMayBePresent) == 0;
}
// Implied opcode-escape prefixes; these are used for decoding VEX-prefixed
// (AVX) instructions only. This is a real enumeration, not a bitset.
enum Escape { EscNone, Esc0F, Esc0F38, Esc0F3A };
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insn) {
const bool is64bit = sizeof(void*) == 8;
// First off, use up the prefix bytes, so we wind up pointing `insn` at the
// primary opcode byte, and at the same time accumulate the prefixes in
// `prefixes`.
uint32_t prefixes = 0;
bool hasREX = false;
bool hasVEX = false;
// Parse the "legacy" prefixes (only those we care about). Skip REX on
// 32-bit x86.
while (true) {
if (insn[0] >= 0x40 && insn[0] <= 0x4F && is64bit) {
hasREX = true;
// It has a REX prefix, but is REX.W set?
if (insn[0] >= 0x48) {
prefixes |= PfxRexW;
}
insn++;
continue;
}
if (insn[0] == 0x66) {
prefixes |= Pfx66;
insn++;
continue;
}
if (insn[0] == 0xF0) {
prefixes |= PfxLock;
insn++;
continue;
}
if (insn[0] == 0xF2) {
prefixes |= PfxF2;
insn++;
continue;
}
if (insn[0] == 0xF3) {
prefixes |= PfxF3;
insn++;
continue;
}
if (insn[0] == 0xC4 || insn[0] == 0xC5) {
hasVEX = true;
// And fall through to the `break`, leaving `insn` pointing at the start
// of the VEX prefix.
}
break;
}
// Throw out some invalid prefix combinations.
if (hasAllOf(prefixes, PfxF2 | PfxF3) || (hasREX && hasVEX)) {
return Nothing();
}
if (!hasVEX) {
// The instruction has legacy prefixes only. Deal with all these cases
// first.
// Determine the data size (in bytes) for "standard form" non-SIMD, non-FP
// instructions whose opcode byte(s) don't directly imply an 8-bit
// operation. If both REX.W and 0x66 are present then REX.W "wins".
int opSize = 4;
if (prefixes & Pfx66) {
opSize = 2;
}
if (prefixes & PfxRexW) {
MOZ_ASSERT(is64bit);
opSize = 8;
}
// `insn` should now point at the primary opcode, at least for the cases
// we care about. Start identifying instructions. The OP_/OP2_/OP3_
// comments are references to names as declared in Encoding-x86-shared.h.
// This is the most common trap insn, so deal with it early. Created by
// MacroAssembler::wasmTrapInstruction.
// OP_2BYTE_ESCAPE OP2_UD2
// 0F 0B = ud2
if (insn[0] == 0x0F && insn[1] == 0x0B && isEmpty(prefixes)) {
return Some(TrapMachineInsn::OfficialUD);
}
// ==== Atomics
// This is something of a kludge, but .. if the insn has a LOCK prefix,
// declare it to be TrapMachineInsn::Atomic, regardless of what it
// actually does. It's good enough for checking purposes.
if (prefixes & PfxLock) {
return Some(TrapMachineInsn::Atomic);
}
// After this point, we can assume that no instruction has a lock prefix.
// OP_XCHG_GbEb
// OP_XCHG_GvEv
// 86 = XCHG reg8, reg8/mem8.
// 87 = XCHG reg64/32/16, reg64/32/16 / mem64/32/16.
// The memory variants are atomic even though there is no LOCK prefix.
if (insn[0] == 0x86 && ModRMisM(insn[1]) && isEmpty(prefixes)) {
return Some(TrapMachineInsn::Atomic);
}
if (insn[0] == 0x87 && ModRMisM(insn[1]) &&
hasOnly(prefixes, Pfx66 | PfxRexW)) {
return Some(TrapMachineInsn::Atomic);
}
// ==== Scalar loads and stores
// OP_MOV_EbGv
// OP_MOV_GvEb
// 88 = MOV src=reg, dst=mem/reg (8 bit int only)
// 8A = MOV src=mem/reg, dst=reg (8 bit int only)
if ((insn[0] == 0x88 || insn[0] == 0x8A) && ModRMisM(insn[1]) &&
isEmpty(prefixes)) {
return Some(insn[0] == 0x88 ? TrapMachineInsn::Store8
: TrapMachineInsn::Load8);
}
// OP_MOV_EvGv
// OP_MOV_GvEv
// 89 = MOV src=reg, dst=mem/reg (64/32/16 bit int only)
// 8B = MOV src=mem/reg, dst=reg (64/32/16 bit int only)
if ((insn[0] == 0x89 || insn[0] == 0x8B) && ModRMisM(insn[1]) &&
hasOnly(prefixes, Pfx66 | PfxRexW)) {
return Some(insn[0] == 0x89 ? TrapMachineInsnForStore(opSize)
: TrapMachineInsnForLoad(opSize));
}
// OP_GROUP11_EvIb GROUP11_MOV
// C6 /0 = MOV src=immediate, dst=mem (8 bit int only)
if (insn[0] == 0xC6 && ModRMisM(insn[1]) && ModRMmid3(insn[1]) == 0 &&
isEmpty(prefixes)) {
return Some(TrapMachineInsn::Store8);
}
// OP_GROUP11_EvIz GROUP11_MOV
// C7 /0 = MOV src=immediate, dst=mem (64/32/16 bit int only)
if (insn[0] == 0xC7 && ModRMisM(insn[1]) && ModRMmid3(insn[1]) == 0 &&
hasOnly(prefixes, Pfx66 | PfxRexW)) {
return Some(TrapMachineInsnForStore(opSize));
}
// OP_2BYTE_ESCAPE OP2_MOVZX_GvEb
// OP_2BYTE_ESCAPE OP2_MOVSX_GvEb
// 0F B6 = MOVZB{W,L,Q} src=reg/mem, dst=reg (8 -> 16, 32 or 64, int only)
// 0F BE = MOVSB{W,L,Q} src=reg/mem, dst=reg (8 -> 16, 32 or 64, int only)
if (insn[0] == 0x0F && (insn[1] == 0xB6 || insn[1] == 0xBE) &&
ModRMisM(insn[2]) && (opSize == 2 || opSize == 4 || opSize == 8) &&
hasOnly(prefixes, Pfx66 | PfxRexW)) {
return Some(TrapMachineInsn::Load8);
}
// OP_2BYTE_ESCAPE OP2_MOVZX_GvEw
// OP_2BYTE_ESCAPE OP2_MOVSX_GvEw
// 0F B7 = MOVZW{L,Q} src=reg/mem, dst=reg (16 -> 32 or 64, int only)
// 0F BF = MOVSW{L,Q} src=reg/mem, dst=reg (16 -> 32 or 64, int only)
if (insn[0] == 0x0F && (insn[1] == 0xB7 || insn[1] == 0xBF) &&
ModRMisM(insn[2]) && (opSize == 4 || opSize == 8) &&
hasOnly(prefixes, PfxRexW)) {
return Some(TrapMachineInsn::Load16);
}
// OP_MOVSXD_GvEv
// REX.W 63 = MOVSLQ src=reg32/mem32, dst=reg64
if (hasAllOf(prefixes, PfxRexW) && insn[0] == 0x63 && ModRMisM(insn[1]) &&
hasOnly(prefixes, Pfx66 | PfxRexW)) {
return Some(TrapMachineInsn::Load32);
}
// ==== SSE{2,3,E3,4} insns
// OP_2BYTE_ESCAPE OP2_MOVPS_VpsWps
// OP_2BYTE_ESCAPE OP2_MOVPS_WpsVps
// 0F 10 = MOVUPS src=xmm/mem128, dst=xmm
// 0F 11 = MOVUPS src=xmm, dst=xmm/mem128
if (insn[0] == 0x0F && (insn[1] == 0x10 || insn[1] == 0x11) &&
ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
return Some(insn[1] == 0x10 ? TrapMachineInsn::Load128
: TrapMachineInsn::Store128);
