1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: flex" */
#include "nsFlexContainerFrame.h"
#include <algorithm>
#include "gfxContext.h"
#include "mozilla/Baseline.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/CSSOrderAwareFrameIterator.h"
#include "mozilla/Logging.h"
#include "mozilla/PresShell.h"
#include "mozilla/StaticPrefs_layout.h"
#include "mozilla/WritingModes.h"
#include "nsBlockFrame.h"
#include "nsContentUtils.h"
#include "nsDebug.h"
#include "nsDisplayList.h"
#include "nsFieldSetFrame.h"
#include "nsIFrameInlines.h"
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
using namespace mozilla;
using namespace mozilla::layout;
// Convenience typedefs for helper classes that we forward-declare in .h file
// (so that nsFlexContainerFrame methods can use them as parameters):
using FlexItem = nsFlexContainerFrame::FlexItem;
using FlexLine = nsFlexContainerFrame::FlexLine;
using FlexboxAxisTracker = nsFlexContainerFrame::FlexboxAxisTracker;
using StrutInfo = nsFlexContainerFrame::StrutInfo;
using CachedBAxisMeasurement = nsFlexContainerFrame::CachedBAxisMeasurement;
using CachedFlexItemData = nsFlexContainerFrame::CachedFlexItemData;
static mozilla::LazyLogModule gFlexContainerLog("FlexContainer");
// FLEX_LOG is a top-level general log print.
#define FLEX_LOG(message, ...) \
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, (message, ##__VA_ARGS__));
// FLEX_ITEM_LOG is a top-level log print for flex item.
#define FLEX_ITEM_LOG(item_frame, message, ...) \
MOZ_LOG(gFlexContainerLog, LogLevel::Debug, \
("Flex item %p: " message, item_frame, ##__VA_ARGS__));
// FLEX_LOGV is a verbose log print with built-in two spaces indentation. The
// convention to use FLEX_LOGV is that FLEX_LOGV statements should generally be
// preceded by one FLEX_LOG or FLEX_ITEM_LOG so that there's no need to repeat
// information presented in the preceding LOG statement. If you want extra level
// of indentation, just add two extra spaces at the start of the message string.
#define FLEX_LOGV(message, ...) \
MOZ_LOG(gFlexContainerLog, LogLevel::Verbose, (" " message, ##__VA_ARGS__));
static const char* BoolToYesNo(bool aArg) { return aArg ? "yes" : "no"; }
// Returns true if aFlexContainer is a frame for some element that has
// display:-webkit-{inline-}box (or -moz-{inline-}box). aFlexContainer is
// expected to be an instance of nsFlexContainerFrame (enforced with an assert);
// otherwise, this function's state-bit-check here is bogus.
static bool IsLegacyBox(const nsIFrame* aFlexContainer) {
MOZ_ASSERT(aFlexContainer->IsFlexContainerFrame(),
"only flex containers may be passed to this function");
return aFlexContainer->HasAnyStateBits(
NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
}
// Returns the OrderState enum we should pass to CSSOrderAwareFrameIterator
// (depending on whether aFlexContainer has
// NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER state bit).
static CSSOrderAwareFrameIterator::OrderState OrderStateForIter(
const nsFlexContainerFrame* aFlexContainer) {
return aFlexContainer->HasAnyStateBits(
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
? CSSOrderAwareFrameIterator::OrderState::Ordered
: CSSOrderAwareFrameIterator::OrderState::Unordered;
}
// Returns the OrderingProperty enum that we should pass to
// CSSOrderAwareFrameIterator (depending on whether it's a legacy box).
static CSSOrderAwareFrameIterator::OrderingProperty OrderingPropertyForIter(
const nsFlexContainerFrame* aFlexContainer) {
return IsLegacyBox(aFlexContainer)
? CSSOrderAwareFrameIterator::OrderingProperty::BoxOrdinalGroup
: CSSOrderAwareFrameIterator::OrderingProperty::Order;
}
// Returns the "align-items" value that's equivalent to the legacy "box-align"
// value in the given style struct.
static StyleAlignFlags ConvertLegacyStyleToAlignItems(
const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-align corresponds to modern "align-items"
switch (aStyleXUL->mBoxAlign) {
case StyleBoxAlign::Stretch:
return StyleAlignFlags::STRETCH;
case StyleBoxAlign::Start:
return StyleAlignFlags::FLEX_START;
case StyleBoxAlign::Center:
return StyleAlignFlags::CENTER;
case StyleBoxAlign::Baseline:
return StyleAlignFlags::BASELINE;
case StyleBoxAlign::End:
return StyleAlignFlags::FLEX_END;
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxAlign enum value");
// Fall back to default value of "align-items" property:
return StyleAlignFlags::STRETCH;
}
// Returns the "justify-content" value that's equivalent to the legacy
// "box-pack" value in the given style struct.
static StyleContentDistribution ConvertLegacyStyleToJustifyContent(
const nsStyleXUL* aStyleXUL) {
// -[moz|webkit]-box-pack corresponds to modern "justify-content"
switch (aStyleXUL->mBoxPack) {
case StyleBoxPack::Start:
return {StyleAlignFlags::FLEX_START};
case StyleBoxPack::Center:
return {StyleAlignFlags::CENTER};
case StyleBoxPack::End:
return {StyleAlignFlags::FLEX_END};
case StyleBoxPack::Justify:
return {StyleAlignFlags::SPACE_BETWEEN};
}
MOZ_ASSERT_UNREACHABLE("Unrecognized mBoxPack enum value");
// Fall back to default value of "justify-content" property:
return {StyleAlignFlags::FLEX_START};
}
// Check if the size is auto or it is a keyword in the block axis.
// |aIsInline| should represent whether aSize is in the inline axis, from the
// perspective of the writing mode of the flex item that the size comes from.
//
// max-content and min-content should behave as property's initial value.
// Bug 567039: We treat -moz-fit-content and -moz-available as property's
// initial value for now.
static inline bool IsAutoOrEnumOnBSize(const StyleSize& aSize, bool aIsInline) {
return aSize.IsAuto() || (!aIsInline && !aSize.IsLengthPercentage());
}
// Encapsulates our flex container's main & cross axes. This class is backed by
// a FlexboxAxisInfo helper member variable, and it adds some convenience APIs
// on top of what that struct offers.
class MOZ_STACK_CLASS nsFlexContainerFrame::FlexboxAxisTracker {
public:
explicit FlexboxAxisTracker(const nsFlexContainerFrame* aFlexContainer);
// Accessors:
LogicalAxis MainAxis() const {
return IsRowOriented() ? LogicalAxis::Inline : LogicalAxis::Block;
}
LogicalAxis CrossAxis() const {
return IsRowOriented() ? LogicalAxis::Block : LogicalAxis::Inline;
}
LogicalSide MainAxisStartSide() const;
LogicalSide MainAxisEndSide() const {
return GetOppositeSide(MainAxisStartSide());
}
LogicalSide CrossAxisStartSide() const;
LogicalSide CrossAxisEndSide() const {
return GetOppositeSide(CrossAxisStartSide());
}
mozilla::Side MainAxisPhysicalStartSide() const {
return mWM.PhysicalSide(MainAxisStartSide());
}
mozilla::Side MainAxisPhysicalEndSide() const {
return mWM.PhysicalSide(MainAxisEndSide());
}
mozilla::Side CrossAxisPhysicalStartSide() const {
return mWM.PhysicalSide(CrossAxisStartSide());
}
mozilla::Side CrossAxisPhysicalEndSide() const {
return mWM.PhysicalSide(CrossAxisEndSide());
}
// Returns the flex container's writing mode.
WritingMode GetWritingMode() const { return mWM; }
// Returns true if our main axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-direction: *-reverse')
bool IsMainAxisReversed() const { return mAxisInfo.mIsMainAxisReversed; }
// Returns true if our cross axis is in the reverse direction of our
// writing mode's corresponding axis. (From 'flex-wrap: *-reverse')
bool IsCrossAxisReversed() const { return mAxisInfo.mIsCrossAxisReversed; }
bool IsRowOriented() const { return mAxisInfo.mIsRowOriented; }
bool IsColumnOriented() const { return !IsRowOriented(); }
// aSize is expected to match the flex container's WritingMode.
nscoord MainComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.ISize(mWM) : aSize.BSize(mWM);
}
int32_t MainComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.width : aIntSize.height;
}
// aSize is expected to match the flex container's WritingMode.
nscoord CrossComponent(const LogicalSize& aSize) const {
return IsRowOriented() ? aSize.BSize(mWM) : aSize.ISize(mWM);
}
int32_t CrossComponent(const LayoutDeviceIntSize& aIntSize) const {
return IsMainAxisHorizontal() ? aIntSize.height : aIntSize.width;
}
// NOTE: aMargin is expected to use the flex container's WritingMode.
nscoord MarginSizeInMainAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our main axis is the inline axis.
return IsRowOriented() ? aMargin.IStartEnd(mWM) : aMargin.BStartEnd(mWM);
}
nscoord MarginSizeInCrossAxis(const LogicalMargin& aMargin) const {
// If we're row-oriented, our cross axis is the block axis.
return IsRowOriented() ? aMargin.BStartEnd(mWM) : aMargin.IStartEnd(mWM);
}
/**
* Converts a "flex-relative" point (a main-axis & cross-axis coordinate)
* into a LogicalPoint, using the flex container's writing mode.
*
* @arg aMainCoord The main-axis coordinate -- i.e an offset from the
* main-start edge of the flex container's content box.
* @arg aCrossCoord The cross-axis coordinate -- i.e an offset from the
* cross-start edge of the flex container's content box.
* @arg aContainerMainSize The main size of flex container's content box.
* @arg aContainerCrossSize The cross size of flex container's content box.
* @return A LogicalPoint, with the flex container's writing mode, that
* represents the same position. The logical coordinates are
* relative to the flex container's content box.
*/
LogicalPoint LogicalPointFromFlexRelativePoint(
nscoord aMainCoord, nscoord aCrossCoord, nscoord aContainerMainSize,
nscoord aContainerCrossSize) const {
nscoord logicalCoordInMainAxis =
IsMainAxisReversed() ? aContainerMainSize - aMainCoord : aMainCoord;
nscoord logicalCoordInCrossAxis =
IsCrossAxisReversed() ? aContainerCrossSize - aCrossCoord : aCrossCoord;
return IsRowOriented() ? LogicalPoint(mWM, logicalCoordInMainAxis,
logicalCoordInCrossAxis)
: LogicalPoint(mWM, logicalCoordInCrossAxis,
logicalCoordInMainAxis);
}
/**
* Converts a "flex-relative" size (a main-axis & cross-axis size)
* into a LogicalSize, using the flex container's writing mode.
*
* @arg aMainSize The main-axis size.
* @arg aCrossSize The cross-axis size.
* @return A LogicalSize, with the flex container's writing mode, that
* represents the same size.
*/
LogicalSize LogicalSizeFromFlexRelativeSizes(nscoord aMainSize,
nscoord aCrossSize) const {
return IsRowOriented() ? LogicalSize(mWM, aMainSize, aCrossSize)
: LogicalSize(mWM, aCrossSize, aMainSize);
}
/**
* Converts a "flex-relative" ascent (the distance from the flex container's
* content-box cross-start edge to its baseline) into a logical ascent (the
* distance from the flex container's content-box block-start edge to its
* baseline).
*/
nscoord LogicalAscentFromFlexRelativeAscent(
nscoord aFlexRelativeAscent, nscoord aContentBoxCrossSize) const {
return (IsCrossAxisReversed() ? aContentBoxCrossSize - aFlexRelativeAscent
: aFlexRelativeAscent);
}
bool IsMainAxisHorizontal() const {
// If we're row-oriented, and our writing mode is NOT vertical,
// or we're column-oriented and our writing mode IS vertical,
// then our main axis is horizontal. This handles all cases:
return IsRowOriented() != mWM.IsVertical();
}
// Returns true if this flex item's inline axis in aItemWM is parallel (or
// antiparallel) to the container's main axis. Returns false, otherwise.
//
// Note: this is a helper used before constructing FlexItem. Inside of flex
// reflow code, FlexItem::IsInlineAxisMainAxis() is equivalent & more optimal.
bool IsInlineAxisMainAxis(WritingMode aItemWM) const {
return IsRowOriented() != GetWritingMode().IsOrthogonalTo(aItemWM);
}
// Maps justify-*: 'left' or 'right' to 'start' or 'end'.
StyleAlignFlags ResolveJustifyLeftRight(const StyleAlignFlags& aFlags) const {
MOZ_ASSERT(
aFlags == StyleAlignFlags::LEFT || aFlags == StyleAlignFlags::RIGHT,
"This helper accepts only 'LEFT' or 'RIGHT' flags!");
const auto wm = GetWritingMode();
const bool isJustifyLeft = aFlags == StyleAlignFlags::LEFT;
if (IsColumnOriented()) {
if (!wm.IsVertical()) {
// Container's alignment axis (main axis) is *not* parallel to the
// line-left <-> line-right axis or the physical left <-> physical right
// axis, so we map both 'left' and 'right' to 'start'.
return StyleAlignFlags::START;
}
MOZ_ASSERT(wm.PhysicalAxis(MainAxis()) == PhysicalAxis::Horizontal,
"Vertical column-oriented flex container's main axis should "
"be parallel to physical left <-> right axis!");
// Map 'left' or 'right' to 'start' or 'end', depending on its block flow
// direction.
return isJustifyLeft == wm.IsVerticalLR() ? StyleAlignFlags::START
: StyleAlignFlags::END;
}
MOZ_ASSERT(MainAxis() == LogicalAxis::Inline,
"Row-oriented flex container's main axis should be parallel to "
"line-left <-> line-right axis!");
// If we get here, we're operating on the flex container's inline axis,
// so we map 'left' to whichever of 'start' or 'end' corresponds to the
// *line-relative* left side; and similar for 'right'.
return isJustifyLeft == wm.IsBidiLTR() ? StyleAlignFlags::START
: StyleAlignFlags::END;
}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
FlexboxAxisTracker(const FlexboxAxisTracker&) = delete;
FlexboxAxisTracker& operator=(const FlexboxAxisTracker&) = delete;
private:
const WritingMode mWM; // The flex container's writing mode.
const FlexboxAxisInfo mAxisInfo;
};
/**
* Represents a flex item.
* Includes the various pieces of input that the Flexbox Layout Algorithm uses
* to resolve a flexible width.
*/
class nsFlexContainerFrame::FlexItem final {
public:
// Normal constructor:
FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize,
nscoord aMainMaxSize, nscoord aTentativeCrossSize,
nscoord aCrossMinSize, nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker);
// Simplified constructor, to be used only for generating "struts":
// (NOTE: This "strut" constructor uses the *container's* writing mode, which
// we'll use on this FlexItem instead of the child frame's real writing mode.
// This is fine - it doesn't matter what writing mode we use for a
// strut, since it won't render any content and we already know its size.)
FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize, WritingMode aContainerWM,
const FlexboxAxisTracker& aAxisTracker);
// Clone existing FlexItem for its underlying frame's continuation.
// @param aContinuation a continuation in our next-in-flow chain.
FlexItem CloneFor(nsIFrame* const aContinuation) const {
MOZ_ASSERT(Frame() == aContinuation->FirstInFlow(),
"aContinuation should be in aItem's continuation chain!");
FlexItem item(*this);
item.mFrame = aContinuation;
item.mHadMeasuringReflow = false;
return item;
}
// Accessors
nsIFrame* Frame() const { return mFrame; }
nscoord FlexBaseSize() const { return mFlexBaseSize; }
nscoord MainMinSize() const {
MOZ_ASSERT(!mNeedsMinSizeAutoResolution,
"Someone's using an unresolved 'auto' main min-size");
return mMainMinSize;
}
nscoord MainMaxSize() const { return mMainMaxSize; }
// Note: These return the main-axis position and size of our *content box*.
nscoord MainSize() const { return mMainSize; }
nscoord MainPosition() const { return mMainPosn; }
nscoord CrossMinSize() const { return mCrossMinSize; }
nscoord CrossMaxSize() const { return mCrossMaxSize; }
// Note: These return the cross-axis position and size of our *content box*.
nscoord CrossSize() const { return mCrossSize; }
nscoord CrossPosition() const { return mCrossPosn; }
// Lazy getter for mAscent or mAscentForLast.
nscoord ResolvedAscent(bool aUseFirstBaseline) const {
// XXX We should be using the *container's* writing-mode (mCBWM) here,
// instead of the item's (mWM). This is essentially bug 1155322.
nscoord& ascent = aUseFirstBaseline ? mAscent : mAscentForLast;
if (ascent != ReflowOutput::ASK_FOR_BASELINE) {
return ascent;
}
// Use GetFirstLineBaseline() or GetLastLineBaseline() as appropriate:
bool found = aUseFirstBaseline
? nsLayoutUtils::GetFirstLineBaseline(mWM, mFrame, &ascent)
: nsLayoutUtils::GetLastLineBaseline(mWM, mFrame, &ascent);
if (found) {
return ascent;
}
// If the nsLayoutUtils getter fails, then ask the frame directly:
auto baselineGroup = aUseFirstBaseline ? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
if (auto baseline = mFrame->GetNaturalBaselineBOffset(
mWM, baselineGroup, BaselineExportContext::Other)) {
// Offset for last baseline from `GetNaturalBaselineBOffset` originates
// from the frame's block end, so convert it back.
ascent = baselineGroup == BaselineSharingGroup::First
? *baseline
: mFrame->BSize(mWM) - *baseline;
return ascent;
}
// We couldn't determine a baseline, so we synthesize one from border box:
ascent = Baseline::SynthesizeBOffsetFromBorderBox(
mFrame, mWM, BaselineSharingGroup::First);
return ascent;
}
// Convenience methods to compute the main & cross size of our *margin-box*.
nscoord OuterMainSize() const {
return mMainSize + MarginBorderPaddingSizeInMainAxis();
}
nscoord OuterCrossSize() const {
return mCrossSize + MarginBorderPaddingSizeInCrossAxis();
}
// Convenience method to return the content-box block-size.
nscoord BSize() const {
return IsBlockAxisMainAxis() ? MainSize() : CrossSize();
}
// Convenience method to return the measured content-box block-size computed
// in nsFlexContainerFrame::MeasureBSizeForFlexItem().
Maybe<nscoord> MeasuredBSize() const;
// Convenience methods to synthesize a style main size or a style cross size
// with box-size considered, to provide the size overrides when constructing
// ReflowInput for flex items.
StyleSize StyleMainSize() const {
nscoord mainSize = MainSize();
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
mainSize += BorderPaddingSizeInMainAxis();
}
return StyleSize::LengthPercentage(
LengthPercentage::FromAppUnits(mainSize));
}
StyleSize StyleCrossSize() const {
nscoord crossSize = CrossSize();
if (Frame()->StylePosition()->mBoxSizing == StyleBoxSizing::Border) {
crossSize += BorderPaddingSizeInCrossAxis();
}
return StyleSize::LengthPercentage(
LengthPercentage::FromAppUnits(crossSize));
}
// Returns the distance between this FlexItem's baseline and the cross-start
// edge of its margin-box. Used in baseline alignment.
//
// (This function needs to be told which physical start side we're measuring
// the baseline from, so that it can look up the appropriate components from
// margin.)
nscoord BaselineOffsetFromOuterCrossEdge(mozilla::Side aStartSide,
bool aUseFirstLineBaseline) const;
double ShareOfWeightSoFar() const { return mShareOfWeightSoFar; }
bool IsFrozen() const { return mIsFrozen; }
bool HadMinViolation() const {
MOZ_ASSERT(!mIsFrozen, "min violation has no meaning for frozen items.");
return mHadMinViolation;
}
bool HadMaxViolation() const {
MOZ_ASSERT(!mIsFrozen, "max violation has no meaning for frozen items.");
return mHadMaxViolation;
}
bool WasMinClamped() const {
MOZ_ASSERT(mIsFrozen, "min clamping has no meaning for unfrozen items.");
return mHadMinViolation;
}
bool WasMaxClamped() const {
MOZ_ASSERT(mIsFrozen, "max clamping has no meaning for unfrozen items.");
return mHadMaxViolation;
}
// Indicates whether this item received a preliminary "measuring" reflow
// before its actual reflow.
bool HadMeasuringReflow() const { return mHadMeasuringReflow; }
// Indicates whether this item's computed cross-size property is 'auto'.
bool IsCrossSizeAuto() const;
// Indicates whether the cross-size property is set to something definite,
// for the purpose of preferred aspect ratio calculations.
bool IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const;
// Indicates whether this item's cross-size has been stretched (from having
// "align-self: stretch" with an auto cross-size and no auto margins in the
// cross axis).
bool IsStretched() const { return mIsStretched; }
bool IsFlexBaseSizeContentBSize() const {
return mIsFlexBaseSizeContentBSize;
}
bool IsMainMinSizeContentBSize() const { return mIsMainMinSizeContentBSize; }
// Indicates whether we need to resolve an 'auto' value for the main-axis
// min-[width|height] property.
bool NeedsMinSizeAutoResolution() const {
return mNeedsMinSizeAutoResolution;
}
bool HasAnyAutoMargin() const { return mHasAnyAutoMargin; }
BaselineSharingGroup ItemBaselineSharingGroup() const {
MOZ_ASSERT(mAlignSelf._0 == StyleAlignFlags::BASELINE ||
mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE,
"mBaselineSharingGroup only gets a meaningful value "
"for baseline-aligned items");
return mBaselineSharingGroup;
}
// Indicates whether this item is a "strut" left behind by an element with
// visibility:collapse.
bool IsStrut() const { return mIsStrut; }
// The main axis and cross axis are relative to mCBWM.
LogicalAxis MainAxis() const { return mMainAxis; }
LogicalAxis CrossAxis() const { return GetOrthogonalAxis(mMainAxis); }
// IsInlineAxisMainAxis() returns true if this item's inline axis is parallel
// (or antiparallel) to the container's main axis. Otherwise (i.e. if this
// item's inline axis is orthogonal to the container's main axis), this
// function returns false. The next 3 methods are all other ways of asking
// the same question, and only exist for readability at callsites (depending
// on which axes those callsites are reasoning about).
bool IsInlineAxisMainAxis() const { return mIsInlineAxisMainAxis; }
bool IsInlineAxisCrossAxis() const { return !mIsInlineAxisMainAxis; }
bool IsBlockAxisMainAxis() const { return !mIsInlineAxisMainAxis; }
bool IsBlockAxisCrossAxis() const { return mIsInlineAxisMainAxis; }
WritingMode GetWritingMode() const { return mWM; }
WritingMode ContainingBlockWM() const { return mCBWM; }
StyleAlignSelf AlignSelf() const { return mAlignSelf; }
StyleAlignFlags AlignSelfFlags() const { return mAlignSelfFlags; }
// Returns the flex factor (flex-grow or flex-shrink), depending on
// 'aIsUsingFlexGrow'.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetFlexFactor(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need flex factor after item is frozen");
return aIsUsingFlexGrow ? mFlexGrow : mFlexShrink;
}
// Returns the weight that we should use in the "resolving flexible lengths"
// algorithm. If we're using the flex grow factor, we just return that;
// otherwise, we return the "scaled flex shrink factor" (scaled by our flex
// base size, so that when both large and small items are shrinking, the large
// items shrink more).
//
// I'm calling this a "weight" instead of a "[scaled] flex-[grow|shrink]
// factor", to more clearly distinguish it from the actual flex-grow &
// flex-shrink factors.
//
// Asserts fatally if called on a frozen item (since frozen items are not
// flexible).
float GetWeight(bool aIsUsingFlexGrow) {
MOZ_ASSERT(!IsFrozen(), "shouldn't need weight after item is frozen");
if (aIsUsingFlexGrow) {
return mFlexGrow;
}
// We're using flex-shrink --> return mFlexShrink * mFlexBaseSize
if (mFlexBaseSize == 0) {
// Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so
// regardless of mFlexShrink, we should just return 0.
// (This is really a special-case for when mFlexShrink is infinity, to
// avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.)
return 0.0f;
}
return mFlexShrink * mFlexBaseSize;
}
bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
const AspectRatio& GetAspectRatio() const { return mAspectRatio; }
bool HasAspectRatio() const { return !!mAspectRatio; }
// Getters for margin:
// ===================
LogicalMargin Margin() const { return mMargin; }
nsMargin PhysicalMargin() const { return mMargin.GetPhysicalMargin(mCBWM); }
// Returns the margin component for a given LogicalSide in flex container's
// writing-mode.
nscoord GetMarginComponentForSide(LogicalSide aSide) const {
return mMargin.Side(aSide, mCBWM);
}
// Returns the total space occupied by this item's margins in the given axis
nscoord MarginSizeInMainAxis() const {
return mMargin.StartEnd(MainAxis(), mCBWM);
}
nscoord MarginSizeInCrossAxis() const {
return mMargin.StartEnd(CrossAxis(), mCBWM);
}
// Getters for border/padding
// ==========================
// Returns the total space occupied by this item's borders and padding in
// the given axis
LogicalMargin BorderPadding() const { return mBorderPadding; }
nscoord BorderPaddingSizeInMainAxis() const {
return mBorderPadding.StartEnd(MainAxis(), mCBWM);
}
nscoord BorderPaddingSizeInCrossAxis() const {
return mBorderPadding.StartEnd(CrossAxis(), mCBWM);
}
// Getter for combined margin/border/padding
// =========================================
// Returns the total space occupied by this item's margins, borders and
// padding in the given axis
nscoord MarginBorderPaddingSizeInMainAxis() const {
return MarginSizeInMainAxis() + BorderPaddingSizeInMainAxis();
}
nscoord MarginBorderPaddingSizeInCrossAxis() const {
return MarginSizeInCrossAxis() + BorderPaddingSizeInCrossAxis();
}
// Setters
// =======
// Helper to set the resolved value of min-[width|height]:auto for the main
// axis. (Should only be used if NeedsMinSizeAutoResolution() returns true.)
void UpdateMainMinSize(nscoord aNewMinSize) {
NS_ASSERTION(aNewMinSize >= 0,
"How did we end up with a negative min-size?");
MOZ_ASSERT(
mMainMaxSize == NS_UNCONSTRAINEDSIZE || mMainMaxSize >= aNewMinSize,
"Should only use this function for resolving min-size:auto, "
"and main max-size should be an upper-bound for resolved val");
MOZ_ASSERT(
mNeedsMinSizeAutoResolution &&
(mMainMinSize == 0 || mFrame->IsThemed(mFrame->StyleDisplay())),
"Should only use this function for resolving min-size:auto, "
"so we shouldn't already have a nonzero min-size established "
"(unless it's a themed-widget-imposed minimum size)");
if (aNewMinSize > mMainMinSize) {
mMainMinSize = aNewMinSize;
// Also clamp main-size to be >= new min-size:
mMainSize = std::max(mMainSize, aNewMinSize);
}
mNeedsMinSizeAutoResolution = false;
}
// This sets our flex base size, and then sets our main size to the
// resulting "hypothetical main size" (the base size clamped to our
// main-axis [min,max] sizing constraints).
void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) {
MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_UNCONSTRAINEDSIZE,
"flex base size shouldn't change after we're frozen "
"(unless we're just resolving an intrinsic size)");
mFlexBaseSize = aNewFlexBaseSize;
// Before we've resolved flexible lengths, we keep mMainSize set to
// the 'hypothetical main size', which is the flex base size, clamped
// to the [min,max] range:
mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize);
FLEX_ITEM_LOG(mFrame, "Set flex base size: %d, hypothetical main size: %d",
mFlexBaseSize, mMainSize);
}
// Setters used while we're resolving flexible lengths
// ---------------------------------------------------
// Sets the main-size of our flex item's content-box.
void SetMainSize(nscoord aNewMainSize) {
MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
mMainSize = aNewMainSize;
}
void SetShareOfWeightSoFar(double aNewShare) {
MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0,
"shouldn't be giving this item any share of the weight "
"after it's frozen");
mShareOfWeightSoFar = aNewShare;
}
void Freeze() {
mIsFrozen = true;
// Now that we are frozen, the meaning of mHadMinViolation and
// mHadMaxViolation changes to indicate min and max clamping. Clear
// both of the member variables so that they are ready to be set
// as clamping state later, if necessary.
mHadMinViolation = false;
mHadMaxViolation = false;
}
void SetHadMinViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMinViolation = true;
}
void SetHadMaxViolation() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be changing main size & having violations "
"after we're frozen");
mHadMaxViolation = true;
}
void ClearViolationFlags() {
MOZ_ASSERT(!mIsFrozen,
"shouldn't be altering violation flags after we're "
"frozen");
mHadMinViolation = mHadMaxViolation = false;
}
void SetWasMinClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMinViolation member variable to track clamping
// events. This is allowable because mHadMinViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMinViolation = true;
}
void SetWasMaxClamped() {
MOZ_ASSERT(!mHadMinViolation && !mHadMaxViolation, "only clamp once");
// This reuses the mHadMaxViolation member variable to track clamping
// events. This is allowable because mHadMaxViolation only reflects
// a violation up until the item is frozen.