}
// OP_2BYTE_ESCAPE OP2_MOVLPS_VqEq
// OP_2BYTE_ESCAPE OP2_MOVHPS_VqEq
// 0F 12 = MOVLPS src=xmm64/mem64, dst=xmm
// 0F 16 = MOVHPS src=xmm64/mem64, dst=xmm
if (insn[0] == 0x0F && (insn[1] == 0x12 || insn[1] == 0x16) &&
ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
return Some(TrapMachineInsn::Load64);
}
// OP_2BYTE_ESCAPE OP2_MOVLPS_EqVq
// OP_2BYTE_ESCAPE OP2_MOVHPS_EqVq
// 0F 13 = MOVLPS src=xmm64, dst=xmm64/mem64
// 0F 17 = MOVHPS src=xmm64, dst=xmm64/mem64
if (insn[0] == 0x0F && (insn[1] == 0x13 || insn[1] == 0x17) &&
ModRMisM(insn[2]) && hasOnly(prefixes, PfxRexW)) {
return Some(TrapMachineInsn::Store64);
}
// PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVSD_VsdWsd
// PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVSD_WsdVsd
// F2 0F 10 = MOVSD src=mem64/xmm64, dst=xmm64
// F2 0F 11 = MOVSD src=xmm64, dst=mem64/xmm64
if (hasAllOf(prefixes, PfxF2) && insn[0] == 0x0F &&
(insn[1] == 0x10 || insn[1] == 0x11) && ModRMisM(insn[2]) &&
hasOnly(prefixes, PfxRexW | PfxF2)) {
return Some(insn[1] == 0x10 ? TrapMachineInsn::Load64
: TrapMachineInsn::Store64);
}
// PRE_SSE_F2 OP_2BYTE_ESCAPE OP2_MOVDDUP_VqWq
// F2 0F 12 = MOVDDUP src=mem64/xmm64, dst=xmm
if (hasAllOf(prefixes, PfxF2) && insn[0] == 0x0F && insn[1] == 0x12 &&
ModRMisM(insn[2]) && hasOnly(prefixes, PfxF2)) {
return Some(TrapMachineInsn::Load64);
}
// PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVSS_VssWss (name does not exist)
// PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVSS_WssVss (name does not exist)
// F3 0F 10 = MOVSS src=mem32/xmm32, dst=xmm32
// F3 0F 11 = MOVSS src=xmm32, dst=mem32/xmm32
if (hasAllOf(prefixes, PfxF3) && insn[0] == 0x0F &&
(insn[1] == 0x10 || insn[1] == 0x11) && ModRMisM(insn[2]) &&
hasOnly(prefixes, PfxRexW | PfxF3)) {
return Some(insn[1] == 0x10 ? TrapMachineInsn::Load32
: TrapMachineInsn::Store32);
}
// PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVDQ_VdqWdq
// PRE_SSE_F3 OP_2BYTE_ESCAPE OP2_MOVDQ_WdqVdq
// F3 0F 6F = MOVDQU src=mem128/xmm, dst=xmm
// F3 0F 7F = MOVDQU src=xmm, dst=mem128/xmm
if (hasAllOf(prefixes, PfxF3) && insn[0] == 0x0F &&
(insn[1] == 0x6F || insn[1] == 0x7F) && ModRMisM(insn[2]) &&
hasOnly(prefixes, PfxF3)) {
return Some(insn[1] == 0x6F ? TrapMachineInsn::Load128
: TrapMachineInsn::Store128);
}
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PINSRB_VdqEvIb
// 66 0F 3A 20 /r ib = PINSRB $imm8, src=mem8/ireg8, dst=xmm128. I'd guess
// that REX.W is meaningless here and therefore we should exclude it.
if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
insn[2] == 0x20 && ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
return Some(TrapMachineInsn::Load8);
}
// PRE_SSE_66 OP_2BYTE_ESCAPE OP2_PINSRW
// 66 0F C4 /r ib = PINSRW $imm8, src=mem16/ireg16, dst=xmm128. REX.W is
// probably meaningless here.
if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0xC4 &&
ModRMisM(insn[2]) && hasOnly(prefixes, Pfx66)) {
return Some(TrapMachineInsn::Load16);
}
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_INSERTPS_VpsUps
// 66 0F 3A 21 /r ib = INSERTPS $imm8, src=mem32/xmm32, dst=xmm128.
// REX.W is probably meaningless here.
if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
insn[2] == 0x21 && ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
return Some(TrapMachineInsn::Load32);
}
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PEXTRB_EvVdqIb
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_PEXTRW_EwVdqIb
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_3A OP3_EXTRACTPS_EdVdqIb
// 66 0F 3A 14 /r ib = PEXTRB src=xmm8, dst=reg8/mem8
// 66 0F 3A 15 /r ib = PEXTRW src=xmm16, dst=reg16/mem16
// 66 0F 3A 17 /r ib = EXTRACTPS src=xmm32, dst=reg32/mem32
// REX.W is probably meaningless here.
if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x3A &&
(insn[2] == 0x14 || insn[2] == 0x15 || insn[2] == 0x17) &&
ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
return Some(insn[2] == 0x14 ? TrapMachineInsn::Store8
: insn[2] == 0x15 ? TrapMachineInsn::Store16
: TrapMachineInsn::Store32);
}
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXBW_VdqWdq
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXWD_VdqWdq
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVSXDQ_VdqWdq
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXBW_VdqWdq
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXWD_VdqWdq
// PRE_SSE_66 OP_2BYTE_ESCAPE ESCAPE_38 OP3_PMOVZXDQ_VdqWdq
// 66 0F 38 20 /r = PMOVSXBW src=mem64/xmm64, dst=xmm
// 66 0F 38 23 /r = PMOVSXWD src=mem64/xmm64, dst=xmm
// 66 0F 38 25 /r = PMOVSXDQ src=mem64/xmm64, dst=xmm
// 66 0F 38 30 /r = PMOVZXBW src=mem64/xmm64, dst=xmm
// 66 0F 38 33 /r = PMOVZXWD src=mem64/xmm64, dst=xmm
// 66 0F 38 35 /r = PMOVZXDQ src=mem64/xmm64, dst=xmm
if (hasAllOf(prefixes, Pfx66) && insn[0] == 0x0F && insn[1] == 0x38 &&
(insn[2] == 0x20 || insn[2] == 0x23 || insn[2] == 0x25 ||
insn[2] == 0x30 || insn[2] == 0x33 || insn[2] == 0x35) &&
ModRMisM(insn[3]) && hasOnly(prefixes, Pfx66)) {
return Some(TrapMachineInsn::Load64);
}
// The insn only has legacy prefixes, and was not identified.
return Nothing();
}
// We're dealing with a VEX-prefixed insn. Fish out relevant bits of the
// VEX prefix. VEX prefixes come in two kinds: a 3-byte prefix, first byte
// 0xC4, which gives us 16 bits of extra data, and a 2-byte prefix, first
// byte 0xC5, which gives us 8 bits of extra data. The 2-byte variant
// contains a subset of the data that the 3-byte variant does and
// (presumably) is to be used when the default values of the omitted fields
// are correct for the instruction that is encoded.
//
// An instruction can't have both VEX and REX prefixes, because a 3-byte VEX
// prefix specifies everything a REX prefix does, that is, the four bits
// REX.{WRXB} and allowing both to be present would allow conflicting values
// for them. Of these four bits, we only care about REX.W (as obtained here
// from the VEX prefix).
//
// A VEX prefix can also specify (imply?) the presence of the legacy
// prefixes 66, F2 and F3. Although the byte sequence we will have parsed
// for this insn doesn't actually contain any of those, we must decode as if
// we had seen them as legacy prefixes.
//
// A VEX prefix can also specify (imply?) the presence of the opcode escape
// byte sequences 0F, 0F38 and 0F3A. These are collected up into `esc`.
// Again, we must decode as if we had actually seen these, although we
// haven't really.
//
// The VEX prefix also holds various other bits which we ignore, because
// these specify details of registers etc which we don't care about.
MOZ_ASSERT(hasVEX && !hasREX);
MOZ_ASSERT(hasNoneOf(prefixes, PfxRexW));
MOZ_ASSERT(insn[0] == 0xC4 || insn[0] == 0xC5);
Escape esc = EscNone;
if (insn[0] == 0xC4) {
// This is a 3-byte VEX prefix (3 bytes including the 0xC4).
switch (insn[1] & 0x1F) {
case 1:
esc = Esc0F;
break;
case 2:
esc = Esc0F38;
break;
case 3:
esc = Esc0F3A;
break;
default:
return Nothing();
}
switch (insn[2] & 3) {
case 0:
break;
case 1:
prefixes |= Pfx66;
break;
case 2:
prefixes |= PfxF3;
break;
case 3:
prefixes |= PfxF2;
break;
}
if (insn[2] & 4) {
// VEX.L distinguishes 128-bit (VEX.L==0) from 256-bit (VEX.L==1)
// operations.
prefixes |= PfxVexL;
}
if ((insn[2] & 0x80) && is64bit) {
// Pull out REX.W, but only on 64-bit targets. We'll need it for insn
// decoding. Recall that REX.W == 1 basically means "the
// integer-register (GPR) aspect of this instruction requires a 64-bit
// transaction", so we expect these to be relatively rare, since VEX is
// primary used for SIMD instructions.
prefixes |= PfxRexW;
}
// Step forwards to the primary opcode byte
insn += 3;
} else if (insn[0] == 0xC5) {
// This is a 2-byte VEX prefix (2 bytes including the 0xC5). Since it has
// only 8 bits of useful payload, it adds less information than an 0xC4
// prefix.
esc = Esc0F;
switch (insn[1] & 3) {
case 0:
break;
case 1:
prefixes |= Pfx66;
break;
case 2:
prefixes |= PfxF3;
break;
case 3:
prefixes |= PfxF2;
break;
}
if (insn[1] & 4) {
prefixes |= PfxVexL;
}
insn += 2;
}
// This isn't allowed.
if (hasAllOf(prefixes, PfxF2 | PfxF3)) {
return Nothing();
}
// This is useful for diagnosing decoding failures.
// if (0) {
// fprintf(stderr, "FAIL VEX 66=%d,F2=%d,F3=%d,REXW=%d,VEXL=%d esc=%s\n",
// (prefixes & Pfx66) ? 1 : 0, (prefixes & PfxF2) ? 1 : 0,
// (prefixes & PfxF3) ? 1 : 0, (prefixes & PfxRexW) ? 1 : 0,
// (prefixes & PfxVexL) ? 1 : 0,
// esc == Esc0F3A ? "0F3A"
// : esc == Esc0F38 ? "0F38"
// : esc == Esc0F ? "0F"
// : "none");
// }
// (vex prefix) OP2_MOVPS_VpsWps
// (vex prefix) OP2_MOVPS_WpsVps
// 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 10 = VMOVUPS src=xmm/mem128, dst=xmm
// 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 11 = VMOVUPS src=xmm, dst=xmm/mem128
// REX.W is ignored.
if (hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F && (insn[0] == 0x10 || insn[0] == 0x11) &&
ModRMisM(insn[1])) {
return Some(insn[0] == 0x10 ? TrapMachineInsn::Load128
: TrapMachineInsn::Store128);
}
// (vex prefix) OP2_MOVSD_VsdWsd
// (vex prefix) OP2_MOVSD_WsdVsd
// 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 10 = VMOVSD src=mem64, dst=xmm
// 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 11 = VMOVSD src=xmm, dst=mem64
// REX.W and VEX.L are ignored.
if (hasAllOf(prefixes, PfxF2) &&
hasNoneOf(prefixes, Pfx66 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
(insn[0] == 0x10 || insn[0] == 0x11) && ModRMisM(insn[1])) {
return Some(insn[0] == 0x10 ? TrapMachineInsn::Load64
: TrapMachineInsn::Store64);
}
// (vex prefix) OP2_MOVSS_VssWss (name does not exist)
// (vex prefix) OP2_MOVSS_WssVss (name does not exist)
// 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 10 = VMOVSS src=mem32, dst=xmm
// 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 11 = VMOVSS src=xmm, dst=mem32
// REX.W and VEX.L are ignored.
if (hasAllOf(prefixes, PfxF3) &&
hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxRexW | PfxVexL) && esc == Esc0F &&
(insn[0] == 0x10 || insn[0] == 0x11) && ModRMisM(insn[1])) {
return Some(insn[0] == 0x10 ? TrapMachineInsn::Load32
: TrapMachineInsn::Store32);
}
// (vex prefix) OP2_MOVDDUP_VqWq
// 66=0,F2=1,F3=0,REXW=0,VEXL=0 esc=0F 12 = VMOVDDUP src=xmm/m64, dst=xmm
// REX.W is ignored.
if (hasAllOf(prefixes, PfxF2) &&
hasNoneOf(prefixes, Pfx66 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
insn[0] == 0x12 && ModRMisM(insn[1])) {
return Some(TrapMachineInsn::Load64);
}
// (vex prefix) OP2_MOVLPS_EqVq
// (vex prefix) OP2_MOVHPS_EqVq
// 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 13 = VMOVLPS src=xmm, dst=mem64
// 66=0,F2=0,F3=0,REXW=0,VEXL=0 esc=0F 17 = VMOVHPS src=xmm, dst=mem64
// REX.W is ignored. These do a 64-bit mem transaction despite the 'S' in
// the name, because a pair of float32s are transferred.
if (hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F && (insn[0] == 0x13 || insn[0] == 0x17) &&
ModRMisM(insn[1])) {
return Some(TrapMachineInsn::Store64);
}
// (vex prefix) OP2_MOVDQ_VdqWdq
// (vex prefix) OP2_MOVDQ_WdqVdq
// 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 6F = VMOVDQU src=xmm/mem128, dst=xmm
// 66=0,F2=0,F3=1,REXW=0,VEXL=0 esc=0F 7F = VMOVDQU src=xmm, dst=xmm/mem128
// REX.W is ignored.
if (hasAllOf(prefixes, PfxF3) &&
hasNoneOf(prefixes, Pfx66 | PfxF2 | PfxRexW | PfxVexL) && esc == Esc0F &&
(insn[0] == 0x6F || insn[0] == 0x7F) && ModRMisM(insn[1])) {
return Some(insn[0] == 0x6F ? TrapMachineInsn::Load128
: TrapMachineInsn::Store128);
}
// (vex prefix) OP2_PINSRW
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=OF C4
// = PINSRW src=ireg/mem16,src=xmm,dst=xmm
// REX.W is ignored.