MOZ_ASSERT(mIsFrozen, "shouldn't set clamping state when we are unfrozen");
mHadMaxViolation = true;
}
// Setters for values that are determined after we've resolved our main size
// -------------------------------------------------------------------------
// Sets the main-axis position of our flex item's content-box.
// (This is the distance between the main-start edge of the flex container
// and the main-start edge of the flex item's content-box.)
void SetMainPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMainPosn = aPosn;
}
// Sets the cross-size of our flex item's content-box.
void SetCrossSize(nscoord aCrossSize) {
MOZ_ASSERT(!mIsStretched,
"Cross size shouldn't be modified after it's been stretched");
mCrossSize = aCrossSize;
}
// Sets the cross-axis position of our flex item's content-box.
// (This is the distance between the cross-start edge of the flex container
// and the cross-start edge of the flex item.)
void SetCrossPosition(nscoord aPosn) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mCrossPosn = aPosn;
}
// After a FlexItem has had a reflow, this method can be used to cache its
// (possibly-unresolved) ascent, in case it's needed later for
// baseline-alignment or to establish the container's baseline.
// (NOTE: This can be marked 'const' even though it's modifying mAscent,
// because mAscent is mutable. It's nice for this to be 'const', because it
// means our final reflow can iterate over const FlexItem pointers, and we
// can be sure it's not modifying those FlexItems, except via this method.)
void SetAscent(nscoord aAscent) const {
mAscent = aAscent; // NOTE: this may be ASK_FOR_BASELINE
}
void SetHadMeasuringReflow() { mHadMeasuringReflow = true; }
void SetIsStretched() {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mIsStretched = true;
}
void SetIsFlexBaseSizeContentBSize() { mIsFlexBaseSizeContentBSize = true; }
void SetIsMainMinSizeContentBSize() { mIsMainMinSizeContentBSize = true; }
// Setter for margin components (for resolving "auto" margins)
void SetMarginComponentForSide(LogicalSide aSide, nscoord aLength) {
MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
mMargin.Side(aSide, mCBWM) = aLength;
}
void ResolveStretchedCrossSize(nscoord aLineCrossSize);
// Resolves flex base size if flex-basis' used value is 'content', using this
// item's preferred aspect ratio and cross size.
void ResolveFlexBaseSizeFromAspectRatio(const ReflowInput& aItemReflowInput);
uint32_t NumAutoMarginsInMainAxis() const {
return NumAutoMarginsInAxis(MainAxis());
};
uint32_t NumAutoMarginsInCrossAxis() const {
return NumAutoMarginsInAxis(CrossAxis());
};
// Once the main size has been resolved, should we bother doing layout to
// establish the cross size?
bool CanMainSizeInfluenceCrossSize() const;
// Returns a main size, clamped by any definite min and max cross size
// converted through the preferred aspect ratio. The caller is responsible for
// ensuring that the flex item's preferred aspect ratio is not zero.
nscoord ClampMainSizeViaCrossAxisConstraints(
nscoord aMainSize, const ReflowInput& aItemReflowInput) const;
// Indicates whether we think this flex item needs a "final" reflow
// (after its final flexed size & final position have been determined).
//
// @param aParentReflowInput the flex container's reflow input.
// @return true if such a reflow is needed, or false if we believe it can
// simply be moved to its final position and skip the reflow.
bool NeedsFinalReflow(const ReflowInput& aParentReflowInput) const;
// Gets the block frame that contains the flex item's content. This is
// Frame() itself or one of its descendants.
nsBlockFrame* BlockFrame() const;
protected:
bool IsMinSizeAutoResolutionNeeded() const;
uint32_t NumAutoMarginsInAxis(LogicalAxis aAxis) const;
// Values that we already know in constructor, and remain unchanged:
// The flex item's frame.
nsIFrame* mFrame = nullptr;
float mFlexGrow = 0.0f;
float mFlexShrink = 0.0f;
AspectRatio mAspectRatio;
// The flex item's writing mode.
WritingMode mWM;
// The flex container's writing mode.
WritingMode mCBWM;
// The flex container's main axis in flex container's writing mode.
LogicalAxis mMainAxis;
// Stored in flex container's writing mode.
LogicalMargin mBorderPadding;
// Stored in flex container's writing mode. Its value can change when we
// resolve "auto" marigns.
LogicalMargin mMargin;
// These are non-const so that we can lazily update them with the item's
// intrinsic size (obtained via a "measuring" reflow), when necessary.
// (e.g. for "flex-basis:auto;height:auto" & "min-height:auto")
nscoord mFlexBaseSize = 0;
nscoord mMainMinSize = 0;
nscoord mMainMaxSize = 0;
// mCrossMinSize and mCrossMaxSize are not changed after constructor.
nscoord mCrossMinSize = 0;
nscoord mCrossMaxSize = 0;
// Values that we compute after constructor:
nscoord mMainSize = 0;
nscoord mMainPosn = 0;
nscoord mCrossSize = 0;
nscoord mCrossPosn = 0;
// Mutable b/c it's set & resolved lazily, sometimes via const pointer. See
// comment above SetAscent().
// We initialize this to ASK_FOR_BASELINE, and opportunistically fill it in
// with a real value if we end up reflowing this flex item. (But if we don't
// reflow this flex item, then this sentinel tells us that we don't know it
// yet & anyone who cares will need to explicitly request it.)
//
// Both mAscent and mAscentForLast are distance from the frame's border-box
// block-start edge.
mutable nscoord mAscent = ReflowOutput::ASK_FOR_BASELINE;
mutable nscoord mAscentForLast = ReflowOutput::ASK_FOR_BASELINE;
// Temporary state, while we're resolving flexible widths (for our main size)
// XXXdholbert To save space, we could use a union to make these variables
// overlay the same memory as some other member vars that aren't touched
// until after main-size has been resolved. In particular, these could share
// memory with mMainPosn through mAscent, and mIsStretched.
double mShareOfWeightSoFar = 0.0;
bool mIsFrozen = false;
bool mHadMinViolation = false;
bool mHadMaxViolation = false;
// Did this item get a preliminary reflow, to measure its desired height?
bool mHadMeasuringReflow = false;
// See IsStretched() documentation.
bool mIsStretched = false;
// Is this item a "strut" left behind by an element with visibility:collapse?
bool mIsStrut = false;
// See IsInlineAxisMainAxis() documentation. This is not changed after
// constructor.
bool mIsInlineAxisMainAxis = true;
// Does this item need to resolve a min-[width|height]:auto (in main-axis)?
//
// Note: mNeedsMinSizeAutoResolution needs to be declared towards the end of
// the member variables since it's initialized in a method that depends on
// other members declared above such as mCBWM, mMainAxis, and
// mIsInlineAxisMainAxis.
bool mNeedsMinSizeAutoResolution = false;
// Should we take care to treat this item's resolved BSize as indefinite?
bool mTreatBSizeAsIndefinite = false;
// Does this item have an auto margin in either main or cross axis?
bool mHasAnyAutoMargin = false;
// Does this item have a content-based flex base size (and is that a size in
// its block-axis)?
bool mIsFlexBaseSizeContentBSize = false;
// Does this item have a content-based resolved auto min size (and is that a
// size in its block-axis)?
bool mIsMainMinSizeContentBSize = false;
// If this item is {first,last}-baseline-aligned using 'align-self', which of
// its FlexLine's baseline sharing groups does it participate in?
BaselineSharingGroup mBaselineSharingGroup = BaselineSharingGroup::First;
// My "align-self" computed value (with "auto" swapped out for parent"s
// "align-items" value, in our constructor).
StyleAlignSelf mAlignSelf{StyleAlignFlags::AUTO};
// Flags for 'align-self' (safe/unsafe/legacy).
StyleAlignFlags mAlignSelfFlags{0};
};
/**
* Represents a single flex line in a flex container.
* Manages an array of the FlexItems that are in the line.
*/
class nsFlexContainerFrame::FlexLine final {
public:
explicit FlexLine(nscoord aMainGapSize) : mMainGapSize(aMainGapSize) {}
nscoord SumOfGaps() const {
return NumItems() > 0 ? (NumItems() - 1) * mMainGapSize : 0;
}
// Returns the sum of our FlexItems' outer hypothetical main sizes plus the
// sum of main axis {row,column}-gaps between items.
// ("outer" = margin-box, and "hypothetical" = before flexing)
AuCoord64 TotalOuterHypotheticalMainSize() const {
return mTotalOuterHypotheticalMainSize;
}
// Accessors for our FlexItems & information about them:
//
// Note: Callers must use IsEmpty() to ensure that the FlexLine is non-empty
// before calling accessors that return FlexItem.
FlexItem& FirstItem() { return mItems[0]; }
const FlexItem& FirstItem() const { return mItems[0]; }
FlexItem& LastItem() { return mItems.LastElement(); }
const FlexItem& LastItem() const { return mItems.LastElement(); }
// The "startmost"/"endmost" is from the perspective of the flex container's
// writing-mode, not from the perspective of the flex-relative main axis.
const FlexItem& StartmostItem(const FlexboxAxisTracker& aAxisTracker) const {
return aAxisTracker.IsMainAxisReversed() ? LastItem() : FirstItem();
}
const FlexItem& EndmostItem(const FlexboxAxisTracker& aAxisTracker) const {
return aAxisTracker.IsMainAxisReversed() ? FirstItem() : LastItem();
}
bool IsEmpty() const { return mItems.IsEmpty(); }
uint32_t NumItems() const { return mItems.Length(); }
nsTArray<FlexItem>& Items() { return mItems; }
const nsTArray<FlexItem>& Items() const { return mItems; }
// Adds the last flex item's hypothetical outer main-size and
// margin/border/padding to our totals. This should be called exactly once for
// each flex item, after we've determined that this line is the correct home
// for that item.
void AddLastItemToMainSizeTotals() {
const FlexItem& lastItem = Items().LastElement();
// Update our various bookkeeping member-vars:
if (lastItem.IsFrozen()) {
mNumFrozenItems++;
}
mTotalItemMBP += lastItem.MarginBorderPaddingSizeInMainAxis();
mTotalOuterHypotheticalMainSize += lastItem.OuterMainSize();
// If the item added was not the first item in the line, we add in any gap
// space as needed.
if (NumItems() >= 2) {
mTotalOuterHypotheticalMainSize += mMainGapSize;
}
}
// Computes the cross-size and baseline position of this FlexLine, based on
// its FlexItems.
void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker);
// Returns the cross-size of this line.
nscoord LineCrossSize() const { return mLineCrossSize; }
// Setter for line cross-size -- needed for cases where the flex container
// imposes a cross-size on the line. (e.g. for single-line flexbox, or for
// multi-line flexbox with 'align-content: stretch')
void SetLineCrossSize(nscoord aLineCrossSize) {
mLineCrossSize = aLineCrossSize;
}
/**
* Returns the offset within this line where any baseline-aligned FlexItems
* should place their baseline. The return value represents a distance from
* the line's cross-start edge.
*
* If there are no baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord FirstBaselineOffset() const { return mFirstBaselineOffset; }
/**
* Returns the offset within this line where any last baseline-aligned
* FlexItems should place their baseline. Opposite the case of the first
* baseline offset, this represents a distance from the line's cross-end
* edge (since last baseline-aligned items are flush to the cross-end edge).
*
* If there are no last baseline-aligned FlexItems, returns nscoord_MIN.
*/
nscoord LastBaselineOffset() const { return mLastBaselineOffset; }
// Extract a baseline from this line, which would be suitable for use as the
// flex container's 'aBaselineGroup' (i.e. first/last) baseline.
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
//
// The return value always represents a distance from the line's cross-start
// edge, even if we are querying last baseline. If this line has no flex items
// in its aBaselineGroup group, this method falls back to trying the opposite
// group. If this line has no baseline-aligned items at all, this returns
// nscoord_MIN.
nscoord ExtractBaselineOffset(BaselineSharingGroup aBaselineGroup) const;
/**
* Returns the gap size in the main axis for this line. Used for gap
* calculations.
*/
nscoord MainGapSize() const { return mMainGapSize; }
// Runs the "Resolving Flexible Lengths" algorithm from section 9.7 of the
// CSS flexbox spec to distribute aFlexContainerMainSize among our flex items.
// https://drafts.csswg.org/css-flexbox-1/#resolve-flexible-lengths
void ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo);
void PositionItemsInMainAxis(const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize,
const FlexboxAxisTracker& aAxisTracker);
void PositionItemsInCrossAxis(nscoord aLineStartPosition,
const FlexboxAxisTracker& aAxisTracker);
private:
// Helpers for ResolveFlexibleLengths():
void FreezeItemsEarly(bool aIsUsingFlexGrow, ComputedFlexLineInfo* aLineInfo);
void FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration);
// Stores this line's flex items.
nsTArray<FlexItem> mItems;
// Number of *frozen* FlexItems in this line, based on FlexItem::IsFrozen().
// Mostly used for optimization purposes, e.g. to bail out early from loops
// when we can tell they have nothing left to do.
uint32_t mNumFrozenItems = 0;
// Sum of margin/border/padding for the FlexItems in this FlexLine.
nscoord mTotalItemMBP = 0;
// Sum of FlexItems' outer hypothetical main sizes and all main-axis
// {row,columnm}-gaps between items.
// (i.e. their flex base sizes, clamped via their min/max-size properties,
// plus their main-axis margin/border/padding, plus the sum of the gaps.)
//
// This variable uses a 64-bit coord type to avoid integer overflow in case
// several of the individual items have huge hypothetical main sizes, which
// can happen with percent-width table-layout:fixed descendants. We have to
// avoid integer overflow in order to shrink items properly in that scenario.
AuCoord64 mTotalOuterHypotheticalMainSize = 0;
nscoord mLineCrossSize = 0;
nscoord mFirstBaselineOffset = nscoord_MIN;
nscoord mLastBaselineOffset = nscoord_MIN;
// Maintain size of each {row,column}-gap in the main axis
const nscoord mMainGapSize;
};
// The "startmost"/"endmost" is from the perspective of the flex container's
// writing-mode, not from the perspective of the flex-relative cross axis.
const FlexLine& StartmostLine(const nsTArray<FlexLine>& aLines,
const FlexboxAxisTracker& aAxisTracker) {
return aAxisTracker.IsCrossAxisReversed() ? aLines.LastElement() : aLines[0];
}
const FlexLine& EndmostLine(const nsTArray<FlexLine>& aLines,
const FlexboxAxisTracker& aAxisTracker) {
return aAxisTracker.IsCrossAxisReversed() ? aLines[0] : aLines.LastElement();
}
// Information about a strut left behind by a FlexItem that's been collapsed
// using "visibility:collapse".
struct nsFlexContainerFrame::StrutInfo {
StrutInfo(uint32_t aItemIdx, nscoord aStrutCrossSize)
: mItemIdx(aItemIdx), mStrutCrossSize(aStrutCrossSize) {}
uint32_t mItemIdx; // Index in the child list.
nscoord mStrutCrossSize; // The cross-size of this strut.
};
// Flex data shared by the flex container frames in a continuation chain, owned
// by the first-in-flow. The data is initialized at the end of the
// first-in-flow's Reflow().
struct nsFlexContainerFrame::SharedFlexData final {
// The flex lines generated in DoFlexLayout() by our first-in-flow.
nsTArray<FlexLine> mLines;
// The final content main/cross size computed by DoFlexLayout.
nscoord mContentBoxMainSize = NS_UNCONSTRAINEDSIZE;
nscoord mContentBoxCrossSize = NS_UNCONSTRAINEDSIZE;
// Update this struct. Called by the first-in-flow.
void Update(FlexLayoutResult&& aFlr) {
mLines = std::move(aFlr.mLines);
mContentBoxMainSize = aFlr.mContentBoxMainSize;
mContentBoxCrossSize = aFlr.mContentBoxCrossSize;
}
// The frame property under which this struct is stored. Set only on the
// first-in-flow.
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedFlexData)
};
// Flex data stored in every flex container's in-flow fragment (continuation).
//
// It's intended to prevent quadratic operations resulting from each fragment
// having to walk its full prev-in-flow chain, and also serves as an argument to
// the flex container next-in-flow's ReflowChildren(), to compute the position
// offset for each flex item.
struct nsFlexContainerFrame::PerFragmentFlexData final {
// Suppose D is the distance from a flex container fragment's content-box
// block-start edge to whichever is larger of either (a) the block-end edge of
// its children, or (b) the available space's block-end edge. (Note: in case
// (b), D is conceptually the sum of the block-size of the children, the
// packing space before & in between them, and part of the packing space after
// them.)
//
// This variable stores the sum of the D values for the current flex container
// fragments and for all its previous fragments
nscoord mCumulativeContentBoxBSize = 0;
// This variable accumulates FirstLineOrFirstItemBAxisMetrics::mBEndEdgeShift,
// for the current flex container fragment and for all its previous fragments.
// See the comment of mBEndEdgeShift for its computation details. In short,
// this value is the net block-end edge shift, accumulated for the children in
// all the previous fragments. This number is non-negative.
//
// This value is also used to grow a flex container's block-size if the
// container's computed block-size is unconstrained. For example: a tall item
// may be pushed to the next page/column, which leaves some wasted area at the
// bottom of the current flex container fragment, and causes the flex
// container fragments to be (collectively) larger than the hypothetical
// unfragmented size. Another example: a tall flex item may be broken into
// multiple fragments, and those fragments may have a larger collective
// block-size as compared to the item's original unfragmented size; the
// container would need to increase its block-size to account for this.
nscoord mCumulativeBEndEdgeShift = 0;
// The frame property under which this struct is stored. Cached on every
// in-flow fragment (continuation) at the end of the flex container's
// Reflow().
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, PerFragmentFlexData)
};
static void BuildStrutInfoFromCollapsedItems(const nsTArray<FlexLine>& aLines,
nsTArray<StrutInfo>& aStruts) {
MOZ_ASSERT(aStruts.IsEmpty(),
"We should only build up StrutInfo once per reflow, so "
"aStruts should be empty when this is called");
uint32_t itemIdxInContainer = 0;
for (const FlexLine& line : aLines) {
for (const FlexItem& item : line.Items()) {
if (item.Frame()->StyleVisibility()->IsCollapse()) {
// Note the cross size of the line as the item's strut size.
aStruts.AppendElement(
StrutInfo(itemIdxInContainer, line.LineCrossSize()));
}
itemIdxInContainer++;
}
}
}
static mozilla::StyleAlignFlags SimplifyAlignOrJustifyContentForOneItem(
const StyleContentDistribution& aAlignmentVal, bool aIsAlign) {
// Mask away any explicit fallback, to get the main (non-fallback) part of
// the specified value:
StyleAlignFlags specified = aAlignmentVal.primary;
// XXX strip off <overflow-position> bits until we implement it (bug 1311892)
specified &= ~StyleAlignFlags::FLAG_BITS;
// FIRST: handle a special-case for "justify-content:stretch" (or equivalent),
// which requires that we ignore any author-provided explicit fallback value.
if (specified == StyleAlignFlags::NORMAL) {
// In a flex container, *-content: "'normal' behaves as 'stretch'".
// Do that conversion early, so it benefits from our 'stretch' special-case.
// https://drafts.csswg.org/css-align-3/#distribution-flex
specified = StyleAlignFlags::STRETCH;
}
if (!aIsAlign && specified == StyleAlignFlags::STRETCH) {
// In a flex container, in "justify-content Axis: [...] 'stretch' behaves
// as 'flex-start' (ignoring the specified fallback alignment, if any)."
// https://drafts.csswg.org/css-align-3/#distribution-flex
// So, we just directly return 'flex-start', & ignore explicit fallback..
return StyleAlignFlags::FLEX_START;
}
// TODO: Check for an explicit fallback value (and if it's present, use it)
// here once we parse it, see https://github.com/w3c/csswg-drafts/issues/1002.
// If there's no explicit fallback, use the implied fallback values for
// space-{between,around,evenly} (since those values only make sense with
// multiple alignment subjects), and otherwise just use the specified value:
if (specified == StyleAlignFlags::SPACE_BETWEEN) {
return StyleAlignFlags::FLEX_START;
}
if (specified == StyleAlignFlags::SPACE_AROUND ||
specified == StyleAlignFlags::SPACE_EVENLY) {
return StyleAlignFlags::CENTER;
}
return specified;
}
bool nsFlexContainerFrame::DrainSelfOverflowList() {
return DrainAndMergeSelfOverflowList();
}
void nsFlexContainerFrame::AppendFrames(ChildListID aListID,
nsFrameList&& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::AppendFrames(aListID, std::move(aFrameList));
}
void nsFlexContainerFrame::InsertFrames(
ChildListID aListID, nsIFrame* aPrevFrame,
const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
std::move(aFrameList));
}
void nsFlexContainerFrame::RemoveFrame(DestroyContext& aContext,
ChildListID aListID,
nsIFrame* aOldFrame) {
MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list");
#ifdef DEBUG
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
#endif
nsContainerFrame::RemoveFrame(aContext, aListID, aOldFrame);
}
StyleAlignFlags nsFlexContainerFrame::CSSAlignmentForAbsPosChild(
const ReflowInput& aChildRI, LogicalAxis aLogicalAxis) const {
const FlexboxAxisTracker axisTracker(this);
// If we're row-oriented and the caller is asking about our inline axis (or
// alternately, if we're column-oriented and the caller is asking about our
// block axis), then the caller is really asking about our *main* axis.
// Otherwise, the caller is asking about our cross axis.
const bool isMainAxis =
(axisTracker.IsRowOriented() == (aLogicalAxis == LogicalAxis::Inline));
const nsStylePosition* containerStylePos = StylePosition();
const bool isAxisReversed = isMainAxis ? axisTracker.IsMainAxisReversed()
: axisTracker.IsCrossAxisReversed();
StyleAlignFlags alignment{0};
StyleAlignFlags alignmentFlags{0};
if (isMainAxis) {
// We're aligning in the main axis: align according to 'justify-content'.
// (We don't care about justify-self; it has no effect on children of flex
// containers, unless https://github.com/w3c/csswg-drafts/issues/7644
// changes that.)
alignment = SimplifyAlignOrJustifyContentForOneItem(
containerStylePos->mJustifyContent,
/*aIsAlign = */ false);
} else {
// We're aligning in the cross axis: align according to 'align-self'.
// (We don't care about align-content; it has no effect on abspos flex
// children, per https://github.com/w3c/csswg-drafts/issues/7596 )
alignment = aChildRI.mStylePosition->UsedAlignSelf(Style())._0;
// Extract and strip align flag bits
alignmentFlags = alignment & StyleAlignFlags::FLAG_BITS;
alignment &= ~StyleAlignFlags::FLAG_BITS;
if (alignment == StyleAlignFlags::NORMAL) {
// "the 'normal' keyword behaves as 'start' on replaced
// absolutely-positioned boxes, and behaves as 'stretch' on all other
// absolutely-positioned boxes."
// https://drafts.csswg.org/css-align/#align-abspos
alignment = aChildRI.mFrame->IsReplaced() ? StyleAlignFlags::START
: StyleAlignFlags::STRETCH;
}
}
if (alignment == StyleAlignFlags::STRETCH) {
// The default fallback alignment for 'stretch' is 'flex-start'.
alignment = StyleAlignFlags::FLEX_START;
}
// Resolve flex-start, flex-end, auto, left, right, baseline, last baseline;
if (alignment == StyleAlignFlags::FLEX_START) {
alignment = isAxisReversed ? StyleAlignFlags::END : StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::FLEX_END) {
alignment = isAxisReversed ? StyleAlignFlags::START : StyleAlignFlags::END;
} else if (alignment == StyleAlignFlags::LEFT ||
alignment == StyleAlignFlags::RIGHT) {
MOZ_ASSERT(isMainAxis, "Only justify-* can have 'left' and 'right'!");
alignment = axisTracker.ResolveJustifyLeftRight(alignment);
} else if (alignment == StyleAlignFlags::BASELINE) {
alignment = StyleAlignFlags::START;
} else if (alignment == StyleAlignFlags::LAST_BASELINE) {
alignment = StyleAlignFlags::END;
}
MOZ_ASSERT(alignment != StyleAlignFlags::STRETCH,
"We should've converted 'stretch' to the fallback alignment!");
MOZ_ASSERT(alignment != StyleAlignFlags::FLEX_START &&
alignment != StyleAlignFlags::FLEX_END,
"nsAbsoluteContainingBlock doesn't know how to handle "
"flex-relative axis for flex containers!");
return (alignment | alignmentFlags);
}
void nsFlexContainerFrame::GenerateFlexItemForChild(
FlexLine& aLine, nsIFrame* aChildFrame,
const ReflowInput& aParentReflowInput,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aTentativeContentBoxCrossSize) {
const auto flexWM = aAxisTracker.GetWritingMode();
const auto childWM = aChildFrame->GetWritingMode();
// Note: we use GetStyleFrame() to access the sizing & flex properties here.
// This lets us correctly handle table wrapper frames as flex items since
// their inline-size and block-size properties are always 'auto'. In order for
// 'flex-basis:auto' to actually resolve to the author's specified inline-size
// or block-size, we need to dig through to the inner table.
const auto* stylePos =
nsLayoutUtils::GetStyleFrame(aChildFrame)->StylePosition();
// Construct a StyleSizeOverrides for this flex item so that its ReflowInput
// below will use and resolve its flex base size rather than its corresponding
// preferred main size property (only for modern CSS flexbox).
StyleSizeOverrides sizeOverrides;
if (!IsLegacyBox(this)) {
Maybe<StyleSize> styleFlexBaseSize;
// When resolving flex base size, flex items use their 'flex-basis' property
// in place of their preferred main size (e.g. 'width') for sizing purposes,
// *unless* they have 'flex-basis:auto' in which case they use their
// preferred main size after all.
const auto& flexBasis = stylePos->mFlexBasis;
const auto& styleMainSize = stylePos->Size(aAxisTracker.MainAxis(), flexWM);
if (IsUsedFlexBasisContent(flexBasis, styleMainSize)) {
// If we get here, we're resolving the flex base size for a flex item, and
// we fall into the flexbox spec section 9.2 step 3, substep C (if we have
// a definite cross size) or E (if not).
styleFlexBaseSize.emplace(StyleSize::MaxContent());
} else if (flexBasis.IsSize() && !flexBasis.IsAuto()) {
// For all other non-'auto' flex-basis values, we just swap in the
// flex-basis itself for the preferred main-size property.
styleFlexBaseSize.emplace(flexBasis.AsSize());
} else {
// else: flex-basis is 'auto', which is deferring to some explicit value
// in the preferred main size.
MOZ_ASSERT(flexBasis.IsAuto());
styleFlexBaseSize.emplace(styleMainSize);
}
MOZ_ASSERT(styleFlexBaseSize, "We should've emplace styleFlexBaseSize!");
// Provide the size override for the preferred main size property.
if (aAxisTracker.IsInlineAxisMainAxis(childWM)) {
sizeOverrides.mStyleISize = std::move(styleFlexBaseSize);
} else {
sizeOverrides.mStyleBSize = std::move(styleFlexBaseSize);
}
// 'flex-basis' should works on the inner table frame for a table flex item,
// just like how 'height' works on a table element.
sizeOverrides.mApplyOverridesVerbatim = true;
}
// Create temporary reflow input just for sizing -- to get hypothetical
// main-size and the computed values of min / max main-size property.