if (hasAllOf(prefixes, Pfx66) &&
hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) && esc == Esc0F &&
insn[0] == 0xC4 && ModRMisM(insn[1])) {
return Some(TrapMachineInsn::Load16);
}
// (vex prefix) OP3_PMOVSXBW_VdqWdq
// (vex prefix) OP3_PMOVSXWD_VdqWdq
// (vex prefix) OP3_PMOVSXDQ_VdqWdq
// (vex prefix) OP3_PMOVZXBW_VdqWdq
// (vex prefix) OP3_PMOVZXWD_VdqWdq
// (vex prefix) OP3_PMOVZXDQ_VdqWdq
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 20 = VPMOVSXBW src=xmm/m64, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 23 = VPMOVSXWD src=xmm/m64, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 25 = VPMOVSXDQ src=xmm/m64, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 30 = VPMOVZXBW src=xmm/m64, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 33 = VPMOVZXWD src=xmm/m64, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 35 = VPMOVZXDQ src=xmm/m64, dst=xmm
// REX.W is ignored.
if (hasAllOf(prefixes, Pfx66) &&
hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F38 &&
(insn[0] == 0x20 || insn[0] == 0x23 || insn[0] == 0x25 ||
insn[0] == 0x30 || insn[0] == 0x33 || insn[0] == 0x35) &&
ModRMisM(insn[1])) {
return Some(TrapMachineInsn::Load64);
}
// (vex prefix) OP3_VBROADCASTB_VxWx
// (vex prefix) OP3_VBROADCASTW_VxWx
// (vex prefix) OP3_VBROADCASTSS_VxWd
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 78
// = VPBROADCASTB src=xmm8/mem8, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 79
// = VPBROADCASTW src=xmm16/mem16, dst=xmm
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F38 18
// = VBROADCASTSS src=m32, dst=xmm
// VPBROADCASTB/W require REX.W == 0; VBROADCASTSS ignores REX.W.
if (hasAllOf(prefixes, Pfx66) &&
hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F38 &&
(insn[0] == 0x78 || insn[0] == 0x79 || insn[0] == 0x18) &&
ModRMisM(insn[1])) {
return Some(insn[0] == 0x78 ? TrapMachineInsn::Load8
: insn[0] == 0x79 ? TrapMachineInsn::Load16
: TrapMachineInsn::Load32);
}
// (vex prefix) OP3_PEXTRB_EvVdqIb
// (vex prefix) OP3_PEXTRW_EwVdqIb
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 14 = VPEXTRB src=xmm, dst=ireg/mem8
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 15 = VPEXTRW src=xmm, dst=ireg/mem16
// These require REX.W == 0.
if (hasAllOf(prefixes, Pfx66) &&
hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F3A && (insn[0] == 0x14 || insn[0] == 0x15) &&
ModRMisM(insn[1])) {
return Some(insn[0] == 0x14 ? TrapMachineInsn::Store8
: TrapMachineInsn::Store16);
}
// (vex prefix) OP3_EXTRACTPS_EdVdqIb
// 66=1,F2=0,F3=0,REXW=0,VEXL=0 esc=0F3A 17
// = VEXTRACTPS src=xmm, dst=ireg/mem32
// REX.W is ignored.
if (hasAllOf(prefixes, Pfx66) &&
hasNoneOf(prefixes, PfxF2 | PfxF3 | PfxRexW | PfxVexL) &&
esc == Esc0F3A && insn[0] == 0x17 && ModRMisM(insn[1])) {
return Some(TrapMachineInsn::Store32);
}
// The instruction was not identified.
return Nothing();
}
// ================================================================= arm64 ====
# elif defined(JS_CODEGEN_ARM64)
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
// Check instruction alignment.
MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
const uint32_t insn = *(uint32_t*)insnAddr;
# define INSN(_maxIx, _minIx) \
((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
// MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
if (insn == 0xD4A00000) {
return Some(TrapMachineInsn::OfficialUD);
}
// A note about loads and stores. Many (perhaps all) integer loads and
// stores use bits 31:30 of the instruction as a size encoding, thusly:
//
// 11 -> 64 bit, 10 -> 32 bit, 01 -> 16 bit, 00 -> 8 bit
//
// It is also very common for corresponding load and store instructions to
// differ by exactly one bit (logically enough).
//
// Meaning of register names:
//
// Xn The n-th GPR (all 64 bits), for 0 <= n <= 31
// Xn|SP The n-th GPR (all 64 bits), for 0 <= n <= 30, or SP when n == 31
// Wn The lower 32 bits of the n-th GPR
// Qn All 128 bits of the n-th SIMD register
// Dn Lower 64 bits of the n-th SIMD register
// Sn Lower 32 bits of the n-th SIMD register
// Plain and zero-extending loads/stores, reg + offset, scaled
switch (INSN(31, 22)) {
// 11 111 00100 imm12 n t = STR Xt, [Xn|SP, #imm12 * 8]
case 0b11'111'00100:
return Some(TrapMachineInsn::Store64);
// 10 111 00100 imm12 n t = STR Wt, [Xn|SP, #imm12 * 4]
case 0b10'111'00100:
return Some(TrapMachineInsn::Store32);
// 01 111 00100 imm12 n t = STRH Wt, [Xn|SP, #imm12 * 2]
case 0b01'111'00100:
return Some(TrapMachineInsn::Store16);
// 00 111 00100 imm12 n t = STRB Wt, [Xn|SP, #imm12 * 1]
case 0b00'111'00100:
return Some(TrapMachineInsn::Store8);
// 11 111 00101 imm12 n t = LDR Xt, [Xn|SP, #imm12 * 8]
case 0b11'111'00101:
return Some(TrapMachineInsn::Load64);
// 10 111 00101 imm12 n t = LDR Wt, [Xn|SP, #imm12 * 4]
case 0b10'111'00101:
return Some(TrapMachineInsn::Load32);
// 01 111 00101 imm12 n t = LDRH Wt, [Xn|SP, #imm12 * 2]
case 0b01'111'00101:
return Some(TrapMachineInsn::Load16);
// 00 111 00101 imm12 n t = LDRB Wt, [Xn|SP, #imm12 * 1]
case 0b00'111'00101:
return Some(TrapMachineInsn::Load8);
}
// Plain, sign- and zero-extending loads/stores, reg + offset, unscaled
if (INSN(11, 10) == 0b00) {
switch (INSN(31, 21)) {
// 11 111 00001 0 imm9 00 n t = LDUR Xt, [Xn|SP, #imm9]
case 0b11'111'00001'0:
return Some(TrapMachineInsn::Load64);
// 10 111 00001 0 imm9 00 n t = LDUR Wt, [Xn|SP, #imm9]
case 0b10'111'00001'0:
return Some(TrapMachineInsn::Load32);
// 01 111 00001 0 imm9 00 n t = LDURH Wt, [Xn|SP, #imm9]
case 0b01'111'00001'0:
return Some(TrapMachineInsn::Load16);
// We do have code to generate LDURB insns, but it appears to not be used.
// 11 111 00000 0 imm9 00 n t = STUR Xt, [Xn|SP, #imm9]
case 0b11'111'00000'0:
return Some(TrapMachineInsn::Store64);
// 10 111 00000 0 imm9 00 n t = STUR Wt, [Xn|SP, #imm9]
case 0b10'111'00000'0:
return Some(TrapMachineInsn::Store32);
// 01 111 00000 0 imm9 00 n t = STURH Wt, [Xn|SP, #imm9]
case 0b01'111'00000'0:
return Some(TrapMachineInsn::Store16);
// STURB missing?
// Sign extending loads:
// 10 111 000 10 0 imm9 00 n t = LDURSW Xt, [Xn|SP, #imm9]
case 0b10'111'000'10'0:
return Some(TrapMachineInsn::Load32);
// 01 111 000 11 0 imm9 00 n t = LDURSH Wt, [Xn|SP, #imm9]
// 01 111 000 10 0 imm9 00 n t = LDURSH Xt, [Xn|SP, #imm9]
case 0b01'111'000'11'0:
case 0b01'111'000'10'0:
return Some(TrapMachineInsn::Load16);
}
}
// Sign extending loads, reg + offset, scaled
switch (INSN(31, 22)) {
// 10 111 001 10 imm12 n t = LDRSW Xt, [Xn|SP, #imm12 * 4]
case 0b10'111'001'10:
return Some(TrapMachineInsn::Load32);
// 01 111 001 10 imm12 n t = LDRSH Xt, [Xn|SP, #imm12 * 2]
// 01 111 001 11 imm12 n t = LDRSH Wt, [Xn|SP, #imm12 * 2]
case 0b01'111'001'10:
case 0b01'111'001'11:
return Some(TrapMachineInsn::Load16);
// 00 111 001 10 imm12 n t = LDRSB Xt, [Xn|SP, #imm12 * 1]
// 00 111 001 11 imm12 n t = LDRSB Wt, [Xn|SP, #imm12 * 1]
case 0b00'111'001'10:
case 0b00'111'001'11:
return Some(TrapMachineInsn::Load8);
}
// Sign extending loads, reg + reg(extended/shifted)
if (INSN(11, 10) == 0b10) {
switch (INSN(31, 21)) {
// 10 1110001 01 m opt s 10 n t = LDRSW Xt, [Xn|SP, R<m>{ext/sh}]
case 0b10'1110001'01:
return Some(TrapMachineInsn::Load32);
// 01 1110001 01 m opt s 10 n t = LDRSH Xt, [Xn|SP, R<m>{ext/sh}]
case 0b01'1110001'01:
return Some(TrapMachineInsn::Load16);
// 01 1110001 11 m opt s 10 n t = LDRSH Wt, [Xn|SP, R<m>{ext/sh}]
case 0b01'1110001'11:
return Some(TrapMachineInsn::Load16);
// 00 1110001 01 m opt s 10 n t = LDRSB Xt, [Xn|SP, R<m>{ext/sh}]
case 0b00'1110001'01:
return Some(TrapMachineInsn::Load8);
// 00 1110001 11 m opt s 10 n t = LDRSB Wt, [Xn|SP, R<m>{ext/sh}]
case 0b00'1110001'11:
return Some(TrapMachineInsn::Load8);
}
}
// Plain and zero-extending loads/stores, reg + reg(extended/shifted)
if (INSN(11, 10) == 0b10) {
switch (INSN(31, 21)) {
// 11 111000001 m opt s 10 n t = STR Xt, [Xn|SP, Rm{ext/sh}]
case 0b11'111000001:
return Some(TrapMachineInsn::Store64);
// 10 111000001 m opt s 10 n t = STR Wt, [Xn|SP, Rm{ext/sh}]
case 0b10'111000001:
return Some(TrapMachineInsn::Store32);
// 01 111000001 m opt s 10 n t = STRH Wt, [Xn|SP, Rm{ext/sh}]
case 0b01'111000001:
return Some(TrapMachineInsn::Store16);
// 00 111000001 m opt s 10 n t = STRB Wt, [Xn|SP, Rm{ext/sh}]
case 0b00'111000001:
return Some(TrapMachineInsn::Store8);
// 11 111000011 m opt s 10 n t = LDR Xt, [Xn|SP, Rm{ext/sh}]
case 0b11'111000011:
return Some(TrapMachineInsn::Load64);
// 10 111000011 m opt s 10 n t = LDR Wt, [Xn|SP, Rm{ext/sh}]
case 0b10'111000011:
return Some(TrapMachineInsn::Load32);
// 01 111000011 m opt s 10 n t = LDRH Wt, [Xn|SP, Rm{ext/sh}]
case 0b01'111000011:
return Some(TrapMachineInsn::Load16);
// 00 111000011 m opt s 10 n t = LDRB Wt, [Xn|SP, Rm{ext/sh}]
case 0b00'111000011:
return Some(TrapMachineInsn::Load8);
}
}
// SIMD - scalar FP
switch (INSN(31, 22)) {
// 11 111 101 00 imm12 n t = STR Dt, [Xn|SP + imm12 * 8]
case 0b11'111'101'00:
return Some(TrapMachineInsn::Store64);
// 10 111 101 00 imm12 n t = STR St, [Xn|SP + imm12 * 4]
case 0b10'111'101'00:
return Some(TrapMachineInsn::Store32);
// 11 111 101 01 imm12 n t = LDR Dt, [Xn|SP + imm12 * 8]
case 0b11'111'101'01:
return Some(TrapMachineInsn::Load64);
// 10 111 101 01 imm12 n t = LDR St, [Xn|SP + imm12 * 4]
case 0b10'111'101'01:
return Some(TrapMachineInsn::Load32);
}
if (INSN(11, 10) == 0b00) {
switch (INSN(31, 21)) {
// 11 111 100 00 0 imm9 00 n t = STUR Dt, [Xn|SP, #imm9]
case 0b11'111'100'00'0:
return Some(TrapMachineInsn::Store64);
// 10 111 100 00 0 imm9 00 n t = STUR St, [Xn|SP, #imm9]
case 0b10'111'100'00'0:
return Some(TrapMachineInsn::Store32);
// 11 111 100 01 0 imm9 00 n t = LDUR Dt, [Xn|SP, #imm9]
case 0b11'111'100'01'0:
return Some(TrapMachineInsn::Load64);
// 10 111 100 01 0 imm9 00 n t = LDUR St, [Xn|SP, #imm9]
case 0b10'111'100'01'0:
return Some(TrapMachineInsn::Load32);
}
}
if (INSN(11, 10) == 0b10) {
switch (INSN(31, 21)) {
// 11 111100 001 m opt s 10 n t = STR Dt, [Xn|SP, Rm{ext/sh}]
case 0b11'111100'001:
return Some(TrapMachineInsn::Store64);
// 10 111100 001 m opt s 10 n t = STR St, [Xn|SP, Rm{ext/sh}]
case 0b10'111100'001:
return Some(TrapMachineInsn::Store32);
// 11 111100 011 m opt s 10 n t = LDR Dt, [Xn|SP, Rm{ext/sh}]
case 0b11'111100'011:
return Some(TrapMachineInsn::Load64);
// 10 111100 011 m opt s 10 n t = LDR St, [Xn|SP, Rm{ext/sh}]
case 0b10'111100'011:
return Some(TrapMachineInsn::Load32);
}
}
// SIMD - whole register
if (INSN(11, 10) == 0b00) {