// (This reflow input will _not_ be used for reflow.)
ReflowInput childRI(PresContext(), aParentReflowInput, aChildFrame,
aParentReflowInput.ComputedSize(childWM), Nothing(), {},
sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
// FLEX GROW & SHRINK WEIGHTS
// --------------------------
float flexGrow, flexShrink;
if (IsLegacyBox(this)) {
flexGrow = flexShrink = aChildFrame->StyleXUL()->mBoxFlex;
} else {
flexGrow = stylePos->mFlexGrow;
flexShrink = stylePos->mFlexShrink;
}
// MAIN SIZES (flex base size, min/max size)
// -----------------------------------------
const LogicalSize computedSizeInFlexWM = childRI.ComputedSize(flexWM);
const LogicalSize computedMinSizeInFlexWM = childRI.ComputedMinSize(flexWM);
const LogicalSize computedMaxSizeInFlexWM = childRI.ComputedMaxSize(flexWM);
const nscoord flexBaseSize = aAxisTracker.MainComponent(computedSizeInFlexWM);
const nscoord mainMinSize =
aAxisTracker.MainComponent(computedMinSizeInFlexWM);
const nscoord mainMaxSize =
aAxisTracker.MainComponent(computedMaxSizeInFlexWM);
// This is enforced by the ReflowInput where these values come from:
MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");
// CROSS SIZES (tentative cross size, min/max cross size)
// ------------------------------------------------------
// Grab the cross size from the reflow input. This might be the right value,
// or we might resolve it to something else in SizeItemInCrossAxis(); hence,
// it's tentative. See comment under "Cross Size Determination" for more.
const nscoord tentativeCrossSize =
aAxisTracker.CrossComponent(computedSizeInFlexWM);
const nscoord crossMinSize =
aAxisTracker.CrossComponent(computedMinSizeInFlexWM);
const nscoord crossMaxSize =
aAxisTracker.CrossComponent(computedMaxSizeInFlexWM);
// Construct the flex item!
FlexItem& item = *aLine.Items().EmplaceBack(
childRI, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize,
tentativeCrossSize, crossMinSize, crossMaxSize, aAxisTracker);
// We may be about to do computations based on our item's cross-size
// (e.g. using it as a constraint when measuring our content in the
// main axis, or using it with the preferred aspect ratio to obtain a main
// size). BEFORE WE DO THAT, we need let the item "pre-stretch" its cross size
// (if it's got 'align-self:stretch'), for a certain case where the spec says
// the stretched cross size is considered "definite". That case is if we
// have a single-line (nowrap) flex container which itself has a definite
// cross-size. Otherwise, we'll wait to do stretching, since (in other
// cases) we don't know how much the item should stretch yet.
const bool isSingleLine =
StyleFlexWrap::Nowrap == aParentReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
// Is container's cross size "definite"?
// - If it's column-oriented, then "yes", because its cross size is its
// inline-size which is always definite from its descendants' perspective.
// - Otherwise (if it's row-oriented), then we check the actual size
// and call it definite if it's not NS_UNCONSTRAINEDSIZE.
if (aAxisTracker.IsColumnOriented() ||
aTentativeContentBoxCrossSize != NS_UNCONSTRAINEDSIZE) {
// Container's cross size is "definite", so we can resolve the item's
// stretched cross size using that.
item.ResolveStretchedCrossSize(aTentativeContentBoxCrossSize);
}
}
// Before thinking about freezing the item at its base size, we need to give
// it a chance to recalculate the base size from its cross size and aspect
// ratio (since its cross size might've *just* now become definite due to
// 'stretch' above)
item.ResolveFlexBaseSizeFromAspectRatio(childRI);
// If we're inflexible, we can just freeze to our hypothetical main-size
// up-front.
if (flexGrow == 0.0f && flexShrink == 0.0f) {
item.Freeze();
if (flexBaseSize < mainMinSize) {
item.SetWasMinClamped();
} else if (flexBaseSize > mainMaxSize) {
item.SetWasMaxClamped();
}
}
// Resolve "flex-basis:auto" and/or "min-[width|height]:auto" (which might
// require us to reflow the item to measure content height)
ResolveAutoFlexBasisAndMinSize(item, childRI, aAxisTracker);
}
// Static helper-functions for ResolveAutoFlexBasisAndMinSize():
// -------------------------------------------------------------
// Partially resolves "min-[width|height]:auto" and returns the resulting value.
// By "partially", I mean we don't consider the min-content size (but we do
// consider the main-size and main max-size properties, and the preferred aspect
// ratio). The caller is responsible for computing & considering the min-content
// size in combination with the partially-resolved value that this function
// returns.
//
// Basically, this function gets the specified size suggestion; if not, the
// transferred size suggestion; if both sizes do not exist, return nscoord_MAX.
//
// Spec reference: https://drafts.csswg.org/css-flexbox-1/#min-size-auto
static nscoord PartiallyResolveAutoMinSize(
const FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
MOZ_ASSERT(aFlexItem.NeedsMinSizeAutoResolution(),
"only call for FlexItems that need min-size auto resolution");
const auto itemWM = aFlexItem.GetWritingMode();
const auto cbWM = aAxisTracker.GetWritingMode();
const auto& mainStyleSize =
aItemReflowInput.mStylePosition->Size(aAxisTracker.MainAxis(), cbWM);
const auto& maxMainStyleSize =
aItemReflowInput.mStylePosition->MaxSize(aAxisTracker.MainAxis(), cbWM);
const auto boxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? aFlexItem.BorderPadding().Size(cbWM)
: LogicalSize(cbWM);
// If this flex item is a compressible replaced element list in CSS Sizing 3
// §5.2.2, CSS Sizing 3 §5.2.1c requires us to resolve the percentage part of
// the preferred main size property against zero, yielding a definite
// specified size suggestion. Here we can use a zero percentage basis to
// fulfill this requirement.
const auto percentBasis =
aFlexItem.Frame()->IsPercentageResolvedAgainstZero(mainStyleSize,
maxMainStyleSize)
? LogicalSize(cbWM, 0, 0)
: aItemReflowInput.mContainingBlockSize.ConvertTo(cbWM, itemWM);
// Compute the specified size suggestion, which is the main-size property if
// it's definite.
nscoord specifiedSizeSuggestion = nscoord_MAX;
if (aAxisTracker.IsRowOriented()) {
if (mainStyleSize.IsLengthPercentage()) {
// NOTE: We ignore extremum inline-size. This is OK because the caller is
// responsible for computing the min-content inline-size and min()'ing it
// with the value we return.
specifiedSizeSuggestion = aFlexItem.Frame()->ComputeISizeValue(
cbWM, percentBasis, boxSizingAdjust,
mainStyleSize.AsLengthPercentage());
}
} else {
if (!nsLayoutUtils::IsAutoBSize(mainStyleSize, percentBasis.BSize(cbWM))) {
// NOTE: We ignore auto and extremum block-size. This is OK because the
// caller is responsible for computing the min-content block-size and
// min()'ing it with the value we return.
specifiedSizeSuggestion = nsLayoutUtils::ComputeBSizeValue(
percentBasis.BSize(cbWM), boxSizingAdjust.BSize(cbWM),
mainStyleSize.AsLengthPercentage());
}
}
if (specifiedSizeSuggestion != nscoord_MAX) {
// We have the specified size suggestion. Return it now since we don't need
// to consider transferred size suggestion.
FLEX_LOGV("Specified size suggestion: %d", specifiedSizeSuggestion);
return specifiedSizeSuggestion;
}
// Compute the transferred size suggestion, which is the cross size converted
// through the aspect ratio (if the item is replaced, and it has an aspect
// ratio and a definite cross size).
if (const auto& aspectRatio = aFlexItem.GetAspectRatio();
aFlexItem.Frame()->IsReplaced() && aspectRatio &&
aFlexItem.IsCrossSizeDefinite(aItemReflowInput)) {
// We have a usable aspect ratio. (not going to divide by 0)
nscoord transferredSizeSuggestion = aspectRatio.ComputeRatioDependentSize(
aFlexItem.MainAxis(), cbWM, aFlexItem.CrossSize(), boxSizingAdjust);
// Clamp the transferred size suggestion by any definite min and max
// cross size converted through the aspect ratio.
transferredSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
transferredSizeSuggestion, aItemReflowInput);
FLEX_LOGV("Transferred size suggestion: %d", transferredSizeSuggestion);
return transferredSizeSuggestion;
}
return nscoord_MAX;
}
// Note: If & when we handle "min-height: min-content" for flex items,
// we may want to resolve that in this function, too.
void nsFlexContainerFrame::ResolveAutoFlexBasisAndMinSize(
FlexItem& aFlexItem, const ReflowInput& aItemReflowInput,
const FlexboxAxisTracker& aAxisTracker) {
// (Note: We can guarantee that the flex-basis will have already been
// resolved if the main axis is the same as the item's inline
// axis. Inline-axis values should always be resolvable without reflow.)
const bool isMainSizeAuto =
(!aFlexItem.IsInlineAxisMainAxis() &&
NS_UNCONSTRAINEDSIZE == aFlexItem.FlexBaseSize());
const bool isMainMinSizeAuto = aFlexItem.NeedsMinSizeAutoResolution();
if (!isMainSizeAuto && !isMainMinSizeAuto) {
// Nothing to do; this function is only needed for flex items
// with a used flex-basis of "auto" or a min-main-size of "auto".
return;
}
FLEX_ITEM_LOG(
aFlexItem.Frame(),
"Resolving auto main size? %s; resolving auto min main size? %s",
BoolToYesNo(isMainSizeAuto), BoolToYesNo(isMainMinSizeAuto));
nscoord resolvedMinSize; // (only set/used if isMainMinSizeAuto==true)
bool minSizeNeedsToMeasureContent = false; // assume the best
if (isMainMinSizeAuto) {
// Resolve the min-size, except for considering the min-content size.
// (We'll consider that later, if we need to.)
resolvedMinSize =
PartiallyResolveAutoMinSize(aFlexItem, aItemReflowInput, aAxisTracker);
if (resolvedMinSize > 0) {
// If resolvedMinSize were already at 0, we could skip calculating content
// size suggestion because it can't go any lower.
minSizeNeedsToMeasureContent = true;
}
}
const bool flexBasisNeedsToMeasureContent = isMainSizeAuto;
// Measure content, if needed (w/ intrinsic-width method or a reflow)
if (minSizeNeedsToMeasureContent || flexBasisNeedsToMeasureContent) {
// Compute the content size suggestion, which is the min-content size in the
// main axis.
nscoord contentSizeSuggestion = nscoord_MAX;
if (aFlexItem.IsInlineAxisMainAxis()) {
if (minSizeNeedsToMeasureContent) {
// Compute the flex item's content size suggestion, which is the
// 'min-content' size on the main axis.
// https://drafts.csswg.org/css-flexbox-1/#content-size-suggestion
const auto cbWM = aAxisTracker.GetWritingMode();
const auto itemWM = aFlexItem.GetWritingMode();
const nscoord availISize = 0; // for min-content size
StyleSizeOverrides sizeOverrides;
sizeOverrides.mStyleISize.emplace(StyleSize::Auto());
const auto sizeInItemWM = aFlexItem.Frame()->ComputeSize(
aItemReflowInput.mRenderingContext, itemWM,
aItemReflowInput.mContainingBlockSize, availISize,
aItemReflowInput.ComputedLogicalMargin(itemWM).Size(itemWM),
aItemReflowInput.ComputedLogicalBorderPadding(itemWM).Size(itemWM),
sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
contentSizeSuggestion = aAxisTracker.MainComponent(
sizeInItemWM.mLogicalSize.ConvertTo(cbWM, itemWM));
}
NS_ASSERTION(!flexBasisNeedsToMeasureContent,
"flex-basis:auto should have been resolved in the "
"reflow input, for horizontal flexbox. It shouldn't need "
"special handling here");
} else {
// If this item is flexible (in its block axis)...
// OR if we're measuring its 'auto' min-BSize, with its main-size (in its
// block axis) being something non-"auto"...
// THEN: we assume that the computed BSize that we're reflowing with now
// could be different from the one we'll use for this flex item's
// "actual" reflow later on. In that case, we need to be sure the flex
// item treats this as a block-axis resize (regardless of whether there
// are actually any ancestors being resized in that axis).
// (Note: We don't have to do this for the inline axis, because
// InitResizeFlags will always turn on mIsIResize on when it sees that
// the computed ISize is different from current ISize, and that's all we
// need.)
bool forceBResizeForMeasuringReflow =
!aFlexItem.IsFrozen() || // Is the item flexible?
!flexBasisNeedsToMeasureContent; // Are we *only* measuring it for
// 'min-block-size:auto'?
const ReflowInput& flexContainerRI = *aItemReflowInput.mParentReflowInput;
nscoord contentBSize = MeasureFlexItemContentBSize(
aFlexItem, forceBResizeForMeasuringReflow, flexContainerRI);
if (minSizeNeedsToMeasureContent) {
contentSizeSuggestion = contentBSize;
}
if (flexBasisNeedsToMeasureContent) {
aFlexItem.SetFlexBaseSizeAndMainSize(contentBSize);
aFlexItem.SetIsFlexBaseSizeContentBSize();
}
}
if (minSizeNeedsToMeasureContent) {
// Clamp the content size suggestion by any definite min and max cross
// size converted through the aspect ratio.
if (aFlexItem.HasAspectRatio()) {
contentSizeSuggestion = aFlexItem.ClampMainSizeViaCrossAxisConstraints(
contentSizeSuggestion, aItemReflowInput);
}
FLEX_LOGV("Content size suggestion: %d", contentSizeSuggestion);
resolvedMinSize = std::min(resolvedMinSize, contentSizeSuggestion);
// Clamp the resolved min main size by the max main size if it's definite.
if (aFlexItem.MainMaxSize() != NS_UNCONSTRAINEDSIZE) {
resolvedMinSize = std::min(resolvedMinSize, aFlexItem.MainMaxSize());
} else if (MOZ_UNLIKELY(resolvedMinSize > nscoord_MAX)) {
NS_WARNING("Bogus resolved auto min main size!");
// Our resolved min-size is bogus, probably due to some huge sizes in
// the content. Clamp it to the valid nscoord range, so that we can at
// least depend on it being <= the max-size (which is also the
// nscoord_MAX sentinel value if we reach this point).
resolvedMinSize = nscoord_MAX;
}
FLEX_LOGV("Resolved auto min main size: %d", resolvedMinSize);
if (resolvedMinSize == contentSizeSuggestion) {
// When we are here, we've measured the item's content-based size, and
// we used it as the resolved auto min main size. Record the fact so
// that we can use it to determine whether we allow a flex item to grow
// its block-size in ReflowFlexItem().
aFlexItem.SetIsMainMinSizeContentBSize();
}
}
}
if (isMainMinSizeAuto) {
aFlexItem.UpdateMainMinSize(resolvedMinSize);
}
}
/**
* A cached result for a flex item's block-axis measuring reflow. This cache
* prevents us from doing exponential reflows in cases of deeply nested flex
* and scroll frames.
*
* We store the cached value in the flex item's frame property table, for
* simplicity.
*
* Right now, we cache the following as a "key", from the item's ReflowInput:
* - its ComputedSize
* - its min/max block size (in case its ComputedBSize is unconstrained)
* - its AvailableBSize
* ...and we cache the following as the "value", from the item's ReflowOutput:
* - its final content-box BSize
*
* The assumption here is that a given flex item measurement from our "value"
* won't change unless one of the pieces of the "key" change, or the flex
* item's intrinsic size is marked as dirty (due to a style or DOM change).
* (The latter will cause the cached value to be discarded, in
* nsIFrame::MarkIntrinsicISizesDirty.)
*
* Note that the components of "Key" (mComputed{MinB,MaxB,}Size and
* mAvailableBSize) are sufficient to catch any changes to the flex container's
* size that the item may care about for its measuring reflow. Specifically:
* - If the item cares about the container's size (e.g. if it has a percent
* height and the container's height changes, in a horizontal-WM container)
* then that'll be detectable via the item's ReflowInput's "ComputedSize()"
* differing from the value in our Key. And the same applies for the
* inline axis.
* - If the item is fragmentable (pending bug 939897) and its measured BSize
* depends on where it gets fragmented, then that sort of change can be
* detected due to the item's ReflowInput's "AvailableBSize()" differing
* from the value in our Key.
*
* One particular case to consider (& need to be sure not to break when
* changing this class): the flex item's computed BSize may change between
* measuring reflows due to how the mIsFlexContainerMeasuringBSize flag affects
* size computation (see bug 1336708). This is one reason we need to use the
* computed BSize as part of the key.
*/
class nsFlexContainerFrame::CachedBAxisMeasurement {
struct Key {
const LogicalSize mComputedSize;
const nscoord mComputedMinBSize;
const nscoord mComputedMaxBSize;
const nscoord mAvailableBSize;
explicit Key(const ReflowInput& aRI)
: mComputedSize(aRI.ComputedSize()),
mComputedMinBSize(aRI.ComputedMinBSize()),
mComputedMaxBSize(aRI.ComputedMaxBSize()),
mAvailableBSize(aRI.AvailableBSize()) {}
bool operator==(const Key& aOther) const {
return mComputedSize == aOther.mComputedSize &&
mComputedMinBSize == aOther.mComputedMinBSize &&
mComputedMaxBSize == aOther.mComputedMaxBSize &&
mAvailableBSize == aOther.mAvailableBSize;
}
};
const Key mKey;
// This could/should be const, but it's non-const for now just because it's
// assigned via a series of steps in the constructor body:
nscoord mBSize;
public:
CachedBAxisMeasurement(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput)
: mKey(aReflowInput) {
// To get content-box bsize, we have to subtract off border & padding
// (and floor at 0 in case the border/padding are too large):
WritingMode itemWM = aReflowInput.GetWritingMode();
nscoord borderBoxBSize = aReflowOutput.BSize(itemWM);
mBSize =
borderBoxBSize -
aReflowInput.ComputedLogicalBorderPadding(itemWM).BStartEnd(itemWM);
mBSize = std::max(0, mBSize);
}
/**
* Returns true if this cached flex item measurement is valid for (i.e. can
* be expected to match the output of) a measuring reflow whose input
* parameters are given via aReflowInput.
*/
bool IsValidFor(const ReflowInput& aReflowInput) const {
return mKey == Key(aReflowInput);
}
nscoord BSize() const { return mBSize; }
};
/**
* A cached copy of various metrics from a flex item's most recent final reflow.
* It can be used to determine whether we can optimize away the flex item's
* final reflow, when we perform an incremental reflow of its flex container.
*/
class CachedFinalReflowMetrics final {
public:
CachedFinalReflowMetrics(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput)
: CachedFinalReflowMetrics(aReflowInput.GetWritingMode(), aReflowInput,
aReflowOutput) {}
CachedFinalReflowMetrics(const FlexItem& aItem, const LogicalSize& aSize)
: mBorderPadding(aItem.BorderPadding().ConvertTo(
aItem.GetWritingMode(), aItem.ContainingBlockWM())),
mSize(aSize),
mTreatBSizeAsIndefinite(aItem.TreatBSizeAsIndefinite()) {}
const LogicalSize& Size() const { return mSize; }
const LogicalMargin& BorderPadding() const { return mBorderPadding; }
bool TreatBSizeAsIndefinite() const { return mTreatBSizeAsIndefinite; }
private:
// A convenience constructor with a WritingMode argument.
CachedFinalReflowMetrics(WritingMode aWM, const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput)
: mBorderPadding(aReflowInput.ComputedLogicalBorderPadding(aWM)),
mSize(aReflowOutput.Size(aWM) - mBorderPadding.Size(aWM)),
mTreatBSizeAsIndefinite(aReflowInput.mFlags.mTreatBSizeAsIndefinite) {}
// The flex item's border and padding, in its own writing-mode, that it used
// used during its most recent "final reflow".
LogicalMargin mBorderPadding;
// The flex item's content-box size, in its own writing-mode, that it used
// during its most recent "final reflow".
LogicalSize mSize;
// True if the flex item's BSize was considered "indefinite" in its most
// recent "final reflow". (For a flex item "final reflow", this is fully
// determined by the mTreatBSizeAsIndefinite flag in ReflowInput. See the
// flag's documentation for more information.)
bool mTreatBSizeAsIndefinite;
};
/**
* When we instantiate/update a CachedFlexItemData, this enum must be used to
* indicate the sort of reflow whose results we're capturing. This impacts
* what we cache & how we use the cached information.
*/
enum class FlexItemReflowType {
// A reflow to measure the block-axis size of a flex item (as an input to the
// flex layout algorithm).
Measuring,
// A reflow with the flex item's "final" size at the end of the flex layout
// algorithm.
Final,
};
/**
* This class stores information about the conditions and results for the most
* recent ReflowChild call that we made on a given flex item. This information
* helps us reason about whether we can assume that a subsequent ReflowChild()
* invocation is unnecessary & skippable.
*/
class nsFlexContainerFrame::CachedFlexItemData {
public:
CachedFlexItemData(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput,
FlexItemReflowType aType) {
Update(aReflowInput, aReflowOutput, aType);
}
// This method is intended to be called after we perform either a "measuring
// reflow" or a "final reflow" for a given flex item.
void Update(const ReflowInput& aReflowInput,
const ReflowOutput& aReflowOutput, FlexItemReflowType aType) {
if (aType == FlexItemReflowType::Measuring) {
mBAxisMeasurement.reset();
mBAxisMeasurement.emplace(aReflowInput, aReflowOutput);
// Clear any cached "last final reflow metrics", too, because now the most
// recent reflow was *not* a "final reflow".
mFinalReflowMetrics.reset();
return;
}
MOZ_ASSERT(aType == FlexItemReflowType::Final);
mFinalReflowMetrics.reset();
mFinalReflowMetrics.emplace(aReflowInput, aReflowOutput);
}
// This method is intended to be called for situations where we decide to
// skip a final reflow because we've just done a measuring reflow which left
// us (and our descendants) with the correct sizes. In this scenario, we
// still want to cache the size as if we did a final reflow (because we've
// determined that the recent measuring reflow was sufficient). That way,
// our flex container can still skip a final reflow for this item in the
// future as long as conditions are right.
void Update(const FlexItem& aItem, const LogicalSize& aSize) {
MOZ_ASSERT(!mFinalReflowMetrics,
"This version of the method is only intended to be called when "
"the most recent reflow was a 'measuring reflow'; and that "
"should have cleared out mFinalReflowMetrics");
mFinalReflowMetrics.reset(); // Just in case this assert^ fails.
mFinalReflowMetrics.emplace(aItem, aSize);
}
// If the flex container needs a measuring reflow for the flex item, then the
// resulting block-axis measurements can be cached here. If no measurement
// has been needed so far, then this member will be Nothing().
Maybe<CachedBAxisMeasurement> mBAxisMeasurement;
// The metrics that the corresponding flex item used in its most recent
// "final reflow". (Note: the assumption here is that this reflow was this
// item's most recent reflow of any type. If the item ends up undergoing a
// subsequent measuring reflow, then this value needs to be cleared, because
// at that point it's no longer an accurate way of reasoning about the
// current state of the frame tree.)
Maybe<CachedFinalReflowMetrics> mFinalReflowMetrics;
// Instances of this class are stored under this frame property, on
// frames that are flex items:
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedFlexItemData)
};
void nsFlexContainerFrame::MarkCachedFlexMeasurementsDirty(
nsIFrame* aItemFrame) {
MOZ_ASSERT(aItemFrame->IsFlexItem());
if (auto* cache = aItemFrame->GetProperty(CachedFlexItemData::Prop())) {
cache->mBAxisMeasurement.reset();
cache->mFinalReflowMetrics.reset();
}
}
const CachedBAxisMeasurement& nsFlexContainerFrame::MeasureBSizeForFlexItem(
FlexItem& aItem, ReflowInput& aChildReflowInput) {
auto* cachedData = aItem.Frame()->GetProperty(CachedFlexItemData::Prop());
if (cachedData && cachedData->mBAxisMeasurement) {
if (!aItem.Frame()->IsSubtreeDirty() &&
cachedData->mBAxisMeasurement->IsValidFor(aChildReflowInput)) {
FLEX_ITEM_LOG(aItem.Frame(),
"[perf] Accepted cached measurement: block-size %d",
cachedData->mBAxisMeasurement->BSize());
return *(cachedData->mBAxisMeasurement);
}
FLEX_ITEM_LOG(aItem.Frame(),
"[perf] Rejected cached measurement: block-size %d",
cachedData->mBAxisMeasurement->BSize());
} else {
FLEX_ITEM_LOG(aItem.Frame(), "[perf] No cached measurement");
}
// CachedFlexItemData is stored in item's writing mode, so we pass
// aChildReflowInput into ReflowOutput's constructor.
ReflowOutput childReflowOutput(aChildReflowInput);
nsReflowStatus childStatus;
const ReflowChildFlags flags = ReflowChildFlags::NoMoveFrame;
const WritingMode outerWM = GetWritingMode();
const LogicalPoint dummyPosition(outerWM);
const nsSize dummyContainerSize;
// We use NoMoveFrame, so the position and container size used here are
// unimportant.
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
aChildReflowInput, outerWM, dummyPosition, dummyContainerSize,
flags, childStatus);
aItem.SetHadMeasuringReflow();
// We always use unconstrained available block-size to measure flex items,
// which means they should always complete.
MOZ_ASSERT(childStatus.IsComplete(),
"We gave flex item unconstrained available block-size, so it "
"should be complete");
// Tell the child we're done with its initial reflow.
// (Necessary for e.g. GetBaseline() to work below w/out asserting)
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
&aChildReflowInput, outerWM, dummyPosition,
dummyContainerSize, flags);
aItem.SetAscent(childReflowOutput.BlockStartAscent());
// Update (or add) our cached measurement, so that we can hopefully skip this
// measuring reflow the next time around:
if (cachedData) {
cachedData->Update(aChildReflowInput, childReflowOutput,
FlexItemReflowType::Measuring);
} else {
cachedData = new CachedFlexItemData(aChildReflowInput, childReflowOutput,
FlexItemReflowType::Measuring);
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cachedData);
}
return *(cachedData->mBAxisMeasurement);
}
/* virtual */
void nsFlexContainerFrame::MarkIntrinsicISizesDirty() {
mCachedMinISize = NS_INTRINSIC_ISIZE_UNKNOWN;
mCachedPrefISize = NS_INTRINSIC_ISIZE_UNKNOWN;
nsContainerFrame::MarkIntrinsicISizesDirty();
}
nscoord nsFlexContainerFrame::MeasureFlexItemContentBSize(
FlexItem& aFlexItem, bool aForceBResizeForMeasuringReflow,
const ReflowInput& aParentReflowInput) {
FLEX_ITEM_LOG(aFlexItem.Frame(), "Measuring item's content block-size");
// Set up a reflow input for measuring the flex item's content block-size:
WritingMode wm = aFlexItem.Frame()->GetWritingMode();
LogicalSize availSize = aParentReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
StyleSizeOverrides sizeOverrides;
if (aFlexItem.IsStretched()) {
sizeOverrides.mStyleISize.emplace(aFlexItem.StyleCrossSize());
// Suppress any AspectRatio that we might have to prevent ComputeSize() from
// transferring our inline-size override through the aspect-ratio to set the
// block-size, because that would prevent us from measuring the content
// block-size.
sizeOverrides.mAspectRatio.emplace(AspectRatio());
FLEX_LOGV("Cross size override: %d", aFlexItem.CrossSize());
}
sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
ReflowInput childRIForMeasuringBSize(
PresContext(), aParentReflowInput, aFlexItem.Frame(), availSize,
Nothing(), {}, sizeOverrides, {ComputeSizeFlag::ShrinkWrap});
// When measuring flex item's content block-size, disregard the item's
// min-block-size and max-block-size by resetting both to to their
// unconstraining (extreme) values. The flexbox layout algorithm does still
// explicitly clamp both sizes when resolving the target main size.
childRIForMeasuringBSize.SetComputedMinBSize(0);
childRIForMeasuringBSize.SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
if (aForceBResizeForMeasuringReflow) {
childRIForMeasuringBSize.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
childRIForMeasuringBSize.mFlags.mIsBResizeForPercentages = true;
}
const CachedBAxisMeasurement& measurement =
MeasureBSizeForFlexItem(aFlexItem, childRIForMeasuringBSize);
return measurement.BSize();
}
FlexItem::FlexItem(ReflowInput& aFlexItemReflowInput, float aFlexGrow,
float aFlexShrink, nscoord aFlexBaseSize,
nscoord aMainMinSize, nscoord aMainMaxSize,
nscoord aTentativeCrossSize, nscoord aCrossMinSize,
nscoord aCrossMaxSize,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aFlexItemReflowInput.mFrame),
mFlexGrow(aFlexGrow),
mFlexShrink(aFlexShrink),
mAspectRatio(mFrame->GetAspectRatio()),
mWM(aFlexItemReflowInput.GetWritingMode()),
mCBWM(aAxisTracker.GetWritingMode()),
mMainAxis(aAxisTracker.MainAxis()),
mBorderPadding(aFlexItemReflowInput.ComputedLogicalBorderPadding(mCBWM)),
mMargin(aFlexItemReflowInput.ComputedLogicalMargin(mCBWM)),
mMainMinSize(aMainMinSize),
mMainMaxSize(aMainMaxSize),
mCrossMinSize(aCrossMinSize),
mCrossMaxSize(aCrossMaxSize),
mCrossSize(aTentativeCrossSize),
mIsInlineAxisMainAxis(aAxisTracker.IsInlineAxisMainAxis(mWM)),
mNeedsMinSizeAutoResolution(IsMinSizeAutoResolutionNeeded())
// mAlignSelf, mHasAnyAutoMargin see below
{
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
MOZ_ASSERT(mIsInlineAxisMainAxis ==
nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame),
"public API should be consistent with internal state (about "
"whether flex item's inline axis is flex container's main axis)");
const ReflowInput* containerRS = aFlexItemReflowInput.mParentReflowInput;
if (IsLegacyBox(containerRS->mFrame)) {
// For -webkit-{inline-}box and -moz-{inline-}box, we need to:
// (1) Use prefixed "box-align" instead of "align-items" to determine the
// container's cross-axis alignment behavior.
// (2) Suppress the ability for flex items to override that with their own
// cross-axis alignment. (The legacy box model doesn't support this.)
// So, each FlexItem simply copies the container's converted "align-items"
// value and disregards their own "align-self" property.
const nsStyleXUL* containerStyleXUL = containerRS->mFrame->StyleXUL();
mAlignSelf = {ConvertLegacyStyleToAlignItems(containerStyleXUL)};
mAlignSelfFlags = {0};
} else {
mAlignSelf = aFlexItemReflowInput.mStylePosition->UsedAlignSelf(
containerRS->mFrame->Style());
if (MOZ_LIKELY(mAlignSelf._0 == StyleAlignFlags::NORMAL)) {
mAlignSelf = {StyleAlignFlags::STRETCH};
}
// Store and strip off the <overflow-position> bits
mAlignSelfFlags = mAlignSelf._0 & StyleAlignFlags::FLAG_BITS;
mAlignSelf._0 &= ~StyleAlignFlags::FLAG_BITS;
}
// Our main-size is considered definite if any of these are true:
// (a) main axis is the item's inline axis.
// (b) flex container has definite main size.
// (c) flex item has a definite flex basis.
//
// Hence, we need to take care to treat the final main-size as *indefinite*
// if none of these conditions are satisfied.
if (mIsInlineAxisMainAxis) {
// The item's block-axis is the flex container's cross axis. We don't need
// any special handling to treat cross sizes as indefinite, because the
// cases where we stomp on the cross size with a definite value are all...
// - situations where the spec requires us to treat the cross size as
// definite; specifically, `align-self:stretch` whose cross size is
// definite.
// - situations where definiteness doesn't matter (e.g. for an element with
// an aspect ratio, which for now are all leaf nodes and hence
// can't have any percent-height descendants that would care about the
// definiteness of its size. (Once bug 1528375 is fixed, we might need to
// be more careful about definite vs. indefinite sizing on flex items with
// aspect ratios.)
mTreatBSizeAsIndefinite = false;
} else {
// The item's block-axis is the flex container's main axis. So, the flex
// item's main size is its BSize, and is considered definite under certain
// conditions laid out for definite flex-item main-sizes in the spec.
if (aAxisTracker.IsRowOriented() ||
(containerRS->ComputedBSize() != NS_UNCONSTRAINEDSIZE &&
!containerRS->mFlags.mTreatBSizeAsIndefinite)) {
// The flex *container* has a definite main-size (either by being
// row-oriented [and using its own inline size which is by definition
// definite, or by being column-oriented and having a definite
// block-size). The spec says this means all of the flex items'
// post-flexing main sizes should *also* be treated as definite.
mTreatBSizeAsIndefinite = false;
} else if (aFlexBaseSize != NS_UNCONSTRAINEDSIZE) {
// The flex item has a definite flex basis, which we'll treat as making
// its main-size definite.
mTreatBSizeAsIndefinite = false;
} else {
// Otherwise, we have to treat the item's BSize as indefinite.
mTreatBSizeAsIndefinite = true;
}
}
SetFlexBaseSizeAndMainSize(aFlexBaseSize);
const nsStyleMargin* styleMargin = aFlexItemReflowInput.mStyleMargin;
mHasAnyAutoMargin = styleMargin->HasInlineAxisAuto(mCBWM) ||
styleMargin->HasBlockAxisAuto(mCBWM);
// Assert that any "auto" margin components are set to 0.
// (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
{
for (const auto side : LogicalSides::All) {
if (styleMargin->mMargin.Get(mCBWM, side).IsAuto()) {
MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
"Someone else tried to resolve our auto margin");
}
}
}
#endif // DEBUG
if (mAlignSelf._0 == StyleAlignFlags::BASELINE ||
mAlignSelf._0 == StyleAlignFlags::LAST_BASELINE) {
// Check which of the item's baselines we're meant to use (first vs. last)
const bool usingItemFirstBaseline =
(mAlignSelf._0 == StyleAlignFlags::BASELINE);
if (IsBlockAxisCrossAxis()) {
// The flex item wants to be aligned in the cross axis using one of its
// baselines; and the cross axis is the item's block axis, so
// baseline-alignment in that axis makes sense.
// To determine the item's baseline sharing group, we check whether the
// item's block axis has the same vs. opposite flow direction as the
// corresponding LogicalAxis on the flex container. We do this by
// getting the physical side that corresponds to these axes' "logical
// start" sides, and we compare those physical sides to find out if
// they're the same vs. opposite.
mozilla::Side itemBlockStartSide = mWM.PhysicalSide(LogicalSide::BStart);
// (Note: this is *not* the "flex-start" side; rather, it's the *logical*
// i.e. WM-relative block-start or inline-start side.)
mozilla::Side containerStartSideInCrossAxis = mCBWM.PhysicalSide(
MakeLogicalSide(aAxisTracker.CrossAxis(), LogicalEdge::Start));
// We already know these two Sides (the item's block-start and the
// container's 'logical start' side for its cross axis) are in the same
// physical axis, since we're inside of a check for
// FlexItem::IsBlockAxisCrossAxis(). So these two Sides must be either
// the same physical side or opposite from each other. If the Sides are
// the same, then the flow direction is the same, which means the item's
// {first,last} baseline participates in the {first,last}
// baseline-sharing group in its FlexLine. Otherwise, the flow direction
// is opposite, and so the item's {first,last} baseline participates in
// the opposite i.e. {last,first} baseline-sharing group. This is
// roughly per css-align-3 section 9.2, specifically the definition of
// what makes baseline alignment preferences "compatible".
bool itemBlockAxisFlowDirMatchesContainer =
(itemBlockStartSide == containerStartSideInCrossAxis);
mBaselineSharingGroup =
(itemBlockAxisFlowDirMatchesContainer == usingItemFirstBaseline)
? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
} else {
// The flex item wants to be aligned in the cross axis using one of its
// baselines, but we cannot get its baseline because the FlexItem's block
// axis is *orthogonal* to the container's cross axis. To handle this, we
// are supposed to synthesize a baseline from the item's border box and
// using that for baseline alignment.
mBaselineSharingGroup = usingItemFirstBaseline
? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
}
}
}
// Simplified constructor for creating a special "strut" FlexItem, for a child
// with visibility:collapse. The strut has 0 main-size, and it only exists to
// impose a minimum cross size on whichever FlexLine it ends up in.
FlexItem::FlexItem(nsIFrame* aChildFrame, nscoord aCrossSize,
WritingMode aContainerWM,
const FlexboxAxisTracker& aAxisTracker)
: mFrame(aChildFrame),
mWM(aChildFrame->GetWritingMode()),
mCBWM(aContainerWM),
mMainAxis(aAxisTracker.MainAxis()),
mBorderPadding(mCBWM),
mMargin(mCBWM),
mCrossSize(aCrossSize),
// Struts don't do layout, so its WM doesn't matter at this point. So, we
// just share container's WM for simplicity:
mIsFrozen(true),
mIsStrut(true), // (this is the constructor for making struts, after all)
mAlignSelf({StyleAlignFlags::FLEX_START}) {
MOZ_ASSERT(mFrame, "expecting a non-null child frame");
MOZ_ASSERT(mFrame->StyleVisibility()->IsCollapse(),
"Should only make struts for children with 'visibility:collapse'");
MOZ_ASSERT(!mFrame->IsPlaceholderFrame(),
"placeholder frames should not be treated as flex items");
MOZ_ASSERT(!mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"out-of-flow frames should not be treated as flex items");
}
bool FlexItem::IsMinSizeAutoResolutionNeeded() const {
// We'll need special behavior for "min-[width|height]:auto" (whichever is in
// the flex container's main axis) iff:
// (a) its computed value is "auto", and
// (b) the item is *not* a scroll container. (A scroll container's automatic
// minimum size is zero.)
// https://drafts.csswg.org/css-flexbox-1/#min-size-auto
//
// Note that the scroll container case is redefined to be looking at the
// computed value instead, see https://github.com/w3c/csswg-drafts/issues/7714
const auto& mainMinSize =
Frame()->StylePosition()->MinSize(MainAxis(), ContainingBlockWM());
return IsAutoOrEnumOnBSize(mainMinSize, IsInlineAxisMainAxis()) &&
!Frame()->StyleDisplay()->IsScrollableOverflow();
}
Maybe<nscoord> FlexItem::MeasuredBSize() const {
auto* cachedData =
Frame()->FirstInFlow()->GetProperty(CachedFlexItemData::Prop());
if (!cachedData || !cachedData->mBAxisMeasurement) {
return Nothing();
}
return Some(cachedData->mBAxisMeasurement->BSize());
}
nscoord FlexItem::BaselineOffsetFromOuterCrossEdge(
mozilla::Side aStartSide, bool aUseFirstLineBaseline) const {
// NOTE:
// * We only use baselines for aligning in the flex container's cross axis.
// * Baselines are a measurement in the item's block axis.
if (IsBlockAxisMainAxis()) {
// We get here if the item's block axis is *orthogonal* the container's
// cross axis. For example, a flex item with writing-mode:horizontal-tb in a
// column-oriented flex container. We need to synthesize the item's baseline
// from its border-box edge.
const bool isMainAxisHorizontal =
mCBWM.PhysicalAxis(MainAxis()) == PhysicalAxis::Horizontal;
// When the main axis is horizontal, the synthesized baseline is the bottom
// edge of the item's border-box. Otherwise, when the main axis is vertical,
// the left edge. This is for compatibility with Google Chrome.
nscoord marginTopOrLeftToBaseline =
isMainAxisHorizontal ? PhysicalMargin().top : PhysicalMargin().left;
if (mCBWM.IsAlphabeticalBaseline()) {
marginTopOrLeftToBaseline += (isMainAxisHorizontal ? CrossSize() : 0);
} else {
MOZ_ASSERT(mCBWM.IsCentralBaseline());
marginTopOrLeftToBaseline += CrossSize() / 2;
}
return aStartSide == mozilla::eSideTop || aStartSide == mozilla::eSideLeft
? marginTopOrLeftToBaseline
: OuterCrossSize() - marginTopOrLeftToBaseline;
}
// We get here if the item's block axis is parallel (or antiparallel) to the
// container's cross axis. We call ResolvedAscent() to get the item's
// baseline. If the item has no baseline, the method will synthesize one from
// the border-box edge.
MOZ_ASSERT(IsBlockAxisCrossAxis(),
"Only expecting to be doing baseline computations when the "
"cross axis is the block axis");
mozilla::Side itemBlockStartSide = mWM.PhysicalSide(LogicalSide::BStart);
nscoord marginBStartToBaseline = ResolvedAscent(aUseFirstLineBaseline) +
PhysicalMargin().Side(itemBlockStartSide);
return (aStartSide == itemBlockStartSide)
? marginBStartToBaseline
: OuterCrossSize() - marginBStartToBaseline;
}
bool FlexItem::IsCrossSizeAuto() const {
const nsStylePosition* stylePos =
nsLayoutUtils::GetStyleFrame(mFrame)->StylePosition();
// Check whichever component is in the flex container's cross axis.
// (IsInlineAxisCrossAxis() tells us whether that's our ISize or BSize, in
// terms of our own WritingMode, mWM.)
return IsInlineAxisCrossAxis() ? stylePos->ISize(mWM).IsAuto()
: stylePos->BSize(mWM).IsAuto();
}
bool FlexItem::IsCrossSizeDefinite(const ReflowInput& aItemReflowInput) const {
if (IsStretched()) {
// Definite cross-size, imposed via 'align-self:stretch' & flex container.
return true;
}
const nsStylePosition* pos = aItemReflowInput.mStylePosition;
const auto itemWM = GetWritingMode();
// The logic here should be similar to the logic for isAutoISize/isAutoBSize
// in nsContainerFrame::ComputeSizeWithIntrinsicDimensions().
if (IsInlineAxisCrossAxis()) {
return !pos->ISize(itemWM).IsAuto();
}
nscoord cbBSize = aItemReflowInput.mContainingBlockSize.BSize(itemWM);
return !nsLayoutUtils::IsAutoBSize(pos->BSize(itemWM), cbBSize);
}
void FlexItem::ResolveFlexBaseSizeFromAspectRatio(
const ReflowInput& aItemReflowInput) {
// This implements the Flex Layout Algorithm Step 3B:
// https://drafts.csswg.org/css-flexbox-1/#algo-main-item
// If the flex item has ...
// - an aspect ratio,
// - a [used] flex-basis of 'content', and
// - a definite cross size
// then the flex base size is calculated from its inner cross size and the
// flex item's preferred aspect ratio.
if (HasAspectRatio() &&
nsFlexContainerFrame::IsUsedFlexBasisContent(
aItemReflowInput.mStylePosition->mFlexBasis,
aItemReflowInput.mStylePosition->Size(MainAxis(), mCBWM)) &&
IsCrossSizeDefinite(aItemReflowInput)) {
const LogicalSize contentBoxSizeToBoxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? BorderPadding().Size(mCBWM)
: LogicalSize(mCBWM);
const nscoord mainSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossSize(), contentBoxSizeToBoxSizingAdjust);
SetFlexBaseSizeAndMainSize(mainSizeFromRatio);
}
}
uint32_t FlexItem::NumAutoMarginsInAxis(LogicalAxis aAxis) const {
uint32_t numAutoMargins = 0;
const auto& styleMargin = mFrame->StyleMargin()->mMargin;
for (const auto edge : {LogicalEdge::Start, LogicalEdge::End}) {
const auto side = MakeLogicalSide(aAxis, edge);
if (styleMargin.Get(mCBWM, side).IsAuto()) {
numAutoMargins++;
}
}
// Mostly for clarity:
MOZ_ASSERT(numAutoMargins <= 2,
"We're just looking at one item along one dimension, so we "
"should only have examined 2 margins");
return numAutoMargins;
}
bool FlexItem::CanMainSizeInfluenceCrossSize() const {
if (mIsStretched) {
// We've already had our cross-size stretched for "align-self:stretch").
// The container is imposing its cross size on us.
return false;
}
if (mIsStrut) {
// Struts (for visibility:collapse items) have a predetermined size;
// no need to measure anything.
return false;
}
if (HasAspectRatio()) {
// For flex items that have an aspect ratio (and maintain it, i.e. are
// not stretched, which we already checked above): changes to main-size
// *do* influence the cross size.
return true;
}
if (IsInlineAxisCrossAxis()) {
// If we get here, this function is really asking: "can changes to this
// item's block size have an influence on its inline size"? For blocks and
// tables, the answer is "no".
if (mFrame->IsBlockFrame() || mFrame->IsTableWrapperFrame()) {
// XXXdholbert (Maybe use an IsFrameOfType query or something more
// general to test this across all frame types? For now, I'm just
// optimizing for block and table, since those are common containers that
// can contain arbitrarily-large subtrees (and that reliably have ISize
// being unaffected by BSize, per CSS2). So optimizing away needless
// relayout is possible & especially valuable for these containers.)
return false;
}
// Other opt-outs can go here, as they're identified as being useful
// (particularly for containers where an extra reflow is expensive). But in
// general, we have to assume that a flexed BSize *could* influence the
// ISize. Some examples where this can definitely happen:
// * Intrinsically-sized multicol with fixed-ISize columns, which adds
// columns (i.e. grows in inline axis) depending on its block size.
// * Intrinsically-sized multi-line column-oriented flex container, which
// adds flex lines (i.e. grows in inline axis) depending on its block size.
}
// Default assumption, if we haven't proven otherwise: the resolved main size
// *can* change the cross size.
return true;
}
nscoord FlexItem::ClampMainSizeViaCrossAxisConstraints(
nscoord aMainSize, const ReflowInput& aItemReflowInput) const {
MOZ_ASSERT(HasAspectRatio(), "Caller should've checked the ratio is valid!");
const LogicalSize contentBoxSizeToBoxSizingAdjust =
aItemReflowInput.mStylePosition->mBoxSizing == StyleBoxSizing::Border
? BorderPadding().Size(mCBWM)
: LogicalSize(mCBWM);
const nscoord mainMinSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossMinSize(), contentBoxSizeToBoxSizingAdjust);
nscoord clampedMainSize = std::max(aMainSize, mainMinSizeFromRatio);
if (CrossMaxSize() != NS_UNCONSTRAINEDSIZE) {
const nscoord mainMaxSizeFromRatio = mAspectRatio.ComputeRatioDependentSize(
MainAxis(), mCBWM, CrossMaxSize(), contentBoxSizeToBoxSizingAdjust);
clampedMainSize = std::min(clampedMainSize, mainMaxSizeFromRatio);
}
return clampedMainSize;
}
/**
* Returns true if aFrame or any of its children have the
* NS_FRAME_CONTAINS_RELATIVE_BSIZE flag set -- i.e. if any of these frames (or
* their descendants) might have a relative-BSize dependency on aFrame (or its
* ancestors).
*/
static bool FrameHasRelativeBSizeDependency(nsIFrame* aFrame) {
if (aFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
return true;
}
for (const auto& childList : aFrame->ChildLists()) {
for (nsIFrame* childFrame : childList.mList) {
if (childFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
return true;
}
}
}
return false;
}
bool FlexItem::NeedsFinalReflow(const ReflowInput& aParentReflowInput) const {
if (!StaticPrefs::layout_flexbox_item_final_reflow_optimization_enabled()) {
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed a final reflow due to optimization being "
"disabled via the preference");
return true;
}
// NOTE: We can have continuations from an earlier constrained reflow.
if (mFrame->GetPrevInFlow() || mFrame->GetNextInFlow()) {
// This is an item has continuation(s). Reflow it.
FLEX_ITEM_LOG(mFrame,
"[frag] Item needed a final reflow due to continuation(s)");
return true;
}
// A flex item can grow its block-size in a fragmented context if there's any
// force break within it (bug 1663079), or if it has a repeated table header
// or footer (bug 1744363). We currently always reflow it.
//
// Bug 1815294: investigate if we can design a more specific condition to
// prevent triggering O(n^2) behavior when printing a deeply-nested flex
// container.
if (aParentReflowInput.IsInFragmentedContext()) {
FLEX_ITEM_LOG(mFrame,
"[frag] Item needed both a measuring reflow and a final "
"reflow due to being in a fragmented context");
return true;
}
// Flex item's final content-box size (in terms of its own writing-mode):
const LogicalSize finalSize = mIsInlineAxisMainAxis
? LogicalSize(mWM, mMainSize, mCrossSize)
: LogicalSize(mWM, mCrossSize, mMainSize);
if (HadMeasuringReflow()) {
// We've already reflowed this flex item once, to measure it. In that
// reflow, did its frame happen to end up with the correct final size
// that the flex container would like it to have?
if (finalSize != mFrame->ContentSize(mWM)) {
// The measuring reflow left the item with a different size than its
// final flexed size. So, we need to reflow to give it the correct size.
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed both a measuring reflow and a final "
"reflow due to measured size disagreeing with final size");
return true;
}
if (FrameHasRelativeBSizeDependency(mFrame)) {
// This item has descendants with relative BSizes who may care that its
// size may now be considered "definite" in the final reflow (whereas it
// was indefinite during the measuring reflow).
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed both a measuring reflow and a final "
"reflow due to BSize potentially becoming definite");
return true;
}
// If we get here, then this flex item had a measuring reflow, it left us
// with the correct size, none of its descendants care that its BSize may
// now be considered definite, and it can fit into the available block-size.
// So it doesn't need a final reflow.
//
// We now cache this size as if we had done a final reflow (because we've
// determined that the measuring reflow was effectively equivalent). This
// way, in our next time through flex layout, we may be able to skip both
// the measuring reflow *and* the final reflow (if conditions are the same
// as they are now).
if (auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop())) {
cache->Update(*this, finalSize);
}
return false;
}
// This item didn't receive a measuring reflow (at least, not during this
// reflow of our flex container). We may still be able to skip reflowing it
// (i.e. return false from this function), if its subtree is clean & its most
// recent "final reflow" had it at the correct content-box size &
// definiteness.
// Let's check for each condition that would still require us to reflow:
if (mFrame->IsSubtreeDirty()) {
FLEX_ITEM_LOG(
mFrame,
"[perf] Item needed a final reflow due to its subtree being dirty");
return true;
}
// Cool; this item & its subtree haven't experienced any style/content
// changes that would automatically require a reflow.
// Did we cache the metrics from its most recent "final reflow"?
auto* cache = mFrame->GetProperty(CachedFlexItemData::Prop());
if (!cache || !cache->mFinalReflowMetrics) {
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed a final reflow due to lacking a cached "
"mFinalReflowMetrics (maybe cache was cleared)");
return true;
}
// Does the cached size match our current size?
if (cache->mFinalReflowMetrics->Size() != finalSize) {
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed a final reflow due to having a different "
"content box size vs. its most recent final reflow");
return true;
}
// Does the cached border and padding match our current ones?
//
// Note: this is just to detect cases where we have a percent padding whose
// basis has changed. Any other sort of change to BorderPadding() (e.g. a new
// specified value) should result in the frame being marked dirty via proper
// change hint (see nsStylePadding::CalcDifference()), which will force it to
// reflow.
if (cache->mFinalReflowMetrics->BorderPadding() !=
BorderPadding().ConvertTo(mWM, mCBWM)) {
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed a final reflow due to having a different "
"border and padding vs. its most recent final reflow");
return true;
}
// The flex container is giving this flex item the same size that the item
// had on its most recent "final reflow". But if its definiteness changed and
// one of the descendants cares, then it would still need a reflow.
if (cache->mFinalReflowMetrics->TreatBSizeAsIndefinite() !=
mTreatBSizeAsIndefinite &&
FrameHasRelativeBSizeDependency(mFrame)) {
FLEX_ITEM_LOG(mFrame,
"[perf] Item needed a final reflow due to having its BSize "
"change definiteness & having a rel-BSize child");
return true;
}
// If we get here, we can skip the final reflow! (The item's subtree isn't
// dirty, and our current conditions are sufficiently similar to the most
// recent "final reflow" that it should have left our subtree in the correct
// state.)
FLEX_ITEM_LOG(mFrame, "[perf] Item didn't need a final reflow");
return false;
}
// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
class MOZ_STACK_CLASS PositionTracker {
public:
// Accessor for the current value of the position that we're tracking.
inline nscoord Position() const { return mPosition; }
inline LogicalAxis Axis() const { return mAxis; }
inline LogicalSide StartSide() {
return MakeLogicalSide(
mAxis, mIsAxisReversed ? LogicalEdge::End : LogicalEdge::Start);
}
inline LogicalSide EndSide() {
return MakeLogicalSide(
mAxis, mIsAxisReversed ? LogicalEdge::Start : LogicalEdge::End);
}
// Advances our position across the start edge of the given margin, in the
// axis we're tracking.
void EnterMargin(const LogicalMargin& aMargin) {
mPosition += aMargin.Side(StartSide(), mWM);
}
// Advances our position across the end edge of the given margin, in the axis
// we're tracking.
void ExitMargin(const LogicalMargin& aMargin) {
mPosition += aMargin.Side(EndSide(), mWM);
}
// Advances our current position from the start side of a child frame's
// border-box to the frame's upper or left edge (depending on our axis).
// (Note that this is a no-op if our axis grows in the same direction as
// the corresponding logical axis.)
void EnterChildFrame(nscoord aChildFrameSize) {
if (mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Advances our current position from a frame's upper or left border-box edge
// (whichever is in the axis we're tracking) to the 'end' side of the frame
// in the axis that we're tracking. (Note that this is a no-op if our axis
// is reversed with respect to the corresponding logical axis.)
void ExitChildFrame(nscoord aChildFrameSize) {
if (!mIsAxisReversed) {
mPosition += aChildFrameSize;
}
}
// Delete copy-constructor & reassignment operator, to prevent accidental
// (unnecessary) copying.
PositionTracker(const PositionTracker&) = delete;
PositionTracker& operator=(const PositionTracker&) = delete;
protected:
// Protected constructor, to be sure we're only instantiated via a subclass.
PositionTracker(WritingMode aWM, LogicalAxis aAxis, bool aIsAxisReversed)
: mWM(aWM), mAxis(aAxis), mIsAxisReversed(aIsAxisReversed) {}
// Member data:
// The position we're tracking.
nscoord mPosition = 0;
// The flex container's writing mode.
const WritingMode mWM;
// The axis along which we're moving.
const LogicalAxis mAxis = LogicalAxis::Inline;
// Is the axis along which we're moving reversed (e.g. LTR vs RTL) with
// respect to the corresponding axis on the flex container's WM?
const bool mIsAxisReversed = false;
};
// Tracks our position in the main axis, when we're laying out flex items.
// The "0" position represents the main-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker {
public:
MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker,
const FlexLine* aLine,
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize);
~MainAxisPositionTracker() {
MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
"miscounted the number of packing spaces");
MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
"miscounted the number of auto margins");
}
// Advances past the gap space (if any) between two flex items
void TraverseGap(nscoord aGapSize) { mPosition += aGapSize; }
// Advances past the packing space (if any) between two flex items
void TraversePackingSpace();
// If aItem has any 'auto' margins in the main axis, this method updates the
// corresponding values in its margin.
void ResolveAutoMarginsInMainAxis(FlexItem& aItem);
private:
nscoord mPackingSpaceRemaining = 0;
uint32_t mNumAutoMarginsInMainAxis = 0;
uint32_t mNumPackingSpacesRemaining = 0;
StyleContentDistribution mJustifyContent = {StyleAlignFlags::AUTO};
};
// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line).