// 00 111 100 10 0 imm9 00 n t = STUR Qt, [Xn|SP, #imm9]
if (INSN(31, 21) == 0b00'111'100'10'0) {
return Some(TrapMachineInsn::Store128);
}
// 00 111 100 11 0 imm9 00 n t = LDUR Qt, [Xn|SP, #imm9]
if (INSN(31, 21) == 0b00'111'100'11'0) {
return Some(TrapMachineInsn::Load128);
}
}
// 00 111 101 10 imm12 n t = STR Qt, [Xn|SP + imm12 * 16]
if (INSN(31, 22) == 0b00'111'101'10) {
return Some(TrapMachineInsn::Store128);
}
// 00 111 101 11 imm12 n t = LDR Qt, [Xn|SP + imm12 * 16]
if (INSN(31, 22) == 0b00'111'101'11) {
return Some(TrapMachineInsn::Load128);
}
if (INSN(11, 10) == 0b10) {
// 00 111100 101 m opt s 10 n t = STR Qt, [Xn|SP, Rm{ext/sh}]
if (INSN(31, 21) == 0b00'111100'101) {
return Some(TrapMachineInsn::Store128);
}
// 00 111100 111 m opt s 10 n t = LDR Qt, [Xn|SP, Rm{ext/sh}]
if (INSN(31, 21) == 0b00'111100'111) {
return Some(TrapMachineInsn::Load128);
}
}
// Atomics - loads/stores "exclusive" (with reservation) (LL/SC)
switch (INSN(31, 10)) {
// 11 001000 010 11111 0 11111 n t = LDXR Xt, [Xn|SP]
case 0b11'001000'010'11111'0'11111:
return Some(TrapMachineInsn::Load64);
// 10 001000 010 11111 0 11111 n t = LDXR Wt, [Xn|SP]
case 0b10'001000'010'11111'0'11111:
return Some(TrapMachineInsn::Load32);
// 01 001000 010 11111 0 11111 n t = LDXRH Wt, [Xn|SP]
case 0b01'001000'010'11111'0'11111:
return Some(TrapMachineInsn::Load16);
// 00 001000 010 11111 0 11111 n t = LDXRB Wt, [Xn|SP]
case 0b00'001000'010'11111'0'11111:
return Some(TrapMachineInsn::Load8);
// We are never asked to examine store-exclusive instructions, because any
// store-exclusive should be preceded by a load-exclusive instruction of
// the same size and for the same address. So the TrapSite is omitted for
// the store-exclusive since the load-exclusive will trap first.
}
// Atomics - atomic memory operations which do (LD- variants) or do not
// (ST-variants) return the original value at the location.
// 11 111 0000 11 s 0 000 00 n 11111 = STADDL Xs, [Xn|SP]
// 10 111 0000 11 s 0 000 00 n 11111 = STADDL Ws, [Xn|SP]
// 01 111 0000 11 s 0 000 00 n 11111 = STADDLH Ws, [Xn|SP]
// 00 111 0000 11 s 0 000 00 n 11111 = STADDLB Ws, [Xn|SP]
// and the same for
// ---------------- 0 001 00 ------- = STCLRL
// ---------------- 0 010 00 ------- = STEORL
// ---------------- 0 011 00 ------- = STSETL
if (INSN(29, 21) == 0b111'0000'11 && INSN(4, 0) == 0b11111) {
switch (INSN(15, 10)) {
case 0b0'000'00: // STADDL
case 0b0'001'00: // STCLRL
case 0b0'010'00: // STEORL
case 0b0'011'00: // STSETL
return Some(TrapMachineInsn::Atomic);
}
}
// 11 111 0001 11 s 0 000 00 n t = LDADDAL Xs, Xt, [Xn|SP]
// 10 111 0001 11 s 0 000 00 n t = LDADDAL Ws, Wt, [Xn|SP]
// 01 111 0001 11 s 0 000 00 n t = LDADDALH Ws, Wt, [Xn|SP]
// 00 111 0001 11 s 0 000 00 n t = LDADDALB Ws, Wt, [Xn|SP]
// and the same for
// ---------------- 0 001 00 --- = LDCLRAL
// ---------------- 0 010 00 --- = LDEORAL
// ---------------- 0 011 00 --- = LDSETAL
if (INSN(29, 21) == 0b111'0001'11) {
switch (INSN(15, 10)) {
case 0b0'000'00: // LDADDAL
case 0b0'001'00: // LDCLRAL
case 0b0'010'00: // LDEORAL
case 0b0'011'00: // LDSETAL
return Some(TrapMachineInsn::Atomic);
}
}
// Atomics -- compare-and-swap and plain swap
// 11 001000111 s 111111 n t = CASAL Xs, Xt, [Xn|SP]
// 10 001000111 s 111111 n t = CASAL Ws, Wt, [Xn|SP]
// 01 001000111 s 111111 n t = CASALH Ws, Wt, [Xn|SP]
// 00 001000111 s 111111 n t = CASALB Ws, Wt, [Xn|SP]
if (INSN(29, 21) == 0b001000111 && INSN(15, 10) == 0b111111) {
return Some(TrapMachineInsn::Atomic);
}
// 11 11100011 1 s 100000 n t = SWPAL Xs, Xt, [Xn|SP]
// 10 11100011 1 s 100000 n t = SWPAL Ws, Wt, [Xn|SP]
// 01 11100011 1 s 100000 n t = SWPALH Ws, Wt, [Xn|SP]
// 00 11100011 1 s 100000 n t = SWPALB Ws, Wt, [Xn|SP]
if (INSN(29, 21) == 0b11100011'1 && INSN(15, 10) == 0b100000) {
return Some(TrapMachineInsn::Atomic);
}
# undef INSN
// The instruction was not identified.
// This is useful for diagnosing decoding failures.
// if (0) {
// fprintf(stderr, "insn = ");
// for (int i = 31; i >= 0; i--) {
// fprintf(stderr, "%c", ((insn >> i) & 1) ? '1' : '0');
// if (i < 31 && (i % 4) == 0) fprintf(stderr, " ");
// }
// fprintf(stderr, "\n");
// }
return Nothing();
}
// =================================================================== arm ====
# elif defined(JS_CODEGEN_ARM)
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
// Almost all AArch32 instructions that use the ARM encoding (not Thumb) use
// bits 31:28 as the guarding condition. Since we do not expect to
// encounter conditional loads or stores, most of the following is hardcoded
// to check that those bits are 1110 (0xE), which is the "always execute"
// condition. An exception is Neon instructions, which are never
// conditional and so have those bits set to 1111 (0xF).
// Check instruction alignment.
MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
const uint32_t insn = *(uint32_t*)insnAddr;
# define INSN(_maxIx, _minIx) \
((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
// MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
if (insn == 0xE7F000F0) {
return Some(TrapMachineInsn::OfficialUD);
}
// 31 27 23 19 15 11
// cond 0101 U000 Rn Rt imm12 = STR<cond> Rt, [Rn, +/- #imm12]
// cond 0101 U001 Rn Rt imm12 = LDR<cond> Rt, [Rn, +/- #imm12]
// cond 0101 U100 Rn Rt imm12 = STRB<cond> Rt, [Rn, +/- #imm12]
// cond 0101 U101 Rn Rt imm12 = LDRB<cond> Rt, [Rn, +/- #imm12]
// if cond != 1111 and Rn != 1111
// U = 1 for +, U = 0 for -
if (INSN(31, 28) == 0b1110 // unconditional
&& INSN(27, 24) == 0b0101 && INSN(19, 16) != 0b1111) {
switch (INSN(22, 20)) {
case 0b000:
return Some(TrapMachineInsn::Store32);
case 0b001:
return Some(TrapMachineInsn::Load32);
case 0b100:
return Some(TrapMachineInsn::Store8);
case 0b101:
return Some(TrapMachineInsn::Load8);
default:
break;
}
}
// 31 27 23 19 15 11 7 3
// cond 0001 U100 Rn Rt imm4 1011 imm4 = STRH<cond> Rt, [Rn +/- #imm8]
// cond 0001 U101 Rn Rt imm4 1101 imm4 = LDRSB<cond> Rt, [Rn +/- #imm8]
// cond 0001 U101 Rn Rt imm4 1111 imm4 = LDRSH<cond> Rt, [Rn +/- #imm8]
// cond 0001 U101 Rn Rt imm4 1011 imm4 = LDRH<cond> Rt, [Rn +/- #imm8]
// U = 1 for +, U = 0 for -
if (INSN(31, 28) == 0b1110 // unconditional
&& INSN(27, 24) == 0b0001 && INSN(22, 21) == 0b10) {
switch ((INSN(20, 20) << 4) | INSN(7, 4)) {
case 0b0'1011:
return Some(TrapMachineInsn::Store16);
case 0b1'1101:
return Some(TrapMachineInsn::Load8);
case 0b1'1111:
return Some(TrapMachineInsn::Load16);
case 0b1'1011:
return Some(TrapMachineInsn::Load16);
default:
break;
}
}
// clang-format off
//
// 31 27 23 19 15 11 6 4 3
// cond 0111 U000 Rn Rt shimm 00 0 Rm = STR<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
// cond 0111 U100 Rn Rt shimm 00 0 Rm = STRB<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
// cond 0111 U001 Rn Rt shimm 00 0 Rm = LDR<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
// cond 0111 U101 Rn Rt shimm 00 0 Rm = LDRB<cond> Rt, [Rn, +/- Rm, [lsl #shimm]]
// U = 1 for +, U = 0 for -
//
// clang-format on
if (INSN(31, 28) == 0b1110 // unconditional
&& INSN(27, 24) == 0b0111 && INSN(6, 4) == 0b00'0 // lsl
) {
switch (INSN(22, 20)) {
case 0b000:
return Some(TrapMachineInsn::Store32);
case 0b100:
return Some(TrapMachineInsn::Store8);
case 0b001:
return Some(TrapMachineInsn::Load32);
case 0b101:
return Some(TrapMachineInsn::Load8);
default:
break;
}
}
// 31 27 23 19 15 11 7 3
// cond 0001 U000 Rn Rt 0000 1011 Rm = STRH<cond> Rt, [Rn, +/- Rm]
// cond 0001 U001 Rn Rt 0000 1011 Rm = LDRH<cond> Rt, [Rn, +/- Rm]
// cond 0001 U001 Rn Rt 0000 1101 Rm = LDRSB<cond> Rt, [Rn, +/- Rm]
// cond 0001 U001 Rn Rt 0000 1111 Rm = LDRSH<cond> Rt, [Rn, +/- Rm]
if (INSN(31, 28) == 0b1110 // unconditional
&& INSN(27, 24) == 0b0001 && INSN(22, 21) == 0b00 &&
INSN(11, 8) == 0b0000) {
switch ((INSN(20, 20) << 4) | INSN(7, 4)) {
case 0b0'1011:
return Some(TrapMachineInsn::Store16);
case 0b1'1011:
return Some(TrapMachineInsn::Load16);
case 0b1'1101:
return Some(TrapMachineInsn::Load8);
case 0b1'1111:
return Some(TrapMachineInsn::Load16);
default:
break;
}
}
// 31 27 23 19 15 11 7
// cond 1101 UD00 Rn Vd 1010 imm8 = VSTR<cond> Sd, [Rn +/- #imm8]
// cond 1101 UD00 Rn Vd 1011 imm8 = VSTR<cond> Dd, [Rn +/- #imm8]
// cond 1101 UD01 Rn Vd 1010 imm8 = VLDR<cond> Sd, [Rn +/- #imm8]
// cond 1101 UD01 Rn Vd 1011 imm8 = VLDR<cond> Dd, [Rn +/- #imm8]
// U = 1 for +, U = 0 for -
// D is an extension of Vd (so can be anything)
if (INSN(31, 28) == 0b1110 // unconditional
&& INSN(27, 24) == 0b1101 && INSN(21, 21) == 0b0) {
switch ((INSN(20, 20) << 4) | (INSN(11, 8))) {
case 0b0'1010:
return Some(TrapMachineInsn::Store32);
case 0b0'1011:
return Some(TrapMachineInsn::Store64);
case 0b1'1010:
return Some(TrapMachineInsn::Load32);
case 0b1'1011:
return Some(TrapMachineInsn::Load64);
default:
break;
}
}
// 31 27 23 19 15 11 7 3
// 1111 0100 1D00 Rn Vd 1000 0000 1111 = VST1.32 {Dd[0], [Rn]
// 1111 0100 1D10 Rn Vd 1000 0000 1111 = VLD1.32 {Dd[0], [Rn]
if (INSN(31, 23) == 0b1111'0100'1 && INSN(20, 20) == 0 &&
INSN(11, 0) == 0b1000'0000'1111) {
return INSN(21, 21) == 1 ? Some(TrapMachineInsn::Load32)
: Some(TrapMachineInsn::Store32);
}
// 31 27 23 19 15 11 7 3
// 1111 0100 0D00 Rn Vd 0111 1100 1111 = VST1.64 {Dd], [Rn]
// 1111 0100 0D10 Rn Vd 0111 1100 1111 = VLD1.64 {Dd], [Rn]
if (INSN(31, 23) == 0b1111'0100'0 && INSN(20, 20) == 0 &&
INSN(11, 0) == 0b0111'1100'1111) {
return INSN(21, 21) == 1 ? Some(TrapMachineInsn::Load64)
: Some(TrapMachineInsn::Store64);
}
// 31 27 23 19 15 11 7 3
// cond 0001 1101 n t 1111 1001 1111 = LDREXB<cond> Rt, [Rn]
// cond 0001 1111 n t 1111 1001 1111 = LDREXH<cond> Rt, [Rn]
// cond 0001 1001 n t 1111 1001 1111 = LDREX<cond> Rt, [Rn]
// cond 0001 1011 n t 1111 1001 1111 = LDREXD<cond> Rt, [Rn]
if (INSN(31, 23) == 0b1110'0001'1 && INSN(11, 0) == 0b1111'1001'1111) {
switch (INSN(22, 20)) {
case 0b101:
return Some(TrapMachineInsn::Load8);
case 0b111:
return Some(TrapMachineInsn::Load16);
case 0b001:
return Some(TrapMachineInsn::Load32);
case 0b011:
return Some(TrapMachineInsn::Load64);
default:
break;
}
}
# undef INSN
// The instruction was not identified.
// This is useful for diagnosing decoding failures.
// if (0) {
// fprintf(stderr, "insn = ");
// for (int i = 31; i >= 0; i--) {
// fprintf(stderr, "%c", ((insn >> i) & 1) ? '1' : '0');
// if (i < 31 && (i % 4) == 0) fprintf(stderr, " ");
// }
// fprintf(stderr, "\n");
// }
return Nothing();
}
// =============================================================== riscv64 ====
# elif defined(JS_CODEGEN_RISCV64)
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
// Check instruction alignment.
MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
const uint32_t insn = *(uint32_t*)insnAddr;
# define INSN(_maxIx, _minIx) \
((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
// MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
if (insn ==
(RO_CSRRWI | csr_cycle << kCsrShift | kWasmTrapCode << kRs1Shift)) {
return Some(TrapMachineInsn::OfficialUD);
}
if (INSN(6, 0) == STORE) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Load64);
case 0b010:
return Some(TrapMachineInsn::Load32);
case 0b001:
return Some(TrapMachineInsn::Load16);
case 0b000:
return Some(TrapMachineInsn::Load8);
default:
break;
}
}
if (INSN(6, 0) == LOAD) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Store64);
case 0b010:
return Some(TrapMachineInsn::Store32);
case 0b001:
return Some(TrapMachineInsn::Store16);
case 0b000:
return Some(TrapMachineInsn::Store8);
default:
break;
}
}
if (INSN(6, 0) == LOAD_FP) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Load64);
case 0b010:
return Some(TrapMachineInsn::Load32);
default:
break;
}
}
if (INSN(6, 0) == STORE_FP) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Store64);
case 0b010:
return Some(TrapMachineInsn::Store32);
default:
break;
}
}
if (INSN(6, 0) == AMO && INSN(31, 27) == 00010) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Load64);
case 0b010:
return Some(TrapMachineInsn::Load32);
default:
break;
}
}
if (INSN(6, 0) == AMO && INSN(31, 27) == 00011) {
switch (INSN(14, 12)) {
case 0b011:
return Some(TrapMachineInsn::Store64);
case 0b010:
return Some(TrapMachineInsn::Store32);
default:
break;
}
}
# undef INSN
return Nothing();
}
// =========================================================== loongarch64 ====
# elif defined(JS_CODEGEN_LOONG64)
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
// Check instruction alignment.
MOZ_ASSERT(0 == (uintptr_t(insnAddr) & 3));
const uint32_t insn = *(uint32_t*)insnAddr;
# define INSN(_maxIx, _minIx) \
((insn >> (_minIx)) & ((uint32_t(1) << ((_maxIx) - (_minIx) + 1)) - 1))
// LoongArch instructions encoding document:
// https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN#table-of-instruction-encoding
// MacroAssembler::wasmTrapInstruction uses this to create SIGILL.
// break 0x6
if (insn == 0x002A0006) {
return Some(TrapMachineInsn::OfficialUD);
}
// Loads/stores with reg + offset (si12).
if (INSN(31, 26) == 0b001010) {
switch (INSN(25, 22)) {
// ld.b rd, rj, si12
case 0b0000:
return Some(TrapMachineInsn::Load8);
// ld.h rd, rj, si12
case 0b0001:
return Some(TrapMachineInsn::Load16);
// ld.w rd, rj, si12
case 0b0010:
return Some(TrapMachineInsn::Load32);
// ld.d rd, rj, si12
case 0b0011:
return Some(TrapMachineInsn::Load64);
// st.b rd, rj, si12
case 0b0100:
return Some(TrapMachineInsn::Store8);
// st.h rd, rj, si12
case 0b0101:
return Some(TrapMachineInsn::Store16);
// st.w rd, rj, si12
case 0b0110:
return Some(TrapMachineInsn::Store32);
// st.d rd, rj, si12
case 0b0111:
return Some(TrapMachineInsn::Store64);
// ld.bu rd, rj, si12
case 0b1000:
return Some(TrapMachineInsn::Load8);
// ld.hu rd, rj, si12
case 0b1001:
return Some(TrapMachineInsn::Load16);
// ld.wu rd, rj, si12
case 0b1010:
return Some(TrapMachineInsn::Load32);
// preld hint, rj, si12
case 0b1011:
break;
// fld.s fd, rj, si12
case 0b1100:
return Some(TrapMachineInsn::Load32);
// fst.s fd, rj, si12
case 0b1101:
return Some(TrapMachineInsn::Store32);
// fld.d fd, rj, si12
case 0b1110:
return Some(TrapMachineInsn::Load64);
// fst.s fd, rj, si12
case 0b1111:
return Some(TrapMachineInsn::Store64);
default:
break;
}
}
// Loads/stores with reg + reg.
if (INSN(31, 22) == 0b0011100000 && INSN(17, 15) == 0b000) {
switch (INSN(21, 18)) {
// ldx.b rd, rj, rk
case 0b0000:
return Some(TrapMachineInsn::Load8);
// ldx.h rd, rj, rk
case 0b0001:
return Some(TrapMachineInsn::Load16);
// ldx.w rd, rj, rk
case 0b0010:
return Some(TrapMachineInsn::Load32);
// ldx.d rd, rj, rk
case 0b0011:
return Some(TrapMachineInsn::Load64);
// stx.b rd, rj, rk
case 0b0100:
return Some(TrapMachineInsn::Store8);
// stx.h rd, rj, rk
case 0b0101:
return Some(TrapMachineInsn::Store16);
// stx.w rd, rj, rk
case 0b0110:
return Some(TrapMachineInsn::Store32);
// stx.d rd, rj, rk
case 0b0111:
return Some(TrapMachineInsn::Store64);
// ldx.bu rd, rj, rk
case 0b1000:
return Some(TrapMachineInsn::Load8);
// ldx.hu rd, rj, rk
case 0b1001:
return Some(TrapMachineInsn::Load16);
// ldx.wu rd, rj, rk
case 0b1010:
return Some(TrapMachineInsn::Load32);
// preldx hint, rj, rk
case 0b1011:
break;
// fldx.s fd, rj, rk
case 0b1100:
return Some(TrapMachineInsn::Load32);
// fldx.d fd, rj, rk
case 0b1101:
return Some(TrapMachineInsn::Load64);
// fstx.s fd, rj, rk
case 0b1110:
return Some(TrapMachineInsn::Store32);
// fstx.d fd, rj, rk
case 0b1111:
return Some(TrapMachineInsn::Store64);
default:
break;
}
}
// Loads/stores with reg + offset (si14).
// 1. Atomics - loads/stores "exclusive" (with reservation) (LL/SC)
// 2. {ld/st}ptr.{w/d}
if (INSN(31, 27) == 0b00100) {
switch (INSN(26, 24)) {
// ll.w rd, rj, si14
case 0b000:
return Some(TrapMachineInsn::Load32);
// ll.d rd, rj, si14
case 0b010:
return Some(TrapMachineInsn::Load64);
// ldptr.w rd, rj, si14
case 0b100:
return Some(TrapMachineInsn::Load32);
// stptr.w rd, rj, si14
case 0b101:
return Some(TrapMachineInsn::Store32);
// ldptr.d rd, rj, si14
case 0b110:
return Some(TrapMachineInsn::Load64);
// stptr.d rd, rj, si14
case 0b111:
return Some(TrapMachineInsn::Store64);
default:
break;
// We are never asked to examine store-exclusive instructions, because
// any store-exclusive should be preceded by a load-exclusive
// instruction of the same size and for the same address. So the
// TrapSite is omitted for the store-exclusive since the load-exclusive
// will trap first.
}
}
# undef INSN
return Nothing();
}
// ================================================================== none ====
# elif defined(JS_CODEGEN_NONE)
Maybe<TrapMachineInsn> SummarizeTrapInstruction(const uint8_t* insnAddr) {
MOZ_CRASH();
}
// ================================================================= other ====
# else
# error "SummarizeTrapInstruction: not implemented on this architecture"
# endif // defined(JS_CODEGEN_*)
#endif // defined(DEBUG)
} // namespace wasm
} // namespace js
|