// The "0" position represents the cross-start edge of the flex container's
// content-box.
class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker {
public:
CrossAxisPositionTracker(nsTArray<FlexLine>& aLines,
const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize,
bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker,
const nscoord aCrossGapSize);
// Advances past the gap (if any) between two flex lines
void TraverseGap() { mPosition += mCrossGapSize; }
// Advances past the packing space (if any) between two flex lines
void TraversePackingSpace();
// Advances past the given FlexLine
void TraverseLine(FlexLine& aLine) { mPosition += aLine.LineCrossSize(); }
// Redeclare the frame-related methods from PositionTracker with
// = delete, to be sure (at compile time) that no client code can invoke
// them. (Unlike the other PositionTracker derived classes, this class here
// deals with FlexLines, not with individual FlexItems or frames.)
void EnterMargin(const LogicalMargin& aMargin) = delete;
void ExitMargin(const LogicalMargin& aMargin) = delete;
void EnterChildFrame(nscoord aChildFrameSize) = delete;
void ExitChildFrame(nscoord aChildFrameSize) = delete;
private:
nscoord mPackingSpaceRemaining = 0;
uint32_t mNumPackingSpacesRemaining = 0;
StyleContentDistribution mAlignContent = {StyleAlignFlags::AUTO};
const nscoord mCrossGapSize;
};
// Utility class for managing our position along the cross axis, *within* a
// single flex line.
class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker
: public PositionTracker {
public:
explicit SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker);
void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem);
void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker);
// Resets our position to the cross-start edge of this line.
inline void ResetPosition() { mPosition = 0; }
};
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)
nsContainerFrame* NS_NewFlexContainerFrame(PresShell* aPresShell,
ComputedStyle* aStyle) {
return new (aPresShell)
nsFlexContainerFrame(aStyle, aPresShell->GetPresContext());
}
//----------------------------------------------------------------------
// nsFlexContainerFrame Method Implementations
// ===========================================
/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame() = default;
/* virtual */
void nsFlexContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
auto displayInside = StyleDisplay()->DisplayInside();
// If this frame is for a scrollable element, then it will actually have
// "display:block", and its *parent frame* will have the real
// flex-flavored display value. So in that case, check the parent frame to
// find out if we're legacy.
//
// TODO(emilio): Maybe ::-moz-scrolled-content and co should inherit `display`
// (or a blockified version thereof, to not hit bug 456484).
if (displayInside == StyleDisplayInside::Flow) {
MOZ_ASSERT(StyleDisplay()->mDisplay == StyleDisplay::Block);
MOZ_ASSERT(Style()->GetPseudoType() == PseudoStyleType::buttonContent ||
Style()->GetPseudoType() == PseudoStyleType::scrolledContent,
"The only way a nsFlexContainerFrame can have 'display:block' "
"should be if it's the inner part of a scrollable or button "
"element");
displayInside = GetParent()->StyleDisplay()->DisplayInside();
}
// Figure out if we should set a frame state bit to indicate that this frame
// represents a legacy -moz-{inline-}box or -webkit-{inline-}box container.
if (displayInside == StyleDisplayInside::WebkitBox) {
AddStateBits(NS_STATE_FLEX_IS_EMULATING_LEGACY_WEBKIT_BOX);
}
}
#ifdef DEBUG_FRAME_DUMP
nsresult nsFlexContainerFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"FlexContainer"_ns, aResult);
}
#endif
void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
nsDisplayListCollection tempLists(aBuilder);
DisplayBorderBackgroundOutline(aBuilder, tempLists);
if (GetPrevInFlow()) {
DisplayOverflowContainers(aBuilder, tempLists);
}
// Our children are all block-level, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
nsDisplayListSet childLists(tempLists, tempLists.BlockBorderBackgrounds());
CSSOrderAwareFrameIterator iter(
this, FrameChildListID::Principal,
CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
OrderStateForIter(this), OrderingPropertyForIter(this));
const auto flags = DisplayFlagsForFlexOrGridItem();
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
BuildDisplayListForChild(aBuilder, childFrame, childLists, flags);
}
tempLists.MoveTo(aLists);
}
void FlexLine::FreezeItemsEarly(bool aIsUsingFlexGrow,
ComputedFlexLineInfo* aLineInfo) {
// After we've established the type of flexing we're doing (growing vs.
// shrinking), and before we try to flex any items, we freeze items that
// obviously *can't* flex.
//
// Quoting the spec:
// # Freeze, setting its target main size to its hypothetical main size...
// # - any item that has a flex factor of zero
// # - if using the flex grow factor: any item that has a flex base size
// # greater than its hypothetical main size
// # - if using the flex shrink factor: any item that has a flex base size
// # smaller than its hypothetical main size
// https://drafts.csswg.org/css-flexbox/#resolve-flexible-lengths
//
// (NOTE: At this point, item->MainSize() *is* the item's hypothetical
// main size, since SetFlexBaseSizeAndMainSize() sets it up that way, and the
// item hasn't had a chance to flex away from that yet.)
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
bool shouldFreeze = (0.0f == item.GetFlexFactor(aIsUsingFlexGrow));
if (!shouldFreeze) {
if (aIsUsingFlexGrow) {
if (item.FlexBaseSize() > item.MainSize()) {
shouldFreeze = true;
}
} else { // using flex-shrink
if (item.FlexBaseSize() < item.MainSize()) {
shouldFreeze = true;
}
}
}
if (shouldFreeze) {
// Freeze item! (at its hypothetical main size)
item.Freeze();
if (item.FlexBaseSize() < item.MainSize()) {
item.SetWasMinClamped();
} else if (item.FlexBaseSize() > item.MainSize()) {
item.SetWasMaxClamped();
}
mNumFrozenItems++;
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
}
// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
void FlexLine::FreezeOrRestoreEachFlexibleSize(const nscoord aTotalViolation,
bool aIsFinalIteration) {
enum FreezeType {
eFreezeEverything,
eFreezeMinViolations,
eFreezeMaxViolations
};
FreezeType freezeType;
if (aTotalViolation == 0) {
freezeType = eFreezeEverything;
} else if (aTotalViolation > 0) {
freezeType = eFreezeMinViolations;
} else { // aTotalViolation < 0
freezeType = eFreezeMaxViolations;
}
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
"Can have either min or max violation, but not both");
bool hadMinViolation = item.HadMinViolation();
bool hadMaxViolation = item.HadMaxViolation();
if (eFreezeEverything == freezeType ||
(eFreezeMinViolations == freezeType && hadMinViolation) ||
(eFreezeMaxViolations == freezeType && hadMaxViolation)) {
MOZ_ASSERT(item.MainSize() >= item.MainMinSize(),
"Freezing item at a size below its minimum");
MOZ_ASSERT(item.MainSize() <= item.MainMaxSize(),
"Freezing item at a size above its maximum");
item.Freeze();
if (hadMinViolation) {
item.SetWasMinClamped();
} else if (hadMaxViolation) {
item.SetWasMaxClamped();
}
mNumFrozenItems++;
} else if (MOZ_UNLIKELY(aIsFinalIteration)) {
// XXXdholbert If & when bug 765861 is fixed, we should upgrade this
// assertion to be fatal except in documents with enormous lengths.
NS_ERROR(
"Final iteration still has unfrozen items, this shouldn't"
" happen unless there was nscoord under/overflow.");
item.Freeze();
mNumFrozenItems++;
} // else, we'll reset this item's main size to its flex base size on the
// next iteration of this algorithm.
if (!item.IsFrozen()) {
// Clear this item's violation(s), now that we've dealt with them
item.ClearViolationFlags();
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
}
void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize,
ComputedFlexLineInfo* aLineInfo) {
// In this function, we use 64-bit coord type to avoid integer overflow in
// case several of the individual items have huge hypothetical main sizes,
// which can happen with percent-width table-layout:fixed descendants. Here we
// promote the container's main size to 64-bit to make the arithmetic
// convenient.
AuCoord64 flexContainerMainSize(aFlexContainerMainSize);
// Before we start resolving sizes: if we have an aLineInfo structure to fill
// out, we inform it of each item's base size, and we initialize the "delta"
// for each item to 0. (And if the flex algorithm wants to grow or shrink the
// item, we'll update this delta further down.)
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem& item : Items()) {
aLineInfo->mItems[itemIndex].mMainBaseSize = item.FlexBaseSize();
aLineInfo->mItems[itemIndex].mMainDeltaSize = 0;
++itemIndex;
}
}
// Determine whether we're going to be growing or shrinking items.
const bool isUsingFlexGrow =
(mTotalOuterHypotheticalMainSize < flexContainerMainSize);
if (aLineInfo) {
aLineInfo->mGrowthState =
isUsingFlexGrow ? mozilla::dom::FlexLineGrowthState::Growing
: mozilla::dom::FlexLineGrowthState::Shrinking;
}
// Do an "early freeze" for flex items that obviously can't flex in the
// direction we've chosen:
FreezeItemsEarly(isUsingFlexGrow, aLineInfo);
if ((mNumFrozenItems == NumItems()) && !aLineInfo) {
// All our items are frozen, so we have no flexible lengths to resolve,
// and we aren't being asked to generate computed line info.
FLEX_LOG("No flexible length to resolve");
return;
}
MOZ_ASSERT(!IsEmpty() || aLineInfo,
"empty lines should take the early-return above");
FLEX_LOG("Resolving flexible lengths for items");
// Subtract space occupied by our items' margins/borders/padding/gaps, so
// we can just be dealing with the space available for our flex items' content
// boxes.
const AuCoord64 totalItemMBPAndGaps = mTotalItemMBP + SumOfGaps();
const AuCoord64 spaceAvailableForFlexItemsContentBoxes =
flexContainerMainSize - totalItemMBPAndGaps;
Maybe<AuCoord64> origAvailableFreeSpace;
// NOTE: I claim that this chunk of the algorithm (the looping part) needs to
// run the loop at MOST NumItems() times. This claim should hold up
// because we'll freeze at least one item on each loop iteration, and once
// we've run out of items to freeze, there's nothing left to do. However,
// in most cases, we'll break out of this loop long before we hit that many
// iterations.
for (uint32_t iterationCounter = 0; iterationCounter < NumItems();
iterationCounter++) {
// Set every not-yet-frozen item's used main size to its
// flex base size, and subtract all the used main sizes from our
// total amount of space to determine the 'available free space'
// (positive or negative) to be distributed among our flexible items.
AuCoord64 availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
for (FlexItem& item : Items()) {
if (!item.IsFrozen()) {
item.SetMainSize(item.FlexBaseSize());
}
availableFreeSpace -= item.MainSize();
}
FLEX_LOGV("Available free space: %" PRId64 "; flex items should \"%s\"",
availableFreeSpace.value, isUsingFlexGrow ? "grow" : "shrink");
// The sign of our free space should agree with the type of flexing
// (grow/shrink) that we're doing. Any disagreement should've made us use
// the other type of flexing, or should've been resolved in
// FreezeItemsEarly.
//
// Note: it's possible that an individual flex item has huge
// margin/border/padding that makes either its
// MarginBorderPaddingSizeInMainAxis() or OuterMainSize() negative due to
// integer overflow. If that happens, the accumulated
// mTotalOuterHypotheticalMainSize or mTotalItemMBP could be negative due to
// that one item's negative (overflowed) size. Likewise, a huge main gap
// size between flex items can also make our accumulated SumOfGaps()
// negative. In these case, we throw up our hands and don't require
// isUsingFlexGrow to agree with availableFreeSpace. Luckily, we won't get
// stuck in the algorithm below, and just distribute the wrong
// availableFreeSpace with the wrong grow/shrink factors.
MOZ_ASSERT(!(mTotalOuterHypotheticalMainSize >= 0 && mTotalItemMBP >= 0 &&
totalItemMBPAndGaps >= 0) ||
(isUsingFlexGrow && availableFreeSpace >= 0) ||
(!isUsingFlexGrow && availableFreeSpace <= 0),
"availableFreeSpace's sign should match isUsingFlexGrow");
// If we have any free space available, give each flexible item a portion
// of availableFreeSpace.
if (availableFreeSpace != AuCoord64(0)) {
// The first time we do this, we initialize origAvailableFreeSpace.
if (!origAvailableFreeSpace) {
origAvailableFreeSpace.emplace(availableFreeSpace);
}
// STRATEGY: On each item, we compute & store its "share" of the total
// weight that we've seen so far:
// curWeight / weightSum
//
// Then, when we go to actually distribute the space (in the next loop),
// we can simply walk backwards through the elements and give each item
// its "share" multiplied by the remaining available space.
//
// SPECIAL CASE: If the sum of the weights is larger than the
// maximum representable double (overflowing to infinity), then we can't
// sensibly divide out proportional shares anymore. In that case, we
// simply treat the flex item(s) with the largest weights as if
// their weights were infinite (dwarfing all the others), and we
// distribute all of the available space among them.
double weightSum = 0.0;
double flexFactorSum = 0.0;
double largestWeight = 0.0;
uint32_t numItemsWithLargestWeight = 0;
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
const double curWeight = item.GetWeight(isUsingFlexGrow);
const double curFlexFactor = item.GetFlexFactor(isUsingFlexGrow);
MOZ_ASSERT(curWeight >= 0.0, "weights are non-negative");
MOZ_ASSERT(curFlexFactor >= 0.0, "flex factors are non-negative");
weightSum += curWeight;
flexFactorSum += curFlexFactor;
if (std::isfinite(weightSum)) {
if (curWeight == 0.0) {
item.SetShareOfWeightSoFar(0.0);
} else {
item.SetShareOfWeightSoFar(curWeight / weightSum);
}
} // else, the sum of weights overflows to infinity, in which
// case we don't bother with "SetShareOfWeightSoFar" since
// we know we won't use it. (instead, we'll just give every
// item with the largest weight an equal share of space.)
// Update our largest-weight tracking vars
if (curWeight > largestWeight) {
largestWeight = curWeight;
numItemsWithLargestWeight = 1;
} else if (curWeight == largestWeight) {
numItemsWithLargestWeight++;
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
if (weightSum != 0.0) {
MOZ_ASSERT(flexFactorSum != 0.0,
"flex factor sum can't be 0, if a weighted sum "
"of its components (weightSum) is nonzero");
if (flexFactorSum < 1.0) {
// Our unfrozen flex items don't want all of the original free space!
// (Their flex factors add up to something less than 1.)
// Hence, make sure we don't distribute any more than the portion of
// our original free space that these items actually want.
auto totalDesiredPortionOfOrigFreeSpace =
AuCoord64::FromRound(*origAvailableFreeSpace * flexFactorSum);
// Clamp availableFreeSpace to be no larger than that ^^.
// (using min or max, depending on sign).
// This should not change the sign of availableFreeSpace (except
// possibly by setting it to 0), as enforced by this assertion:
NS_ASSERTION(totalDesiredPortionOfOrigFreeSpace == AuCoord64(0) ||
((totalDesiredPortionOfOrigFreeSpace > 0) ==
(availableFreeSpace > 0)),
"When we reduce available free space for flex "
"factors < 1, we shouldn't change the sign of the "
"free space...");
if (availableFreeSpace > 0) {
availableFreeSpace = std::min(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
} else {
availableFreeSpace = std::max(availableFreeSpace,
totalDesiredPortionOfOrigFreeSpace);
}
}
FLEX_LOGV("Distributing available space:");
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
// NOTE: It's important that we traverse our items in *reverse* order
// here, for correct width distribution according to the items'
// "ShareOfWeightSoFar" progressively-calculated values.
for (FlexItem& item : Reversed(Items())) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
// To avoid rounding issues, we compute the change in size for this
// item, and then subtract it from the remaining available space.
AuCoord64 sizeDelta = 0;
if (std::isfinite(weightSum)) {
double myShareOfRemainingSpace = item.ShareOfWeightSoFar();
MOZ_ASSERT(myShareOfRemainingSpace >= 0.0 &&
myShareOfRemainingSpace <= 1.0,
"my share should be nonnegative fractional amount");
if (myShareOfRemainingSpace == 1.0) {
// (We special-case 1.0 to avoid float error from converting
// availableFreeSpace from integer*1.0 --> double --> integer)
sizeDelta = availableFreeSpace;
} else if (myShareOfRemainingSpace > 0.0) {
sizeDelta = AuCoord64::FromRound(availableFreeSpace *
myShareOfRemainingSpace);
}
} else if (item.GetWeight(isUsingFlexGrow) == largestWeight) {
// Total flexibility is infinite, so we're just distributing
// the available space equally among the items that are tied for
// having the largest weight (and this is one of those items).
sizeDelta = AuCoord64::FromRound(
availableFreeSpace / double(numItemsWithLargestWeight));
numItemsWithLargestWeight--;
}
availableFreeSpace -= sizeDelta;
item.SetMainSize(item.MainSize() +
nscoord(sizeDelta.ToMinMaxClamped()));
FLEX_LOGV(" Flex item %p receives %" PRId64 ", for a total of %d",
item.Frame(), sizeDelta.value, item.MainSize());
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
// If we have an aLineInfo structure to fill out, capture any
// size changes that may have occurred in the previous loop.
// We don't do this inside the previous loop, because we don't
// want to burden layout when aLineInfo is null.
if (aLineInfo) {
uint32_t itemIndex = 0;
for (FlexItem& item : Items()) {
if (!item.IsFrozen()) {
// Calculate a deltaSize that represents how much the flex sizing
// algorithm "wants" to stretch or shrink this item during this
// pass through the algorithm. Later passes through the algorithm
// may overwrite this, until this item is frozen. Note that this
// value may not reflect how much the size of the item is
// actually changed, since the size of the item will be clamped
// to min and max values later in this pass. That's intentional,
// since we want to report the value that the sizing algorithm
// tried to stretch or shrink the item.
nscoord deltaSize =
item.MainSize() - aLineInfo->mItems[itemIndex].mMainBaseSize;
aLineInfo->mItems[itemIndex].mMainDeltaSize = deltaSize;
}
++itemIndex;
}
}
}
}
// Fix min/max violations:
nscoord totalViolation = 0; // keeps track of adjustments for min/max
FLEX_LOGV("Checking for violations:");
// Since this loop only operates on unfrozen flex items, we can break as
// soon as we have seen all of them.
uint32_t numUnfrozenItemsToBeSeen = NumItems() - mNumFrozenItems;
for (FlexItem& item : Items()) {
if (numUnfrozenItemsToBeSeen == 0) {
break;
}
if (!item.IsFrozen()) {
numUnfrozenItemsToBeSeen--;
if (item.MainSize() < item.MainMinSize()) {
// min violation
totalViolation += item.MainMinSize() - item.MainSize();
item.SetMainSize(item.MainMinSize());
item.SetHadMinViolation();
} else if (item.MainSize() > item.MainMaxSize()) {
// max violation
totalViolation += item.MainMaxSize() - item.MainSize();
item.SetMainSize(item.MainMaxSize());
item.SetHadMaxViolation();
}
}
}
MOZ_ASSERT(numUnfrozenItemsToBeSeen == 0, "miscounted frozen items?");
FreezeOrRestoreEachFlexibleSize(totalViolation,
iterationCounter + 1 == NumItems());
FLEX_LOGV("Total violation: %d", totalViolation);
if (mNumFrozenItems == NumItems()) {
break;
}
MOZ_ASSERT(totalViolation != 0,
"Zero violation should've made us freeze all items & break");
}
#ifdef DEBUG
// Post-condition: all items should've been frozen.
// Make sure the counts match:
MOZ_ASSERT(mNumFrozenItems == NumItems(), "All items should be frozen");
// For good measure, check each item directly, in case our counts are busted:
for (const FlexItem& item : Items()) {
MOZ_ASSERT(item.IsFrozen(), "All items should be frozen");
}
#endif // DEBUG
}
MainAxisPositionTracker::MainAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker, const FlexLine* aLine,
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.MainAxis(),
aAxisTracker.IsMainAxisReversed()),
// we chip away at this below
mPackingSpaceRemaining(aContentBoxMainSize),
mJustifyContent(aJustifyContent) {
// Extract the flag portion of mJustifyContent and strip off the flag bits
// NOTE: This must happen before any assignment to mJustifyContent to
// avoid overwriting the flag bits.
StyleAlignFlags justifyContentFlags =
mJustifyContent.primary & StyleAlignFlags::FLAG_BITS;
mJustifyContent.primary &= ~StyleAlignFlags::FLAG_BITS;
// 'normal' behaves as 'stretch', and 'stretch' behaves as 'flex-start',
// in the main axis
// https://drafts.csswg.org/css-align-3/#propdef-justify-content
if (mJustifyContent.primary == StyleAlignFlags::NORMAL ||
mJustifyContent.primary == StyleAlignFlags::STRETCH) {
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
}
// mPackingSpaceRemaining is initialized to the container's main size. Now
// we'll subtract out the main sizes of our flex items, so that it ends up
// with the *actual* amount of packing space.
for (const FlexItem& item : aLine->Items()) {
mPackingSpaceRemaining -= item.OuterMainSize();
mNumAutoMarginsInMainAxis += item.NumAutoMarginsInMainAxis();
}
// Subtract space required for row/col gap from the remaining packing space
mPackingSpaceRemaining -= aLine->SumOfGaps();
if (mPackingSpaceRemaining <= 0) {
// No available packing space to use for resolving auto margins.
mNumAutoMarginsInMainAxis = 0;
// If packing space is negative and <overflow-position> is set to 'safe'
// all justify options fall back to 'start'
if (justifyContentFlags & StyleAlignFlags::SAFE) {
mJustifyContent.primary = StyleAlignFlags::START;
}
}
// If packing space is negative or we only have one item, 'space-between'
// falls back to 'flex-start', and 'space-around' & 'space-evenly' fall back
// to 'center'. In those cases, it's simplest to just pretend we have a
// different 'justify-content' value and share code.
if (mPackingSpaceRemaining < 0 || aLine->NumItems() == 1) {
if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
mJustifyContent.primary = StyleAlignFlags::FLEX_START;
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
mJustifyContent.primary = StyleAlignFlags::CENTER;
}
}
// Map 'left'/'right' to 'start'/'end'
if (mJustifyContent.primary == StyleAlignFlags::LEFT ||
mJustifyContent.primary == StyleAlignFlags::RIGHT) {
mJustifyContent.primary =
aAxisTracker.ResolveJustifyLeftRight(mJustifyContent.primary);
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mJustifyContent.primary == StyleAlignFlags::START) {
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (mJustifyContent.primary == StyleAlignFlags::END) {
mJustifyContent.primary = aAxisTracker.IsMainAxisReversed()
? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// Figure out how much space we'll set aside for auto margins or
// packing spaces, and advance past any leading packing-space.
if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 &&
!aLine->IsEmpty()) {
if (mJustifyContent.primary == StyleAlignFlags::FLEX_START) {
// All packing space should go at the end --> nothing to do here.
} else if (mJustifyContent.primary == StyleAlignFlags::FLEX_END) {
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
} else if (mJustifyContent.primary == StyleAlignFlags::CENTER) {
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
} else if (mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY) {
nsFlexContainerFrame::CalculatePackingSpace(
aLine->NumItems(), mJustifyContent, &mPosition,
&mNumPackingSpacesRemaining, &mPackingSpaceRemaining);
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected justify-content value");
}
}
MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0,
"extra space should either go to packing space or to "
"auto margins, but not to both");
}
void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) {
if (mNumAutoMarginsInMainAxis) {
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (const auto side : {StartSide(), EndSide()}) {
if (styleMargin.Get(mWM, side).IsAuto()) {
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curAutoMarginSize =
mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"resolve them");
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
mNumAutoMarginsInMainAxis--;
mPackingSpaceRemaining -= curAutoMarginSize;
}
}
}
}
void MainAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mJustifyContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mJustifyContent.primary == StyleAlignFlags::SPACE_AROUND ||
mJustifyContent.primary == StyleAlignFlags::SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
CrossAxisPositionTracker::CrossAxisPositionTracker(
nsTArray<FlexLine>& aLines, const ReflowInput& aReflowInput,
nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite,
const FlexboxAxisTracker& aAxisTracker, const nscoord aCrossGapSize)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
aAxisTracker.IsCrossAxisReversed()),
mAlignContent(aReflowInput.mStylePosition->mAlignContent),
mCrossGapSize(aCrossGapSize) {
// Extract and strip the flag bits from alignContent
StyleAlignFlags alignContentFlags =
mAlignContent.primary & StyleAlignFlags::FLAG_BITS;
mAlignContent.primary &= ~StyleAlignFlags::FLAG_BITS;
// 'normal' behaves as 'stretch'
if (mAlignContent.primary == StyleAlignFlags::NORMAL) {
mAlignContent.primary = StyleAlignFlags::STRETCH;
}
const bool isSingleLine =
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
if (isSingleLine) {
MOZ_ASSERT(aLines.Length() == 1,
"If we're styled as single-line, we should only have 1 line");
// "If the flex container is single-line and has a definite cross size, the
// cross size of the flex line is the flex container's inner cross size."
//
// SOURCE: https://drafts.csswg.org/css-flexbox/#algo-cross-line
// NOTE: This means (by definition) that there's no packing space, which
// means we don't need to be concerned with "align-content" at all and we
// can return early. This is handy, because this is the usual case (for
// single-line flexbox).
if (aIsCrossSizeDefinite) {
aLines[0].SetLineCrossSize(aContentBoxCrossSize);
return;
}
// "If the flex container is single-line, then clamp the line's
// cross-size to be within the container's computed min and max cross-size
// properties."
aLines[0].SetLineCrossSize(
aReflowInput.ApplyMinMaxBSize(aLines[0].LineCrossSize()));
}
// NOTE: The rest of this function should essentially match
// MainAxisPositionTracker's constructor, though with FlexLines instead of
// FlexItems, and with the additional value "stretch" (and of course with
// cross sizes instead of main sizes.)
// Figure out how much packing space we have (container's cross size minus
// all the lines' cross sizes). Also, share this loop to count how many
// lines we have. (We need that count in some cases below.)
mPackingSpaceRemaining = aContentBoxCrossSize;
uint32_t numLines = 0;
for (FlexLine& line : aLines) {
mPackingSpaceRemaining -= line.LineCrossSize();
numLines++;
}
// Subtract space required for row/col gap from the remaining packing space
MOZ_ASSERT(numLines >= 1,
"GenerateFlexLines should've produced at least 1 line");
mPackingSpaceRemaining -= aCrossGapSize * (numLines - 1);
// If <overflow-position> is 'safe' and packing space is negative
// all align options fall back to 'start'
if ((alignContentFlags & StyleAlignFlags::SAFE) &&
mPackingSpaceRemaining < 0) {
mAlignContent.primary = StyleAlignFlags::START;
}
// If packing space is negative, 'space-between' and 'stretch' behave like
// 'flex-start', and 'space-around' and 'space-evenly' behave like 'center'.
// In those cases, it's simplest to just pretend we have a different
// 'align-content' value and share code. (If we only have one line, all of
// the 'space-*' keywords fall back as well, but 'stretch' doesn't because
// even a single line can still stretch.)
if (mPackingSpaceRemaining < 0 &&
mAlignContent.primary == StyleAlignFlags::STRETCH) {
mAlignContent.primary = StyleAlignFlags::FLEX_START;
} else if (mPackingSpaceRemaining < 0 || numLines == 1) {
if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN) {
mAlignContent.primary = StyleAlignFlags::FLEX_START;
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
mAlignContent.primary = StyleAlignFlags::CENTER;
}
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (mAlignContent.primary == StyleAlignFlags::START) {
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (mAlignContent.primary == StyleAlignFlags::END) {
mAlignContent.primary = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// Figure out how much space we'll set aside for packing spaces, and advance
// past any leading packing-space.
if (mPackingSpaceRemaining != 0) {
if (mAlignContent.primary == StyleAlignFlags::BASELINE ||
mAlignContent.primary == StyleAlignFlags::LAST_BASELINE) {
// TODO: Bug 1480850 will implement 'align-content: [first/last] baseline'
// for flexbox. Until then, behaves as if align-content is 'flex-start' by
// doing nothing.
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_START) {
// All packing space should go at the end --> nothing to do here.
} else if (mAlignContent.primary == StyleAlignFlags::FLEX_END) {
// All packing space goes at the beginning
mPosition += mPackingSpaceRemaining;
} else if (mAlignContent.primary == StyleAlignFlags::CENTER) {
// Half the packing space goes at the beginning
mPosition += mPackingSpaceRemaining / 2;
} else if (mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY) {
nsFlexContainerFrame::CalculatePackingSpace(
numLines, mAlignContent, &mPosition, &mNumPackingSpacesRemaining,
&mPackingSpaceRemaining);
} else if (mAlignContent.primary == StyleAlignFlags::STRETCH) {
// Split space equally between the lines:
MOZ_ASSERT(mPackingSpaceRemaining > 0,
"negative packing space should make us use 'flex-start' "
"instead of 'stretch' (and we shouldn't bother with this "
"code if we have 0 packing space)");
uint32_t numLinesLeft = numLines;
for (FlexLine& line : aLines) {
// Our share is the amount of space remaining, divided by the number
// of lines remainig.
MOZ_ASSERT(numLinesLeft > 0, "miscalculated num lines");
nscoord shareOfExtraSpace = mPackingSpaceRemaining / numLinesLeft;
nscoord newSize = line.LineCrossSize() + shareOfExtraSpace;
line.SetLineCrossSize(newSize);
mPackingSpaceRemaining -= shareOfExtraSpace;
numLinesLeft--;
}
MOZ_ASSERT(numLinesLeft == 0, "miscalculated num lines");
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected align-content value");
}
}
}
void CrossAxisPositionTracker::TraversePackingSpace() {
if (mNumPackingSpacesRemaining) {
MOZ_ASSERT(mAlignContent.primary == StyleAlignFlags::SPACE_BETWEEN ||
mAlignContent.primary == StyleAlignFlags::SPACE_AROUND ||
mAlignContent.primary == StyleAlignFlags::SPACE_EVENLY,
"mNumPackingSpacesRemaining only applies for "
"space-between/space-around/space-evenly");
MOZ_ASSERT(mPackingSpaceRemaining >= 0,
"ran out of packing space earlier than we expected");
// NOTE: This integer math will skew the distribution of remainder
// app-units towards the end, which is fine.
nscoord curPackingSpace =
mPackingSpaceRemaining / mNumPackingSpacesRemaining;
mPosition += curPackingSpace;
mNumPackingSpacesRemaining--;
mPackingSpaceRemaining -= curPackingSpace;
}
}
SingleLineCrossAxisPositionTracker::SingleLineCrossAxisPositionTracker(
const FlexboxAxisTracker& aAxisTracker)
: PositionTracker(aAxisTracker.GetWritingMode(), aAxisTracker.CrossAxis(),
aAxisTracker.IsCrossAxisReversed()) {}
void FlexLine::ComputeCrossSizeAndBaseline(
const FlexboxAxisTracker& aAxisTracker) {
// NOTE: in these "cross{Start,End}ToFurthest{First,Last}Baseline" variables,
// the "first/last" term is referring to the flex *line's* baseline-sharing
// groups, which may or may not match any flex *item's* exact align-self
// value. See the code that sets FlexItem::mBaselineSharingGroup for more
// details.
nscoord crossStartToFurthestFirstBaseline = nscoord_MIN;
nscoord crossEndToFurthestFirstBaseline = nscoord_MIN;
nscoord crossStartToFurthestLastBaseline = nscoord_MIN;
nscoord crossEndToFurthestLastBaseline = nscoord_MIN;
nscoord largestOuterCrossSize = 0;
for (const FlexItem& item : Items()) {
nscoord curOuterCrossSize = item.OuterCrossSize();
if ((item.AlignSelf()._0 == StyleAlignFlags::BASELINE ||
item.AlignSelf()._0 == StyleAlignFlags::LAST_BASELINE) &&
item.NumAutoMarginsInCrossAxis() == 0) {
const bool usingItemFirstBaseline =
(item.AlignSelf()._0 == StyleAlignFlags::BASELINE);
// Find distance from our item's cross-start and cross-end margin-box
// edges to its baseline.
//
// Here's a diagram of a flex-item that we might be doing this on.
// "mmm" is the margin-box, "bbb" is the border-box. The bottom of
// the text "BASE" is the baseline.
//
// ---(cross-start)---
// ___ ___ ___
// mmmmmmmmmmmm | |margin-start |
// m m | _|_ ___ |
// m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline
// m b b m | |ascent |
// m b BASE b m | _|_ _|_
// m b b m | |
// m bbbbbbbb m | |crossEndToBaseline
// m m | |
// mmmmmmmmmmmm _|_ _|_
//
// ---(cross-end)---
//
// We already have the curOuterCrossSize, margin-start, and the ascent.
// * We can get crossStartToBaseline by adding margin-start + ascent.
// * If we subtract that from the curOuterCrossSize, we get
// crossEndToBaseline.
nscoord crossStartToBaseline = item.BaselineOffsetFromOuterCrossEdge(
aAxisTracker.CrossAxisPhysicalStartSide(), usingItemFirstBaseline);
nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;
// Now, update our "largest" values for these (across all the flex items
// in this flex line), so we can use them in computing the line's cross
// size below:
if (item.ItemBaselineSharingGroup() == BaselineSharingGroup::First) {
crossStartToFurthestFirstBaseline =
std::max(crossStartToFurthestFirstBaseline, crossStartToBaseline);
crossEndToFurthestFirstBaseline =
std::max(crossEndToFurthestFirstBaseline, crossEndToBaseline);
} else {
crossStartToFurthestLastBaseline =
std::max(crossStartToFurthestLastBaseline, crossStartToBaseline);
crossEndToFurthestLastBaseline =
std::max(crossEndToFurthestLastBaseline, crossEndToBaseline);
}
} else {
largestOuterCrossSize =
std::max(largestOuterCrossSize, curOuterCrossSize);
}
}
// The line's baseline offset is the distance from the line's edge to the
// furthest item-baseline. The item(s) with that baseline will be exactly
// aligned with the line's edge.
mFirstBaselineOffset = crossStartToFurthestFirstBaseline;
mLastBaselineOffset = crossEndToFurthestLastBaseline;
// The line's cross-size is the larger of:
// (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all baseline-aligned items with no cross-axis auto margins...
// and
// (b) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
// all last baseline-aligned items with no cross-axis auto margins...
// and
// (c) largest cross-size of all other children.
mLineCrossSize = std::max(
std::max(
crossStartToFurthestFirstBaseline + crossEndToFurthestFirstBaseline,
crossStartToFurthestLastBaseline + crossEndToFurthestLastBaseline),
largestOuterCrossSize);
}
nscoord FlexLine::ExtractBaselineOffset(
BaselineSharingGroup aBaselineGroup) const {
auto LastBaselineOffsetFromStartEdge = [this]() {
// Convert the distance to be relative from the line's cross-start edge.
const nscoord offset = LastBaselineOffset();
return offset != nscoord_MIN ? LineCrossSize() - offset : offset;
};
auto PrimaryBaseline = [=]() {
return aBaselineGroup == BaselineSharingGroup::First
? FirstBaselineOffset()
: LastBaselineOffsetFromStartEdge();
};
auto SecondaryBaseline = [=]() {
return aBaselineGroup == BaselineSharingGroup::First
? LastBaselineOffsetFromStartEdge()
: FirstBaselineOffset();
};
const nscoord primaryBaseline = PrimaryBaseline();
if (primaryBaseline != nscoord_MIN) {
return primaryBaseline;
}
return SecondaryBaseline();
}
void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize) {
// We stretch IFF we are align-self:stretch, have no auto margins in
// cross axis, and have cross-axis size property == "auto". If any of those
// conditions don't hold up, we won't stretch.
if (mAlignSelf._0 != StyleAlignFlags::STRETCH ||
NumAutoMarginsInCrossAxis() != 0 || !IsCrossSizeAuto()) {
return;
}
// If we've already been stretched, we can bail out early, too.
// No need to redo the calculation.
if (mIsStretched) {
return;
}
// Reserve space for margins & border & padding, and then use whatever
// remains as our item's cross-size (clamped to its min/max range).
nscoord stretchedSize = aLineCrossSize - MarginBorderPaddingSizeInCrossAxis();
stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize);
// Update the cross-size & make a note that it's stretched, so we know to
// override the reflow input's computed cross-size in our final reflow.
SetCrossSize(stretchedSize);
mIsStretched = true;
}
static nsBlockFrame* FindFlexItemBlockFrame(nsIFrame* aFrame) {
if (nsBlockFrame* block = do_QueryFrame(aFrame)) {
return block;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
if (nsBlockFrame* block = FindFlexItemBlockFrame(f)) {
return block;
}
}
return nullptr;
}
nsBlockFrame* FlexItem::BlockFrame() const {
return FindFlexItemBlockFrame(Frame());
}
void SingleLineCrossAxisPositionTracker::ResolveAutoMarginsInCrossAxis(
const FlexLine& aLine, FlexItem& aItem) {
// Subtract the space that our item is already occupying, to see how much
// space (if any) is available for its auto margins.
nscoord spaceForAutoMargins = aLine.LineCrossSize() - aItem.OuterCrossSize();
if (spaceForAutoMargins <= 0) {
return; // No available space --> nothing to do
}
uint32_t numAutoMargins = aItem.NumAutoMarginsInCrossAxis();
if (numAutoMargins == 0) {
return; // No auto margins --> nothing to do.
}
// OK, we have at least one auto margin and we have some available space.
// Give each auto margin a share of the space.
const auto& styleMargin = aItem.Frame()->StyleMargin()->mMargin;
for (const auto side : {StartSide(), EndSide()}) {
if (styleMargin.Get(mWM, side).IsAuto()) {
MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
"Expecting auto margins to have value '0' before we "
"update them");
// NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
// If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
aItem.SetMarginComponentForSide(side, curAutoMarginSize);
numAutoMargins--;
spaceForAutoMargins -= curAutoMarginSize;
}
}
}
void SingleLineCrossAxisPositionTracker::EnterAlignPackingSpace(
const FlexLine& aLine, const FlexItem& aItem,
const FlexboxAxisTracker& aAxisTracker) {
// We don't do align-self alignment on items that have auto margins
// in the cross axis.
if (aItem.NumAutoMarginsInCrossAxis()) {
return;
}
StyleAlignFlags alignSelf = aItem.AlignSelf()._0;
// NOTE: 'stretch' behaves like 'flex-start' once we've stretched any
// auto-sized items (which we've already done).
if (alignSelf == StyleAlignFlags::STRETCH) {
alignSelf = StyleAlignFlags::FLEX_START;
}
// Map 'self-start'/'self-end' to 'start'/'end'
if (alignSelf == StyleAlignFlags::SELF_START ||
alignSelf == StyleAlignFlags::SELF_END) {
const LogicalAxis logCrossAxis =
aAxisTracker.IsRowOriented() ? LogicalAxis::Block : LogicalAxis::Inline;
const WritingMode cWM = aAxisTracker.GetWritingMode();
const bool sameStart =
cWM.ParallelAxisStartsOnSameSide(logCrossAxis, aItem.GetWritingMode());
alignSelf = sameStart == (alignSelf == StyleAlignFlags::SELF_START)
? StyleAlignFlags::START
: StyleAlignFlags::END;
}
// Map 'start'/'end' to 'flex-start'/'flex-end'.
if (alignSelf == StyleAlignFlags::START) {
alignSelf = aAxisTracker.IsCrossAxisReversed()
? StyleAlignFlags::FLEX_END
: StyleAlignFlags::FLEX_START;
} else if (alignSelf == StyleAlignFlags::END) {
alignSelf = aAxisTracker.IsCrossAxisReversed() ? StyleAlignFlags::FLEX_START
: StyleAlignFlags::FLEX_END;
}
// 'align-self' falls back to 'flex-start' if it is 'center'/'flex-end' and we
// have cross axis overflow
// XXX we should really be falling back to 'start' as of bug 1472843
if (aLine.LineCrossSize() < aItem.OuterCrossSize() &&
(aItem.AlignSelfFlags() & StyleAlignFlags::SAFE)) {
alignSelf = StyleAlignFlags::FLEX_START;
}
if (alignSelf == StyleAlignFlags::FLEX_START) {
// No space to skip over -- we're done.
} else if (alignSelf == StyleAlignFlags::FLEX_END) {
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
} else if (alignSelf == StyleAlignFlags::CENTER) {
// Note: If cross-size is odd, the "after" space will get the extra unit.
mPosition += (aLine.LineCrossSize() - aItem.OuterCrossSize()) / 2;
} else if (alignSelf == StyleAlignFlags::BASELINE ||
alignSelf == StyleAlignFlags::LAST_BASELINE) {
const bool usingItemFirstBaseline =
(alignSelf == StyleAlignFlags::BASELINE);
// The first-baseline sharing group gets (collectively) aligned to the
// FlexLine's cross-start side, and similarly the last-baseline sharing
// group gets snapped to the cross-end side.
const bool isFirstBaselineSharingGroup =
aItem.ItemBaselineSharingGroup() == BaselineSharingGroup::First;
const mozilla::Side alignSide =
isFirstBaselineSharingGroup ? aAxisTracker.CrossAxisPhysicalStartSide()
: aAxisTracker.CrossAxisPhysicalEndSide();
// To compute the aligned position for our flex item, we determine:
// (1) The distance from the item's alignSide edge to the item's relevant
// baseline.
nscoord itemBaselineOffset = aItem.BaselineOffsetFromOuterCrossEdge(
alignSide, usingItemFirstBaseline);
// (2) The distance between the FlexLine's alignSide edge and the relevant
// baseline-sharing-group's baseline position.
nscoord lineBaselineOffset = isFirstBaselineSharingGroup
? aLine.FirstBaselineOffset()
: aLine.LastBaselineOffset();
NS_ASSERTION(lineBaselineOffset >= itemBaselineOffset,
"failed at finding largest baseline offset");
// (3) The difference between the above offsets, which tells us how far we
// need to shift the item away from the FlexLine's alignSide edge so
// that its baseline is at the proper position for its group.
nscoord itemOffsetFromLineEdge = lineBaselineOffset - itemBaselineOffset;
if (isFirstBaselineSharingGroup) {
// alignSide is the line's cross-start edge. mPosition is already there.
// From there, we step *forward* by the baseline adjustment:
mPosition += itemOffsetFromLineEdge;
} else {
// alignSide is the line's cross-end edge. Advance mPosition to align
// item with that edge (as in FLEX_END case)...
mPosition += aLine.LineCrossSize() - aItem.OuterCrossSize();
// ...and step *back* by the baseline adjustment:
mPosition -= itemOffsetFromLineEdge;
}
} else {
MOZ_ASSERT_UNREACHABLE("Unexpected align-self value");
}
}
FlexboxAxisInfo::FlexboxAxisInfo(const nsIFrame* aFlexContainer) {
MOZ_ASSERT(aFlexContainer && aFlexContainer->IsFlexContainerFrame(),
"Only flex containers may be passed to this constructor!");
if (IsLegacyBox(aFlexContainer)) {
InitAxesFromLegacyProps(aFlexContainer);
} else {
InitAxesFromModernProps(aFlexContainer);
}
}
void FlexboxAxisInfo::InitAxesFromLegacyProps(const nsIFrame* aFlexContainer) {
const nsStyleXUL* styleXUL = aFlexContainer->StyleXUL();
const bool boxOrientIsVertical =
styleXUL->mBoxOrient == StyleBoxOrient::Vertical;
const bool wmIsVertical = aFlexContainer->GetWritingMode().IsVertical();
// If box-orient agrees with our writing-mode, then we're "row-oriented"
// (i.e. the flexbox main axis is the same as our writing mode's inline
// direction). Otherwise, we're column-oriented (i.e. the flexbox's main
// axis is perpendicular to the writing-mode's inline direction).
mIsRowOriented = (boxOrientIsVertical == wmIsVertical);
// Legacy flexbox can use "-webkit-box-direction: reverse" to reverse the
// main axis (so it runs in the reverse direction of the inline axis):
mIsMainAxisReversed = styleXUL->mBoxDirection == StyleBoxDirection::Reverse;
// Legacy flexbox does not support reversing the cross axis -- it has no
// equivalent of modern flexbox's "flex-wrap: wrap-reverse".
mIsCrossAxisReversed = false;
}
void FlexboxAxisInfo::InitAxesFromModernProps(const nsIFrame* aFlexContainer) {
const nsStylePosition* stylePos = aFlexContainer->StylePosition();
StyleFlexDirection flexDirection = stylePos->mFlexDirection;
// Determine main axis:
switch (flexDirection) {
case StyleFlexDirection::Row:
mIsRowOriented = true;
mIsMainAxisReversed = false;
break;
case StyleFlexDirection::RowReverse:
mIsRowOriented = true;
mIsMainAxisReversed = true;
break;
case StyleFlexDirection::Column:
mIsRowOriented = false;
mIsMainAxisReversed = false;
break;
case StyleFlexDirection::ColumnReverse:
mIsRowOriented = false;
mIsMainAxisReversed = true;
break;
}
// "flex-wrap: wrap-reverse" reverses our cross axis.
mIsCrossAxisReversed = stylePos->mFlexWrap == StyleFlexWrap::WrapReverse;
}
FlexboxAxisTracker::FlexboxAxisTracker(
const nsFlexContainerFrame* aFlexContainer)
: mWM(aFlexContainer->GetWritingMode()), mAxisInfo(aFlexContainer) {}
LogicalSide FlexboxAxisTracker::MainAxisStartSide() const {
return MakeLogicalSide(
MainAxis(), IsMainAxisReversed() ? LogicalEdge::End : LogicalEdge::Start);
}
LogicalSide FlexboxAxisTracker::CrossAxisStartSide() const {
return MakeLogicalSide(CrossAxis(), IsCrossAxisReversed()
? LogicalEdge::End
: LogicalEdge::Start);
}
void nsFlexContainerFrame::GenerateFlexLines(
const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
const nscoord aTentativeContentBoxCrossSize,
const nsTArray<StrutInfo>& aStruts, const FlexboxAxisTracker& aAxisTracker,
nscoord aMainGapSize, nsTArray<nsIFrame*>& aPlaceholders,
nsTArray<FlexLine>& aLines, bool& aHasCollapsedItems) {
MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty");
auto ConstructNewFlexLine = [&aLines, aMainGapSize]() {
return aLines.EmplaceBack(aMainGapSize);
};
const bool isSingleLine =
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
// We have at least one FlexLine. Even an empty flex container has a single
// (empty) flex line.
FlexLine* curLine = ConstructNewFlexLine();
nscoord wrapThreshold;
if (isSingleLine) {
// Not wrapping. Set threshold to sentinel value that tells us not to wrap.
wrapThreshold = NS_UNCONSTRAINEDSIZE;
} else {
// Wrapping! Set wrap threshold to flex container's content-box main-size.
wrapThreshold = aTentativeContentBoxMainSize;
// If the flex container doesn't have a definite content-box main-size
// (e.g. if main axis is vertical & 'height' is 'auto'), make sure we at
// least wrap when we hit its max main-size.
if (wrapThreshold == NS_UNCONSTRAINEDSIZE) {
const nscoord flexContainerMaxMainSize =
aAxisTracker.MainComponent(aReflowInput.ComputedMaxSize());
wrapThreshold = flexContainerMaxMainSize;
}
}
// Tracks the index of the next strut, in aStruts (and when this hits
// aStruts.Length(), that means there are no more struts):
uint32_t nextStrutIdx = 0;
// Overall index of the current flex item in the flex container. (This gets
// checked against entries in aStruts.)
uint32_t itemIdxInContainer = 0;
CSSOrderAwareFrameIterator iter(
this, FrameChildListID::Principal,
CSSOrderAwareFrameIterator::ChildFilter::IncludeAll,
CSSOrderAwareFrameIterator::OrderState::Unknown,
OrderingPropertyForIter(this));
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
iter.ItemsAreAlreadyInOrder());
const bool useMozBoxCollapseBehavior =
StyleVisibility()->UseLegacyCollapseBehavior();
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* childFrame = *iter;
// Don't create flex items / lines for placeholder frames:
if (childFrame->IsPlaceholderFrame()) {
aPlaceholders.AppendElement(childFrame);
continue;
}
const bool collapsed = childFrame->StyleVisibility()->IsCollapse();
aHasCollapsedItems = aHasCollapsedItems || collapsed;
if (useMozBoxCollapseBehavior && collapsed) {
// Legacy visibility:collapse behavior: make a 0-sized strut. (No need to
// bother with aStruts and remembering cross size.)
curLine->Items().EmplaceBack(childFrame, 0, aReflowInput.GetWritingMode(),
aAxisTracker);
} else if (nextStrutIdx < aStruts.Length() &&
aStruts[nextStrutIdx].mItemIdx == itemIdxInContainer) {
// Use the simplified "strut" FlexItem constructor:
curLine->Items().EmplaceBack(childFrame,
aStruts[nextStrutIdx].mStrutCrossSize,
aReflowInput.GetWritingMode(), aAxisTracker);
nextStrutIdx++;
} else {
GenerateFlexItemForChild(*curLine, childFrame, aReflowInput, aAxisTracker,
aTentativeContentBoxCrossSize);
}
// Check if we need to wrap the newly appended item to a new line, i.e. if
// its outer hypothetical main size pushes our line over the threshold.
// But we don't wrap if the line-length is unconstrained, nor do we wrap if
// this was the first item on the line.
if (wrapThreshold != NS_UNCONSTRAINEDSIZE &&
curLine->Items().Length() > 1) {
// If the line will be longer than wrapThreshold or at least as long as
// nscoord_MAX because of the newly appended item, then wrap and move the
// item to a new line.
auto newOuterSize = curLine->TotalOuterHypotheticalMainSize();
newOuterSize += curLine->Items().LastElement().OuterMainSize();
// Account for gap between this line's previous item and this item.
newOuterSize += aMainGapSize;
if (newOuterSize >= nscoord_MAX || newOuterSize > wrapThreshold) {
curLine = ConstructNewFlexLine();
// Get the previous line after adding a new line because the address can
// change if nsTArray needs to reallocate a new space for the new line.
FlexLine& prevLine = aLines[aLines.Length() - 2];
// Move the item from the end of prevLine to the end of curLine.
curLine->Items().AppendElement(prevLine.Items().PopLastElement());
}
}
// Update the line's bookkeeping about how large its items collectively are.
curLine->AddLastItemToMainSizeTotals();
itemIdxInContainer++;
}
}
nsFlexContainerFrame::FlexLayoutResult
nsFlexContainerFrame::GenerateFlexLayoutResult() {
MOZ_ASSERT(GetPrevInFlow(), "This should be called by non-first-in-flows!");
auto* data = FirstInFlow()->GetProperty(SharedFlexData::Prop());
MOZ_ASSERT(data, "SharedFlexData should be set by our first-in-flow!");
FlexLayoutResult flr;
// The order state of the children is consistent across entire continuation
// chain due to calling nsContainerFrame::NormalizeChildLists() at the
// beginning of Reflow(), so we can align our state bit with our
// prev-in-flow's state. Setup here before calling OrderStateForIter() below.
AddOrRemoveStateBits(NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER,
GetPrevInFlow()->HasAnyStateBits(
NS_STATE_FLEX_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER));
// Construct flex items for this flex container fragment from existing flex
// items in SharedFlexData.
CSSOrderAwareFrameIterator iter(
this, FrameChildListID::Principal,
CSSOrderAwareFrameIterator::ChildFilter::SkipPlaceholders,
OrderStateForIter(this), OrderingPropertyForIter(this));
auto ConstructNewFlexLine = [&flr]() {
// Use zero main gap size since it doesn't matter in flex container's
// next-in-flows. We've computed flex items' positions in first-in-flow.
return flr.mLines.EmplaceBack(0);
};
// We have at least one FlexLine. Even an empty flex container has a single
// (empty) flex line.
FlexLine* currentLine = ConstructNewFlexLine();
if (!iter.AtEnd()) {
nsIFrame* child = *iter;
nsIFrame* childFirstInFlow = child->FirstInFlow();
// We are iterating nested for-loops over the FlexLines and FlexItems
// generated by GenerateFlexLines() and cached in flex container's
// first-in-flow. For each flex item, check if its frame (must be a
// first-in-flow) is the first-in-flow of the first child frame in this flex
// container continuation. If so, clone the data from that FlexItem into a
// FlexLine. When we find a match for the item, we know that the next child
// frame might have its first-in-flow as the next item in the same original
// line. In this case, we'll put the cloned data in the same line here as
// well.
for (const FlexLine& line : data->mLines) {
// If currentLine is empty, either it is the first line, or all the items
// in the previous line have been placed in our prev-in-flows. No need to
// construct a new line.
if (!currentLine->IsEmpty()) {
currentLine = ConstructNewFlexLine();
}
for (const FlexItem& item : line.Items()) {
if (item.Frame() == childFirstInFlow) {
currentLine->Items().AppendElement(item.CloneFor(child));
iter.Next();
if (iter.AtEnd()) {
// We've constructed flex items for all children. No need to check
// rest of the items.
child = childFirstInFlow = nullptr;
break;
}
child = *iter;
childFirstInFlow = child->FirstInFlow();
}
}
if (iter.AtEnd()) {
// We've constructed flex items for all children. No need to check
// rest of the lines.
break;
}
}
}
flr.mContentBoxMainSize = data->mContentBoxMainSize;
flr.mContentBoxCrossSize = data->mContentBoxCrossSize;
return flr;
}
// Returns the largest outer hypothetical main-size of any line in |aLines|.
// (i.e. the hypothetical main-size of the largest line)
static AuCoord64 GetLargestLineMainSize(nsTArray<FlexLine>& aLines) {
AuCoord64 largestLineOuterSize = 0;
for (const FlexLine& line : aLines) {
largestLineOuterSize =
std::max(largestLineOuterSize, line.TotalOuterHypotheticalMainSize());
}
return largestLineOuterSize;
}
nscoord nsFlexContainerFrame::ComputeMainSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
const nscoord aTentativeContentBoxMainSize,
nsTArray<FlexLine>& aLines) const {
if (aAxisTracker.IsRowOriented()) {
// Row-oriented --> our main axis is the inline axis, so our main size
// is our inline size (which should already be resolved).
return aTentativeContentBoxMainSize;
}
const bool shouldApplyAutomaticMinimumOnBlockAxis =
aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
if (aTentativeContentBoxMainSize != NS_UNCONSTRAINEDSIZE &&
!shouldApplyAutomaticMinimumOnBlockAxis) {
// Column-oriented case, with fixed BSize:
// Just use our fixed block-size because we always assume the available
// block-size is unconstrained, and the reflow input has already done the
// appropriate min/max-BSize clamping.
return aTentativeContentBoxMainSize;
}
// Column-oriented case, with size-containment in block axis:
// Behave as if we had no content and just use our MinBSize.
if (Maybe<nscoord> containBSize =
aReflowInput.mFrame->ContainIntrinsicBSize()) {
return aReflowInput.ApplyMinMaxBSize(*containBSize);
}
const AuCoord64 largestLineMainSize = GetLargestLineMainSize(aLines);
const nscoord contentBSize = aReflowInput.ApplyMinMaxBSize(
nscoord(largestLineMainSize.ToMinMaxClamped()));
// If the clamped largest FlexLine length is larger than the tentative main
// size (which is resolved by aspect-ratio), we extend it to contain the
// entire FlexLine.
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
if (shouldApplyAutomaticMinimumOnBlockAxis) {
// Column-oriented case, with auto BSize which is resolved by
// aspect-ratio.
return std::max(contentBSize, aTentativeContentBoxMainSize);
}
// Column-oriented case, with auto BSize:
// Resolve auto BSize to the largest FlexLine length, clamped to our
// computed min/max main-size properties.
return contentBSize;
}
nscoord nsFlexContainerFrame::ComputeCrossSize(
const ReflowInput& aReflowInput, const FlexboxAxisTracker& aAxisTracker,
const nscoord aTentativeContentBoxCrossSize, nscoord aSumLineCrossSizes,
bool* aIsDefinite) const {
MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null");
if (aAxisTracker.IsColumnOriented()) {
// Column-oriented --> our cross axis is the inline axis, so our cross size
// is our inline size (which should already be resolved).
*aIsDefinite = true;
// FIXME: Bug 1661847 - there are cases where aTentativeContentBoxCrossSize
// (i.e. aReflowInput.ComputedISize()) might not be the right thing to
// return here. Specifically: if our cross size is an intrinsic size, and we
// have flex items that are flexible and have aspect ratios, then we may
// need to take their post-flexing main sizes into account (multiplied
// through their aspect ratios to get their cross sizes), in order to
// determine their flex line's size & the flex container's cross size (e.g.
// as `aSumLineCrossSizes`).
return aTentativeContentBoxCrossSize;
}
const bool shouldApplyAutomaticMinimumOnBlockAxis =
aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis();
const nscoord computedBSize = aReflowInput.ComputedBSize();
if (computedBSize != NS_UNCONSTRAINEDSIZE &&
!shouldApplyAutomaticMinimumOnBlockAxis) {
// Row-oriented case (cross axis is block-axis), with fixed BSize:
*aIsDefinite = true;
// Just use our fixed block-size because we always assume the available
// block-size is unconstrained, and the reflow input has already done the
// appropriate min/max-BSize clamping.
return computedBSize;
}
// Row-oriented case, with size-containment in block axis:
// Behave as if we had no content and just use our MinBSize.
if (Maybe<nscoord> containBSize =
aReflowInput.mFrame->ContainIntrinsicBSize()) {
*aIsDefinite = true;
return aReflowInput.ApplyMinMaxBSize(*containBSize);
}
// The cross size must not be definite in the following cases.
*aIsDefinite = false;
const nscoord contentBSize =
aReflowInput.ApplyMinMaxBSize(aSumLineCrossSizes);
// If the content block-size is larger than the effective computed
// block-size, we extend the block-size to contain all the content.
// https://drafts.csswg.org/css-sizing-4/#aspect-ratio-minimum
if (shouldApplyAutomaticMinimumOnBlockAxis) {
// Row-oriented case (cross axis is block-axis), with auto BSize which is
// resolved by aspect-ratio or content size.
return std::max(contentBSize, computedBSize);
}
// Row-oriented case (cross axis is block axis), with auto BSize:
// Shrink-wrap our line(s), subject to our min-size / max-size
// constraints in that (block) axis.
return contentBSize;
}
LogicalSize nsFlexContainerFrame::ComputeAvailableSizeForItems(
const ReflowInput& aReflowInput,
const mozilla::LogicalMargin& aBorderPadding) const {
const WritingMode wm = GetWritingMode();
nscoord availableBSize = aReflowInput.AvailableBSize();
if (availableBSize != NS_UNCONSTRAINEDSIZE) {
// Available block-size is constrained. Subtract block-start border and
// padding from it.
availableBSize -= aBorderPadding.BStart(wm);
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone) {
// We have box-decoration-break:clone. Subtract block-end border and
// padding from the available block-size as well.
availableBSize -= aBorderPadding.BEnd(wm);
}
// Available block-size can became negative after subtracting block-axis
// border and padding. Per spec, to guarantee progress, fragmentainers are
// assumed to have a minimum block size of 1px regardless of their used
// size. https://drafts.csswg.org/css-break/#breaking-rules
availableBSize =
std::max(nsPresContext::CSSPixelsToAppUnits(1), availableBSize);
}
return LogicalSize(wm, aReflowInput.ComputedISize(), availableBSize);
}
void FlexLine::PositionItemsInMainAxis(
const StyleContentDistribution& aJustifyContent,
nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) {
MainAxisPositionTracker mainAxisPosnTracker(
aAxisTracker, this, aJustifyContent, aContentBoxMainSize);
for (FlexItem& item : Items()) {
nscoord itemMainBorderBoxSize =
item.MainSize() + item.BorderPaddingSizeInMainAxis();
// Resolve any main-axis 'auto' margins on aChild to an actual value.
mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item);
// Advance our position tracker to child's upper-left content-box corner,
// and use that as its position in the main axis.
mainAxisPosnTracker.EnterMargin(item.Margin());
mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);
item.SetMainPosition(mainAxisPosnTracker.Position());
mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
mainAxisPosnTracker.ExitMargin(item.Margin());
mainAxisPosnTracker.TraversePackingSpace();
if (&item != &Items().LastElement()) {
mainAxisPosnTracker.TraverseGap(mMainGapSize);
}
}
}
void nsFlexContainerFrame::SizeItemInCrossAxis(ReflowInput& aChildReflowInput,
FlexItem& aItem) {
// If cross axis is the item's inline axis, just use ISize from reflow input,
// and don't bother with a full reflow.
if (aItem.IsInlineAxisCrossAxis()) {
aItem.SetCrossSize(aChildReflowInput.ComputedISize());
return;
}
MOZ_ASSERT(!aItem.HadMeasuringReflow(),
"We shouldn't need more than one measuring reflow");
if (aItem.AlignSelf()._0 == StyleAlignFlags::STRETCH) {
// This item's got "align-self: stretch", so we probably imposed a
// stretched computed cross-size on it during its previous
// reflow. We're not imposing that BSize for *this* "measuring" reflow, so
// we need to tell it to treat this reflow as a resize in its block axis
// (regardless of whether any of its ancestors are actually being resized).
// (Note: we know that the cross axis is the item's *block* axis -- if it
// weren't, then we would've taken the early-return above.)
aChildReflowInput.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
aChildReflowInput.mFlags.mIsBResizeForPercentages = true;
}
// Potentially reflow the item, and get the sizing info.
const CachedBAxisMeasurement& measurement =
MeasureBSizeForFlexItem(aItem, aChildReflowInput);
// Save the sizing info that we learned from this reflow
// -----------------------------------------------------
// Tentatively store the child's desired content-box cross-size.
aItem.SetCrossSize(measurement.BSize());
}
void FlexLine::PositionItemsInCrossAxis(
nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) {
SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker);
for (FlexItem& item : Items()) {
// First, stretch the item's cross size (if appropriate), and resolve any
// auto margins in this axis.
item.ResolveStretchedCrossSize(mLineCrossSize);
lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item);
// Compute the cross-axis position of this item
nscoord itemCrossBorderBoxSize =
item.CrossSize() + item.BorderPaddingSizeInCrossAxis();
lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item, aAxisTracker);
lineCrossAxisPosnTracker.EnterMargin(item.Margin());
lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);
item.SetCrossPosition(aLineStartPosition +
lineCrossAxisPosnTracker.Position());
// Back out to cross-axis edge of the line.
lineCrossAxisPosnTracker.ResetPosition();
}
}
void nsFlexContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aReflowOutput,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
return;
}
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
MOZ_ASSERT(aPresContext == PresContext());
NS_WARNING_ASSERTION(
aReflowInput.ComputedISize() != NS_UNCONSTRAINEDSIZE,
"Unconstrained inline size; this should only result from huge sizes "
"(not intrinsic sizing w/ orthogonal flows)");
FLEX_LOG("Reflowing flex container frame %p ...", this);
if (IsFrameTreeTooDeep(aReflowInput, aReflowOutput, aStatus)) {
return;
}
NormalizeChildLists();
#ifdef DEBUG
mDidPushItemsBitMayLie = false;
SanityCheckChildListsBeforeReflow();
#endif // DEBUG
// We (and our children) can only depend on our ancestor's bsize if we have
// a percent-bsize, or if we're positioned and we have "block-start" and
// "block-end" set and have block-size:auto. (There are actually other cases,
// too -- e.g. if our parent is itself a block-dir flex container and we're
// flexible -- but we'll let our ancestors handle those sorts of cases.)
//
// TODO(emilio): the !bsize.IsLengthPercentage() preserves behavior, but it's
// too conservative. min/max-content don't really depend on the container.
WritingMode wm = aReflowInput.GetWritingMode();
const nsStylePosition* stylePos = StylePosition();
const auto& bsize = stylePos->BSize(wm);
if (bsize.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() &&
(bsize.IsAuto() || !bsize.IsLengthPercentage()) &&
!stylePos->mOffset.GetBStart(wm).IsAuto() &&
!stylePos->mOffset.GetBEnd(wm).IsAuto())) {
AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
const FlexboxAxisTracker axisTracker(this);
// Check to see if we need to create a computed info structure, to
// be filled out for use by devtools.
ComputedFlexContainerInfo* containerInfo = CreateOrClearFlexContainerInfo();
FlexLayoutResult flr;
PerFragmentFlexData fragmentData;
const nsIFrame* prevInFlow = GetPrevInFlow();
if (!prevInFlow) {
const LogicalSize tentativeContentBoxSize = aReflowInput.ComputedSize();
const nscoord tentativeContentBoxMainSize =
axisTracker.MainComponent(tentativeContentBoxSize);
const nscoord tentativeContentBoxCrossSize =
axisTracker.CrossComponent(tentativeContentBoxSize);
// Calculate gap sizes for main and cross axis. We only need them in
// DoFlexLayout in the first-in-flow, so no need to worry about consumed
// block-size.
const auto& mainGapStyle =
axisTracker.IsRowOriented() ? stylePos->mColumnGap : stylePos->mRowGap;
const auto& crossGapStyle =
axisTracker.IsRowOriented() ? stylePos->mRowGap : stylePos->mColumnGap;
const nscoord mainGapSize = nsLayoutUtils::ResolveGapToLength(
mainGapStyle, tentativeContentBoxMainSize);
const nscoord crossGapSize = nsLayoutUtils::ResolveGapToLength(
crossGapStyle, tentativeContentBoxCrossSize);
// When fragmenting a flex container, we run the flex algorithm without
// regards to pagination in order to compute the flex container's desired
// content-box size. https://drafts.csswg.org/css-flexbox-1/#pagination-algo
//
// Note: For a multi-line column-oriented flex container, the sample
// algorithm suggests we wrap the flex line at the block-end edge of a
// column/page, but we do not implement it intentionally. This brings the
// layout result closer to the one as if there's no fragmentation.
AutoTArray<StrutInfo, 1> struts;
flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
tentativeContentBoxCrossSize, axisTracker, mainGapSize,
crossGapSize, struts, containerInfo);
if (!struts.IsEmpty()) {
// We're restarting flex layout, with new knowledge of collapsed items.
flr.mLines.Clear();
flr.mPlaceholders.Clear();
flr = DoFlexLayout(aReflowInput, tentativeContentBoxMainSize,
tentativeContentBoxCrossSize, axisTracker, mainGapSize,
crossGapSize, struts, containerInfo);
}
} else {
flr = GenerateFlexLayoutResult();
auto* fragmentDataProp =
prevInFlow->GetProperty(PerFragmentFlexData::Prop());
MOZ_ASSERT(fragmentDataProp,
"PerFragmentFlexData should be set in our prev-in-flow!");
fragmentData = *fragmentDataProp;
}
LogicalSize contentBoxSize = axisTracker.LogicalSizeFromFlexRelativeSizes(
flr.mContentBoxMainSize, flr.mContentBoxCrossSize);
const nscoord consumedBSize = CalcAndCacheConsumedBSize();
const nscoord effectiveContentBSize =
contentBoxSize.BSize(wm) - consumedBSize;
LogicalMargin borderPadding = aReflowInput.ComputedLogicalBorderPadding(wm);
if (MOZ_UNLIKELY(aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE)) {
// We assume we are the last fragment by using
// PreReflowBlockLevelLogicalSkipSides(), and skip block-end border and
// padding if needed.
borderPadding.ApplySkipSides(PreReflowBlockLevelLogicalSkipSides());
}
// Determine this frame's tentative border-box size. This is used for logical
// to physical coordinate conversion when positioning children.
//
// Note that vertical-rl writing-mode is the only case where the block flow
// direction progresses in a negative physical direction, and therefore block
// direction coordinate conversion depends on knowing the width of the
// coordinate space in order to translate between the logical and physical
// origins. As a result, if our final border-box block-size is different from
// this tentative one, and we are in vertical-rl writing mode, we need to
// adjust our children's position after reflowing them.
const LogicalSize tentativeBorderBoxSize(
wm, contentBoxSize.ISize(wm) + borderPadding.IStartEnd(wm),
std::min(effectiveContentBSize + borderPadding.BStartEnd(wm),
aReflowInput.AvailableBSize()));
const nsSize containerSize = tentativeBorderBoxSize.GetPhysicalSize(wm);
OverflowAreas ocBounds;
nsReflowStatus ocStatus;
if (prevInFlow) {
ReflowOverflowContainerChildren(
aPresContext, aReflowInput, ocBounds, ReflowChildFlags::Default,
ocStatus, MergeSortedFrameListsFor, Some(containerSize));
}
const LogicalSize availableSizeForItems =
ComputeAvailableSizeForItems(aReflowInput, borderPadding);
const auto [childrenBEndEdge, childrenStatus] =
ReflowChildren(aReflowInput, containerSize, availableSizeForItems,
borderPadding, axisTracker, flr, fragmentData);
bool mayNeedNextInFlow = false;
if (aReflowInput.IsInFragmentedContext()) {
// This fragment's contribution to the flex container's cumulative
// content-box block-size, if it turns out that this is the final vs.
// non-final fragment:
//
// * If it turns out we *are* the final fragment, then this fragment's
// content-box contribution is the distance from the start of our content
// box to the block-end edge of our children (note the borderPadding
// subtraction is just to get us to a content-box-relative offset here):
const nscoord bSizeContributionIfFinalFragment =
childrenBEndEdge - borderPadding.BStart(wm);
// * If it turns out we're *not* the final fragment, then this fragment's
// content-box extends to the edge of the availableSizeForItems (at least),
// regardless of whether we actually have items at that location:
const nscoord bSizeContributionIfNotFinalFragment = std::max(
bSizeContributionIfFinalFragment, availableSizeForItems.BSize(wm));
// mCumulativeBEndEdgeShift was updated in ReflowChildren(), and our
// children's block-size may grow in fragmented context. If our block-size
// and max-block-size are unconstrained, then we allow the flex container to
// grow to accommodate any children whose sizes grew as a result of
// fragmentation.
if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(
contentBoxSize.BSize(wm) + fragmentData.mCumulativeBEndEdgeShift);
if (childrenStatus.IsComplete()) {
// All of the children fit! We know that we're using a content-based
// block-size, and we know our children's block-size may have grown due
// to fragmentation. So we allow ourselves to grow our block-size here
// to contain the block-end edge of our last child (subject to our
// min/max constraints).
contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max(
contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize +
bSizeContributionIfFinalFragment));
} else {
// As in the if-branch above, we extend our block-size, but in this case
// we know that a child didn't fit and might overshot our available
// size, so we assume this fragment won't be the final fragment, and
// hence it should contribute bSizeContributionIfNotFinalFragment
// (subject to our min/max constraints).
contentBoxSize.BSize(wm) = aReflowInput.ApplyMinMaxBSize(std::max(
contentBoxSize.BSize(wm), fragmentData.mCumulativeContentBoxBSize +
bSizeContributionIfNotFinalFragment));
if (aReflowInput.ComputedMaxBSize() == NS_UNCONSTRAINEDSIZE) {
mayNeedNextInFlow = true;
} else {
// The definite max-block-size can be the upper bound of our
// content-box block-size. We should check whether we need a
// next-in-flow.
mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize >
availableSizeForItems.BSize(wm);
}
}
} else {
mayNeedNextInFlow = contentBoxSize.BSize(wm) - consumedBSize >
availableSizeForItems.BSize(wm);
}
fragmentData.mCumulativeContentBoxBSize +=
bSizeContributionIfNotFinalFragment;
// If we may need a next-in-flow, we'll need to skip block-end border and
// padding.
if (mayNeedNextInFlow && aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
borderPadding.BEnd(wm) = 0;
}
}
PopulateReflowOutput(aReflowOutput, aReflowInput, aStatus, contentBoxSize,
borderPadding, consumedBSize, mayNeedNextInFlow,
childrenBEndEdge, childrenStatus, axisTracker, flr);
if (wm.IsVerticalRL()) {
// If the final border-box block-size is different from the tentative one,
// adjust our children's position.
const nscoord deltaBCoord =
tentativeBorderBoxSize.BSize(wm) - aReflowOutput.Size(wm).BSize(wm);
if (deltaBCoord != 0) {
const LogicalPoint delta(wm, 0, deltaBCoord);
for (const FlexLine& line : flr.mLines) {
for (const FlexItem& item : line.Items()) {
item.Frame()->MovePositionBy(wm, delta);
}
}
}
}
// Overflow area = union(my overflow area, children's overflow areas)
aReflowOutput.SetOverflowAreasToDesiredBounds();
UnionInFlowChildOverflow(aReflowOutput.mOverflowAreas);
// Merge overflow container bounds and status.
aReflowOutput.mOverflowAreas.UnionWith(ocBounds);
aStatus.MergeCompletionStatusFrom(ocStatus);
FinishReflowWithAbsoluteFrames(PresContext(), aReflowOutput, aReflowInput,
aStatus);
// Finally update our line and item measurements in our containerInfo.
if (MOZ_UNLIKELY(containerInfo)) {
UpdateFlexLineAndItemInfo(*containerInfo, flr.mLines);
}
// If we are the first-in-flow, we want to store data for our next-in-flows,
// or clear the existing data if it is not needed.
if (!prevInFlow) {
SharedFlexData* sharedData = GetProperty(SharedFlexData::Prop());
if (!aStatus.IsFullyComplete()) {
if (!sharedData) {
sharedData = new SharedFlexData;
SetProperty(SharedFlexData::Prop(), sharedData);
}
sharedData->Update(std::move(flr));
} else if (sharedData && !GetNextInFlow()) {
// We are fully-complete, so no next-in-flow is needed. However, if we
// report SetInlineLineBreakBeforeAndReset() in an incremental reflow, our
// next-in-flow might still exist. It can be reflowed again before us if
// it is an overflow container. Delete the existing data only if we don't
// have a next-in-flow.
RemoveProperty(SharedFlexData::Prop());
}
}
PerFragmentFlexData* fragmentDataProp =
GetProperty(PerFragmentFlexData::Prop());
if (!aStatus.IsFullyComplete()) {
if (!fragmentDataProp) {
fragmentDataProp = new PerFragmentFlexData;
SetProperty(PerFragmentFlexData::Prop(), fragmentDataProp);
}
*fragmentDataProp = fragmentData;
} else if (fragmentDataProp && !GetNextInFlow()) {
// Similar to the condition to remove SharedFlexData, delete the
// existing data only if we don't have a next-in-flow.
RemoveProperty(PerFragmentFlexData::Prop());
}
}
Maybe<nscoord> nsFlexContainerFrame::GetNaturalBaselineBOffset(
WritingMode aWM, BaselineSharingGroup aBaselineGroup,
BaselineExportContext) const {
if (StyleDisplay()->IsContainLayout() ||
HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
return Nothing{};
}
return Some(aBaselineGroup == BaselineSharingGroup::First ? mFirstBaseline
: mLastBaseline);
}
void nsFlexContainerFrame::UnionInFlowChildOverflow(
OverflowAreas& aOverflowAreas) {
// The CSS Overflow spec [1] requires that a scrollable container's
// scrollable overflow should include the following areas.
//
// a) "the box's own content and padding areas": we treat the *content* as
// the scrolled inner frame's theoretical content-box that's intrinsically
// sized to the union of all the flex items' margin boxes, _without_
// relative positioning applied. The *padding areas* is just inflation on
// top of the theoretical content-box by the flex container's padding.
//
// b) "the margin areas of grid item and flex item boxes for which the box
// establishes a containing block": a) already includes the flex items'
// normal-positioned margin boxes into the scrollable overflow, but their
// relative-positioned margin boxes should also be included because relpos
// children are still flex items.
//
// [1] https://drafts.csswg.org/css-overflow-3/#scrollable.
const bool isScrolledContent =
Style()->GetPseudoType() == PseudoStyleType::scrolledContent;
bool anyScrolledContentItem = false;
// Union of normal-positioned margin boxes for all the items.
nsRect itemMarginBoxes;
// Overflow areas containing the union of relative-positioned and
// stick-positioned margin boxes of relpos items.
//
// Note for sticky-positioned margin boxes, we only union it with the ink
// overflow to avoid circular dependencies with the scroll container. (The
// scroll position and the scroll container's size impact the sticky position,
// so we don't want the sticky position to impact them.)
OverflowAreas relPosItemMarginBoxes;
const bool useMozBoxCollapseBehavior =
StyleVisibility()->UseLegacyCollapseBehavior();
for (nsIFrame* f : mFrames) {
if (useMozBoxCollapseBehavior && f->StyleVisibility()->IsCollapse()) {
continue;
}
ConsiderChildOverflow(aOverflowAreas, f);
if (!isScrolledContent) {
continue;
}
if (f->IsPlaceholderFrame()) {
continue;
}
anyScrolledContentItem = true;
if (MOZ_UNLIKELY(f->IsRelativelyOrStickyPositioned())) {
const nsRect marginRect = f->GetMarginRectRelativeToSelf();
itemMarginBoxes =
itemMarginBoxes.Union(marginRect + f->GetNormalPosition());
if (f->IsRelativelyPositioned()) {
relPosItemMarginBoxes.UnionAllWith(marginRect + f->GetPosition());
} else {
MOZ_ASSERT(f->IsStickyPositioned());
relPosItemMarginBoxes.UnionWith(
OverflowAreas(marginRect + f->GetPosition(), nsRect()));
}
} else {
itemMarginBoxes = itemMarginBoxes.Union(f->GetMarginRect());
}
}
if (anyScrolledContentItem) {
itemMarginBoxes.Inflate(GetUsedPadding());
aOverflowAreas.UnionAllWith(itemMarginBoxes);
aOverflowAreas.UnionWith(relPosItemMarginBoxes);
}
}
void nsFlexContainerFrame::UnionChildOverflow(OverflowAreas& aOverflowAreas) {
UnionInFlowChildOverflow(aOverflowAreas);
// Union with child frames, skipping the principal list since we already
// handled those above.
nsLayoutUtils::UnionChildOverflow(this, aOverflowAreas,
{FrameChildListID::Principal});
}
void nsFlexContainerFrame::CalculatePackingSpace(
uint32_t aNumThingsToPack, const StyleContentDistribution& aAlignVal,
nscoord* aFirstSubjectOffset, uint32_t* aNumPackingSpacesRemaining,
nscoord* aPackingSpaceRemaining) {
StyleAlignFlags val = aAlignVal.primary;
MOZ_ASSERT(val == StyleAlignFlags::SPACE_BETWEEN ||
val == StyleAlignFlags::SPACE_AROUND ||
val == StyleAlignFlags::SPACE_EVENLY,
"Unexpected alignment value");
MOZ_ASSERT(*aPackingSpaceRemaining >= 0,
"Should not be called with negative packing space");
// Note: In the aNumThingsToPack==1 case, the fallback behavior for
// 'space-between' depends on precise information about the axes that we
// don't have here. So, for that case, we just depend on the caller to
// explicitly convert 'space-{between,around,evenly}' keywords to the
// appropriate fallback alignment and skip this function.
MOZ_ASSERT(aNumThingsToPack > 1,
"Should not be called unless there's more than 1 thing to pack");
// Packing spaces between items:
*aNumPackingSpacesRemaining = aNumThingsToPack - 1;
if (val == StyleAlignFlags::SPACE_BETWEEN) {
// No need to reserve space at beginning/end, so we're done.
return;
}
// We need to add 1 or 2 packing spaces, split between beginning/end, for
// space-around / space-evenly:
size_t numPackingSpacesForEdges =
val == StyleAlignFlags::SPACE_AROUND ? 1 : 2;
// How big will each "full" packing space be:
nscoord packingSpaceSize =
*aPackingSpaceRemaining /
(*aNumPackingSpacesRemaining + numPackingSpacesForEdges);
// How much packing-space are we allocating to the edges:
nscoord totalEdgePackingSpace = numPackingSpacesForEdges * packingSpaceSize;
// Use half of that edge packing space right now:
*aFirstSubjectOffset += totalEdgePackingSpace / 2;
// ...but we need to subtract all of it right away, so that we won't
// hand out any of it to intermediate packing spaces.
*aPackingSpaceRemaining -= totalEdgePackingSpace;
}
ComputedFlexContainerInfo*
nsFlexContainerFrame::CreateOrClearFlexContainerInfo() {
if (!HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO)) {
return nullptr;
}
// The flag that sets ShouldGenerateComputedInfo() will never be cleared.
// That's acceptable because it's only set in a Chrome API invoked by
// devtools, and won't impact normal browsing.
// Re-use the ComputedFlexContainerInfo, if it exists.
ComputedFlexContainerInfo* info = GetProperty(FlexContainerInfo());
if (info) {
// We can reuse, as long as we clear out old data.
info->mLines.Clear();
} else {
info = new ComputedFlexContainerInfo();
SetProperty(FlexContainerInfo(), info);
}
return info;
}
nscoord nsFlexContainerFrame::FlexItemConsumedBSize(const FlexItem& aItem) {
nsSplittableFrame* f = do_QueryFrame(aItem.Frame());
return f ? ConsumedBSize(f) : 0;
}
void nsFlexContainerFrame::CreateFlexLineAndFlexItemInfo(
ComputedFlexContainerInfo& aContainerInfo,
const nsTArray<FlexLine>& aLines) {
for (const FlexLine& line : aLines) {
ComputedFlexLineInfo* lineInfo = aContainerInfo.mLines.AppendElement();
// Most of the remaining lineInfo properties will be filled out in
// UpdateFlexLineAndItemInfo (some will be provided by other functions),
// when we have real values. But we still add all the items here, so
// we can capture computed data for each item as we proceed.
for (const FlexItem& item : line.Items()) {
nsIFrame* frame = item.Frame();
// The frame may be for an element, or it may be for an
// anonymous flex item, e.g. wrapping one or more text nodes.
// DevTools wants the content node for the actual child in
// the DOM tree, so we descend through anonymous boxes.
nsIFrame* targetFrame = GetFirstNonAnonBoxInSubtree(frame);
nsIContent* content = targetFrame->GetContent();
// Skip over content that is only whitespace, which might
// have been broken off from a text node which is our real
// target.
while (content && content->TextIsOnlyWhitespace()) {
// If content is only whitespace, try the frame sibling.
targetFrame = targetFrame->GetNextSibling();
if (targetFrame) {
content = targetFrame->GetContent();
} else {
content = nullptr;
}
}
ComputedFlexItemInfo* itemInfo = lineInfo->mItems.AppendElement();
itemInfo->mNode = content;
// itemInfo->mMainBaseSize and mMainDeltaSize will be filled out
// in ResolveFlexibleLengths(). Other measurements will be captured in
// UpdateFlexLineAndItemInfo.
}
}
}
void nsFlexContainerFrame::ComputeFlexDirections(
ComputedFlexContainerInfo& aContainerInfo,
const FlexboxAxisTracker& aAxisTracker) {
auto ConvertPhysicalStartSideToFlexPhysicalDirection =
[](mozilla::Side aStartSide) {
switch (aStartSide) {
case eSideLeft:
return dom::FlexPhysicalDirection::Horizontal_lr;
case eSideRight:
return dom::FlexPhysicalDirection::Horizontal_rl;
case eSideTop:
return dom::FlexPhysicalDirection::Vertical_tb;
case eSideBottom:
return dom::FlexPhysicalDirection::Vertical_bt;
}
MOZ_ASSERT_UNREACHABLE("We should handle all sides!");
return dom::FlexPhysicalDirection::Horizontal_lr;
};
aContainerInfo.mMainAxisDirection =
ConvertPhysicalStartSideToFlexPhysicalDirection(
aAxisTracker.MainAxisPhysicalStartSide());
aContainerInfo.mCrossAxisDirection =
ConvertPhysicalStartSideToFlexPhysicalDirection(
aAxisTracker.CrossAxisPhysicalStartSide());
}
void nsFlexContainerFrame::UpdateFlexLineAndItemInfo(
ComputedFlexContainerInfo& aContainerInfo,
const nsTArray<FlexLine>& aLines) {
uint32_t lineIndex = 0;
for (const FlexLine& line : aLines) {
ComputedFlexLineInfo& lineInfo = aContainerInfo.mLines[lineIndex];
lineInfo.mCrossSize = line.LineCrossSize();
lineInfo.mFirstBaselineOffset = line.FirstBaselineOffset();
lineInfo.mLastBaselineOffset = line.LastBaselineOffset();
uint32_t itemIndex = 0;
for (const FlexItem& item : line.Items()) {
ComputedFlexItemInfo& itemInfo = lineInfo.mItems[itemIndex];
itemInfo.mFrameRect = item.Frame()->GetRect();
itemInfo.mMainMinSize = item.MainMinSize();
itemInfo.mMainMaxSize = item.MainMaxSize();
itemInfo.mCrossMinSize = item.CrossMinSize();
itemInfo.mCrossMaxSize = item.CrossMaxSize();
itemInfo.mClampState =
item.WasMinClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_min
: (item.WasMaxClamped()
? mozilla::dom::FlexItemClampState::Clamped_to_max
: mozilla::dom::FlexItemClampState::Unclamped);
++itemIndex;
}
++lineIndex;
}
}
nsFlexContainerFrame* nsFlexContainerFrame::GetFlexFrameWithComputedInfo(
nsIFrame* aFrame) {
// Prepare a lambda function that we may need to call multiple times.
auto GetFlexContainerFrame = [](nsIFrame* aFrame) {
// Return the aFrame's content insertion frame, iff it is
// a flex container frame.
nsFlexContainerFrame* flexFrame = nullptr;
if (aFrame) {
nsIFrame* inner = aFrame;
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
}
// Since "Get" methods like GetInner and GetContentInsertionFrame can
// return null, we check the return values before dereferencing. Our
// calling pattern makes this unlikely, but we're being careful.
nsIFrame* insertionFrame =
inner ? inner->GetContentInsertionFrame() : nullptr;
nsIFrame* possibleFlexFrame = insertionFrame ? insertionFrame : aFrame;
flexFrame = possibleFlexFrame->IsFlexContainerFrame()
? static_cast<nsFlexContainerFrame*>(possibleFlexFrame)
: nullptr;
}
return flexFrame;
};
nsFlexContainerFrame* flexFrame = GetFlexContainerFrame(aFrame);
if (!flexFrame) {
return nullptr;
}
// Generate the FlexContainerInfo data, if it's not already there.
if (flexFrame->HasProperty(FlexContainerInfo())) {
return flexFrame;
}
// Trigger a reflow that generates additional flex property data.
// Hold onto aFrame while we do this, in case reflow destroys it.
AutoWeakFrame weakFrameRef(aFrame);
RefPtr<mozilla::PresShell> presShell = flexFrame->PresShell();
flexFrame->AddStateBits(NS_STATE_FLEX_COMPUTED_INFO);
presShell->FrameNeedsReflow(flexFrame, IntrinsicDirty::None,
NS_FRAME_IS_DIRTY);
presShell->FlushPendingNotifications(FlushType::Layout);
// Since the reflow may have side effects, get the flex frame
// again. But if the weakFrameRef is no longer valid, then we
// must bail out.
if (!weakFrameRef.IsAlive()) {
return nullptr;
}
flexFrame = GetFlexContainerFrame(weakFrameRef.GetFrame());
NS_WARNING_ASSERTION(
!flexFrame || flexFrame->HasProperty(FlexContainerInfo()),
"The state bit should've made our forced-reflow "
"generate a FlexContainerInfo object");
return flexFrame;
}
/* static */
bool nsFlexContainerFrame::IsItemInlineAxisMainAxis(nsIFrame* aFrame) {
MOZ_ASSERT(aFrame && aFrame->IsFlexItem(), "expecting arg to be a flex item");
const WritingMode flexItemWM = aFrame->GetWritingMode();
const nsIFrame* flexContainer = aFrame->GetParent();
if (IsLegacyBox(flexContainer)) {
// For legacy boxes, the main axis is determined by "box-orient", and we can
// just directly check if that's vertical, and compare that to whether the
// item's WM is also vertical:
bool boxOrientIsVertical =
flexContainer->StyleXUL()->mBoxOrient == StyleBoxOrient::Vertical;
return flexItemWM.IsVertical() == boxOrientIsVertical;
}
// For modern CSS flexbox, we get our return value by asking two questions
// and comparing their answers.
// Question 1: does aFrame have the same inline axis as its flex container?
bool itemInlineAxisIsParallelToParent =
!flexItemWM.IsOrthogonalTo(flexContainer->GetWritingMode());
// Question 2: is aFrame's flex container row-oriented? (This tells us
// whether the flex container's main axis is its inline axis.)
auto flexDirection = flexContainer->StylePosition()->mFlexDirection;
bool flexContainerIsRowOriented =
flexDirection == StyleFlexDirection::Row ||
flexDirection == StyleFlexDirection::RowReverse;
// aFrame's inline axis is its flex container's main axis IFF the above
// questions have the same answer.
return flexContainerIsRowOriented == itemInlineAxisIsParallelToParent;
}
/* static */
bool nsFlexContainerFrame::IsUsedFlexBasisContent(
const StyleFlexBasis& aFlexBasis, const StyleSize& aMainSize) {
// We have a used flex-basis of 'content' if flex-basis explicitly has that
// value, OR if flex-basis is 'auto' (deferring to the main-size property)
// and the main-size property is also 'auto'.
// See https://drafts.csswg.org/css-flexbox-1/#valdef-flex-basis-auto
if (aFlexBasis.IsContent()) {
return true;
}
return aFlexBasis.IsAuto() && aMainSize.IsAuto();
}
nsFlexContainerFrame::FlexLayoutResult nsFlexContainerFrame::DoFlexLayout(
const ReflowInput& aReflowInput, const nscoord aTentativeContentBoxMainSize,
const nscoord aTentativeContentBoxCrossSize,
const FlexboxAxisTracker& aAxisTracker, nscoord aMainGapSize,
nscoord aCrossGapSize, nsTArray<StrutInfo>& aStruts,
ComputedFlexContainerInfo* const aContainerInfo) {
FlexLayoutResult flr;
GenerateFlexLines(aReflowInput, aTentativeContentBoxMainSize,
aTentativeContentBoxCrossSize, aStruts, aAxisTracker,
aMainGapSize, flr.mPlaceholders, flr.mLines,
flr.mHasCollapsedItems);
if ((flr.mLines.Length() == 1 && flr.mLines[0].IsEmpty()) ||
aReflowInput.mStyleDisplay->IsContainLayout()) {
// We have no flex items, or we're layout-contained. So, we have no
// baseline, and our parent should synthesize a baseline if needed.
AddStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE);
}
// Construct our computed info if we've been asked to do so. This is
// necessary to do now so we can capture some computed values for
// FlexItems during layout that would not otherwise be saved (like
// size adjustments). We'll later fix up the line properties,
// because the correct values aren't available yet.
if (aContainerInfo) {
MOZ_ASSERT(HasAnyStateBits(NS_STATE_FLEX_COMPUTED_INFO),
"We should only have the info struct if we should generate it");
if (!aStruts.IsEmpty()) {
// We restarted DoFlexLayout, and may have stale mLines to clear:
aContainerInfo->mLines.Clear();
} else {
MOZ_ASSERT(aContainerInfo->mLines.IsEmpty(), "Shouldn't have lines yet.");
}
CreateFlexLineAndFlexItemInfo(*aContainerInfo, flr.mLines);
ComputeFlexDirections(*aContainerInfo, aAxisTracker);
}
flr.mContentBoxMainSize = ComputeMainSize(
aReflowInput, aAxisTracker, aTentativeContentBoxMainSize, flr.mLines);
uint32_t lineIndex = 0;
for (FlexLine& line : flr.mLines) {
ComputedFlexLineInfo* lineInfo =
aContainerInfo ? &aContainerInfo->mLines[lineIndex] : nullptr;
line.ResolveFlexibleLengths(flr.mContentBoxMainSize, lineInfo);
++lineIndex;
}
// Cross Size Determination - Flexbox spec section 9.4
// https://drafts.csswg.org/css-flexbox-1/#cross-sizing
// ===================================================
// Calculate the hypothetical cross size of each item:
// 'sumLineCrossSizes' includes the size of all gaps between lines. We
// initialize it with the sum of all the gaps, and add each line's cross size
// at the end of the following for-loop.
nscoord sumLineCrossSizes = aCrossGapSize * (flr.mLines.Length() - 1);
for (FlexLine& line : flr.mLines) {
for (FlexItem& item : line.Items()) {
// The item may already have the correct cross-size; only recalculate
// if the item's main size resolution (flexing) could have influenced it:
if (item.CanMainSizeInfluenceCrossSize()) {
StyleSizeOverrides sizeOverrides;
if (item.IsInlineAxisMainAxis()) {
sizeOverrides.mStyleISize.emplace(item.StyleMainSize());
} else {
sizeOverrides.mStyleBSize.emplace(item.StyleMainSize());
}
FLEX_ITEM_LOG(item.Frame(), "Sizing item in cross axis");
FLEX_LOGV("Main size override: %d", item.MainSize());
const WritingMode wm = item.GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
ReflowInput childReflowInput(PresContext(), aReflowInput, item.Frame(),
availSize, Nothing(), {}, sizeOverrides,
{ComputeSizeFlag::ShrinkWrap});
if (item.IsBlockAxisMainAxis() && item.TreatBSizeAsIndefinite()) {
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
}
SizeItemInCrossAxis(childReflowInput, item);
}
}
// Now that we've finished with this line's items, size the line itself:
line.ComputeCrossSizeAndBaseline(aAxisTracker);
sumLineCrossSizes += line.LineCrossSize();
}
bool isCrossSizeDefinite;
flr.mContentBoxCrossSize = ComputeCrossSize(
aReflowInput, aAxisTracker, aTentativeContentBoxCrossSize,
sumLineCrossSizes, &isCrossSizeDefinite);
// Set up state for cross-axis alignment, at a high level (outside the
// scope of a particular flex line)
CrossAxisPositionTracker crossAxisPosnTracker(
flr.mLines, aReflowInput, flr.mContentBoxCrossSize, isCrossSizeDefinite,
aAxisTracker, aCrossGapSize);
// Now that we know the cross size of each line (including
// "align-content:stretch" adjustments, from the CrossAxisPositionTracker
// constructor), we can create struts for any flex items with
// "visibility: collapse" (and restart flex layout).
// Make sure to only do this if we had no struts.
if (aStruts.IsEmpty() && flr.mHasCollapsedItems &&
!StyleVisibility()->UseLegacyCollapseBehavior()) {
BuildStrutInfoFromCollapsedItems(flr.mLines, aStruts);
if (!aStruts.IsEmpty()) {
// Restart flex layout, using our struts.
return flr;
}
}
// If the flex container is row-oriented, it should derive its first/last
// baseline from the WM-relative startmost/endmost FlexLine if any items in
// the line participate in baseline alignment.
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
//
// Initialize the relevant variables here so that we can establish baselines
// while iterating FlexLine later (while crossAxisPosnTracker is conveniently
// pointing at the cross-start edge of that line, which the line's baseline
// offset is measured from).
const FlexLine* lineForFirstBaseline = nullptr;
const FlexLine* lineForLastBaseline = nullptr;
if (aAxisTracker.IsRowOriented()) {
lineForFirstBaseline = &StartmostLine(flr.mLines, aAxisTracker);
lineForLastBaseline = &EndmostLine(flr.mLines, aAxisTracker);
} else {
// For column-oriented flex container, use sentinel value to prompt us to
// get baselines from the startmost/endmost items.
flr.mAscent = nscoord_MIN;
flr.mAscentForLast = nscoord_MIN;
}
const auto justifyContent =
IsLegacyBox(aReflowInput.mFrame)
? ConvertLegacyStyleToJustifyContent(StyleXUL())
: aReflowInput.mStylePosition->mJustifyContent;
lineIndex = 0;
for (FlexLine& line : flr.mLines) {
// Main-Axis Alignment - Flexbox spec section 9.5
// https://drafts.csswg.org/css-flexbox-1/#main-alignment
// ==============================================
line.PositionItemsInMainAxis(justifyContent, flr.mContentBoxMainSize,
aAxisTracker);
// See if we need to extract some computed info for this line.
if (MOZ_UNLIKELY(aContainerInfo)) {
ComputedFlexLineInfo& lineInfo = aContainerInfo->mLines[lineIndex];
lineInfo.mCrossStart = crossAxisPosnTracker.Position();
}
// Cross-Axis Alignment - Flexbox spec section 9.6
// https://drafts.csswg.org/css-flexbox-1/#cross-alignment
// ===============================================
line.PositionItemsInCrossAxis(crossAxisPosnTracker.Position(),
aAxisTracker);
// Flex Container Baselines - Flexbox spec section 8.5
// https://drafts.csswg.org/css-flexbox-1/#flex-baselines
auto ComputeAscentFromLine = [&](const FlexLine& aLine,
BaselineSharingGroup aBaselineGroup) {
MOZ_ASSERT(aAxisTracker.IsRowOriented(),
"This makes sense only if we are row-oriented!");
// baselineOffsetInLine is a distance from the line's cross-start edge.
const nscoord baselineOffsetInLine =
aLine.ExtractBaselineOffset(aBaselineGroup);
if (baselineOffsetInLine == nscoord_MIN) {
// No "first baseline"-aligned or "last baseline"-aligned items in
// aLine. Return a sentinel value to prompt us to get baseline from the
// startmost or endmost FlexItem after we've reflowed it.
return nscoord_MIN;
}
// This "ascent" variable is a distance from the flex container's
// content-box block-start edge.
const nscoord ascent = aAxisTracker.LogicalAscentFromFlexRelativeAscent(
crossAxisPosnTracker.Position() + baselineOffsetInLine,
flr.mContentBoxCrossSize);
// Convert "ascent" variable to a distance from border-box start or end
// edge, per documentation for FlexLayoutResult ascent members.
const auto wm = aAxisTracker.GetWritingMode();
if (aBaselineGroup == BaselineSharingGroup::First) {
return ascent +
aReflowInput.ComputedLogicalBorderPadding(wm).BStart(wm);
}
return flr.mContentBoxCrossSize - ascent +
aReflowInput.ComputedLogicalBorderPadding(wm).BEnd(wm);
};
if (lineForFirstBaseline && lineForFirstBaseline == &line) {
flr.mAscent = ComputeAscentFromLine(line, BaselineSharingGroup::First);
}
if (lineForLastBaseline && lineForLastBaseline == &line) {
flr.mAscentForLast =
ComputeAscentFromLine(line, BaselineSharingGroup::Last);
}
crossAxisPosnTracker.TraverseLine(line);
crossAxisPosnTracker.TraversePackingSpace();
if (&line != &flr.mLines.LastElement()) {
crossAxisPosnTracker.TraverseGap();
}
++lineIndex;
}
return flr;
}
// This data structure is used in fragmentation, storing the block coordinate
// metrics when reflowing 1) the BStart-most line in each fragment of a
// row-oriented flex container or, 2) the BStart-most item in each fragment of a
// single-line column-oriented flex container.
//
// When we lay out a row-oriented flex container fragment, its first line might
// contain one or more monolithic items that were pushed from the previous
// fragment specifically to avoid having those monolithic items overlap the
// page/column break. The situation is similar for single-row column-oriented
// flex container fragments, but a bit simpler; only their first item might have
// been pushed to avoid overlapping a page/column break.
//
// We'll have to place any such pushed items at the block-start edge of the
// current fragment's content-box, which is as close as we can get them to their
// theoretical/unfragmented position (without slicing them); but it does
// represent a shift away from their theoretical/unfragmented position (which
// was somewhere in the previous fragment).
//
// When that happens, we need to record the maximum such shift that we had to
// perform so that we can apply the same block-endwards shift to "downstream"
// items (items towards the block-end edge) that we could otherwise collide
// with. We also potentially apply the same shift when computing the block-end
// edge of this flex container fragment's content-box so that we don't
// inadvertently shift the last item (or line-of-items) to overlap the flex
// container's border, or content beyond the flex container.
//
// We use this structure to keep track of several metrics, in service of this
// goal. This structure is also necessary to adjust PerFragmentFlexData at the
// end of ReflowChildren().
//
// Note: "First" in the struct name means "BStart-most", not the order in the
// flex line array or flex item array.
struct FirstLineOrFirstItemBAxisMetrics final {
// This value stores the block-end edge shift for 1) the BStart-most line in
// the current fragment of a row-oriented flex container, or 2) the
// BStart-most item in the current fragment of a single-line column-oriented
// flex container. This number is non-negative.
//
// This value may become positive when any item is a first-in-flow and also
// satisfies either the above condition 1) or 2), since that's a hint that it
// could be monolithic or have a monolithic first descendant, and therefore an
// item that might incur a page/column-break-dodging position-shift that this
// variable needs to track.
//
// This value also stores the fragmentation-imposed growth in the block-size
// of a) the BStart-most line in the current fragment of a row-oriented flex
// container, or b) the BStart-most item in the current fragment of a
// single-line column-oriented flex container. This number is non-negative.
nscoord mBEndEdgeShift = 0;
// The first and second value in the pair store the max block-end edges for
// items before and after applying the per-item position-shift in the block
// axis. We only record the block-end edges for items with first-in-flow
// frames placed in the current flex container fragment. This is used only by
// row-oriented flex containers.
Maybe<std::pair<nscoord, nscoord>> mMaxBEndEdge;
};
std::tuple<nscoord, nsReflowStatus> nsFlexContainerFrame::ReflowChildren(
const ReflowInput& aReflowInput, const nsSize& aContainerSize,
const LogicalSize& aAvailableSizeForItems,
const LogicalMargin& aBorderPadding, const FlexboxAxisTracker& aAxisTracker,
FlexLayoutResult& aFlr, PerFragmentFlexData& aFragmentData) {
if (HidesContentForLayout()) {
return {0, nsReflowStatus()};
}
// Before giving each child a final reflow, calculate the origin of the
// flex container's content box (with respect to its border-box), so that
// we can compute our flex item's final positions.
WritingMode flexWM = aReflowInput.GetWritingMode();
const LogicalPoint containerContentBoxOrigin =
aBorderPadding.StartOffset(flexWM);
// The block-end of children is relative to the flex container's border-box.
nscoord maxBlockEndEdgeOfChildren = containerContentBoxOrigin.B(flexWM);
FirstLineOrFirstItemBAxisMetrics bAxisMetrics;
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
const bool isSingleLine =
StyleFlexWrap::Nowrap == aReflowInput.mStylePosition->mFlexWrap;
const FlexLine& startmostLine = StartmostLine(aFlr.mLines, aAxisTracker);
const FlexLine& endmostLine = EndmostLine(aFlr.mLines, aAxisTracker);
const FlexItem* startmostItem =
startmostLine.IsEmpty() ? nullptr
: &startmostLine.StartmostItem(aAxisTracker);
const FlexItem* endmostItem =
endmostLine.IsEmpty() ? nullptr : &endmostLine.EndmostItem(aAxisTracker);
bool endmostItemOrLineHasBreakAfter = false;
// If true, push all remaining flex items to the container's next-in-flow.
bool shouldPushRemainingItems = false;
// FINAL REFLOW: Give each child frame another chance to reflow.
const size_t numLines = aFlr.mLines.Length();
for (size_t lineIdx = 0; lineIdx < numLines; ++lineIdx) {
// Iterate flex lines from the startmost to endmost (relative to flex
// container's writing-mode).
const auto& line =
aFlr.mLines[aAxisTracker.IsCrossAxisReversed() ? numLines - lineIdx - 1
: lineIdx];
MOZ_ASSERT(lineIdx != 0 || &line == &startmostLine,
"Logic for finding startmost line should be consistent!");
// These two variables can be set when we are a row-oriented flex container
// during fragmentation.
bool lineHasBreakBefore = false;
bool lineHasBreakAfter = false;
const size_t numItems = line.Items().Length();
for (size_t itemIdx = 0; itemIdx < numItems; ++itemIdx) {
// Iterate flex items from the startmost to endmost (relative to flex
// container's writing-mode).
const FlexItem& item = line.Items()[aAxisTracker.IsMainAxisReversed()
? numItems - itemIdx - 1
: itemIdx];
MOZ_ASSERT(lineIdx != 0 || itemIdx != 0 || &item == startmostItem,
"Logic for finding startmost item should be consistent!");
LogicalPoint framePos = aAxisTracker.LogicalPointFromFlexRelativePoint(
item.MainPosition(), item.CrossPosition(), aFlr.mContentBoxMainSize,
aFlr.mContentBoxCrossSize);
// This variable records the item's block-end edge before we give it a
// per-item-position-shift, if the item is a first-in-flow in the
// startmost line of a row-oriented flex container fragment. It is used to
// determine the block-end edge shift for the startmost line at the end of
// the outer loop.
Maybe<nscoord> frameBPosBeforePerItemShift;
if (item.Frame()->GetPrevInFlow()) {
// The item is a continuation. Lay it out at the beginning of the
// available space.
framePos.B(flexWM) = 0;
} else if (GetPrevInFlow()) {
// The item we're placing is not a continuation; though we're placing it
// into a flex container fragment which *is* a continuation. To compute
// the item's correct position in this fragment, we adjust the item's
// theoretical/unfragmented block-direction position by subtracting the
// cumulative content-box block-size for all the previous fragments and
// adding the cumulative block-end edge shift.
//
// Note that the item's position in this fragment has not been finalized
// yet. At this point, we've adjusted the item's
// theoretical/unfragmented position to be relative to the block-end
// edge of the previous container fragment's content-box. Later, we'll
// compute per-item position-shift to finalize its position.
framePos.B(flexWM) -= aFragmentData.mCumulativeContentBoxBSize;
framePos.B(flexWM) += aFragmentData.mCumulativeBEndEdgeShift;
// This helper gets the per-item position-shift in the block-axis.
auto GetPerItemPositionShiftToBEnd = [&]() {
if (framePos.B(flexWM) >= 0) {
// The item final position might be in current flex container
// fragment or in any of the later fragments. No adjustment needed.
return 0;
}
// The item's block position is negative, but we want to place it at
// the content-box block-start edge of this container fragment. To
// achieve this, return a negated (positive) value to make the final
// block position zero.
//
// This scenario occurs when fragmenting a row-oriented flex container
// where this item is pushed to this container fragment.
return -framePos.B(flexWM);
};
if (aAxisTracker.IsRowOriented()) {
if (&line == &startmostLine) {
frameBPosBeforePerItemShift.emplace(framePos.B(flexWM));
framePos.B(flexWM) += GetPerItemPositionShiftToBEnd();
} else {
// We've computed two things for the startmost line during the outer
// loop's first iteration: 1) how far the block-end edge had to
// shift and 2) how large the block-size needed to grow. Here, we
// just shift all items in the rest of the lines the same amount.
framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
}
} else {
MOZ_ASSERT(aAxisTracker.IsColumnOriented());
if (isSingleLine) {
if (&item == startmostItem) {
bAxisMetrics.mBEndEdgeShift = GetPerItemPositionShiftToBEnd();
}
framePos.B(flexWM) += bAxisMetrics.mBEndEdgeShift;
} else {
// Bug 1806717: We need a more sophisticated solution for multi-line
// column-oriented flex container when each line has a different
// position-shift value. For now, we don't shift them.
}
}
}
// Adjust available block-size for the item. (We compute it here because
// framePos is still relative to the container's content-box.)
//
// Note: The available block-size can become negative if item's
// block-direction position is below available space's block-end.
const nscoord availableBSizeForItem =
aAvailableSizeForItems.BSize(flexWM) == NS_UNCONSTRAINEDSIZE
? NS_UNCONSTRAINEDSIZE
: aAvailableSizeForItems.BSize(flexWM) - framePos.B(flexWM);
// Adjust framePos to be relative to the container's border-box
// (i.e. its frame rect), instead of the container's content-box:
framePos += containerContentBoxOrigin;
// Check if we can skip reflowing the item because it will be pushed to
// our next-in-flow -- i.e. if there was a forced break before it, or its
// position is beyond the available space's block-end.
bool itemInPushedItems = false;
if (shouldPushRemainingItems) {
FLEX_ITEM_LOG(
item.Frame(),
"[frag] Item needed to be pushed to container's next-in-flow due "
"to a forced break before it");
pushedItems.Insert(item.Frame());
itemInPushedItems = true;
} else if (availableBSizeForItem != NS_UNCONSTRAINEDSIZE &&
availableBSizeForItem <= 0) {
// The item's position is beyond the available space, so we have to push
// it.
//
// Note: Even if all of our items are beyond the available space & get
// pushed here, we'll be guaranteed to place at least one of them (and
// make progress) in one of the flex container's *next* fragment. It's
// because ComputeAvailableSizeForItems() always reserves at least 1px
// available block-size for its children, and we consume all available
// block-size and add it to
// PerFragmentFlexData::mCumulativeContentBoxBSize even if we are not
// laying out any child.
FLEX_ITEM_LOG(
item.Frame(),
"[frag] Item needed to be pushed to container's next-in-flow due "
"to being positioned beyond block-end edge of available space");
pushedItems.Insert(item.Frame());
itemInPushedItems = true;
} else if (item.NeedsFinalReflow(aReflowInput)) {
// The available size must be in item's writing-mode.
const WritingMode itemWM = item.GetWritingMode();
const auto availableSize =
LogicalSize(flexWM, aAvailableSizeForItems.ISize(flexWM),
availableBSizeForItem)
.ConvertTo(itemWM, flexWM);
const bool isAdjacentWithBStart =
framePos.B(flexWM) == containerContentBoxOrigin.B(flexWM);
const nsReflowStatus childStatus =
ReflowFlexItem(aAxisTracker, aReflowInput, item, framePos,
isAdjacentWithBStart, availableSize, aContainerSize);
if (aReflowInput.IsInFragmentedContext()) {
const bool itemHasBreakBefore =
item.Frame()->ShouldBreakBefore(aReflowInput.mBreakType) ||
childStatus.IsInlineBreakBefore();
if (itemHasBreakBefore) {
if (aAxisTracker.IsRowOriented()) {
lineHasBreakBefore = true;
} else if (isSingleLine) {
if (&item == startmostItem) {
if (!GetPrevInFlow() && !aReflowInput.mFlags.mIsTopOfPage) {
// If we are first-in-flow and not at top-of-page, early
// return here to propagate forced break-before from the
// startmost item to the flex container.
nsReflowStatus childrenStatus;
childrenStatus.SetInlineLineBreakBeforeAndReset();
return {0, childrenStatus};
}
} else {
shouldPushRemainingItems = true;
}
} else {
// Bug 1806717: We haven't implemented fragmentation for
// multi-line column-oriented flex container, so we just ignore
// forced breaks for now.
}
}
}
const bool shouldPushItem = [&]() {
if (shouldPushRemainingItems) {
return true;
}
if (availableBSizeForItem == NS_UNCONSTRAINEDSIZE) {
// If the available block-size is unconstrained, then we're not
// fragmenting and we don't want to push the item.
return false;
}
if (isAdjacentWithBStart) {
// The flex item is adjacent with block-start of the container's
// content-box. Don't push it, or we'll trap in an infinite loop.
return false;
}
if (item.Frame()->BSize() <= availableBSizeForItem) {
return false;
}
if (aAxisTracker.IsColumnOriented() &&
item.Frame()->StyleDisplay()->mBreakBefore ==
StyleBreakBetween::Avoid) {
return false;
}
return true;
}();
if (shouldPushItem) {
FLEX_ITEM_LOG(
item.Frame(),
"[frag] Item needed to be pushed to container's next-in-flow "
"because it encounters a forced break before it, or its "
"block-size is larger than the available space");
pushedItems.Insert(item.Frame());
itemInPushedItems = true;
} else if (childStatus.IsIncomplete()) {
incompleteItems.Insert(item.Frame());
} else if (childStatus.IsOverflowIncomplete()) {
overflowIncompleteItems.Insert(item.Frame());
}
if (aReflowInput.IsInFragmentedContext()) {
const bool itemHasBreakAfter =
item.Frame()->ShouldBreakAfter(aReflowInput.mBreakType) ||
childStatus.IsInlineBreakAfter();
if (itemHasBreakAfter) {
if (aAxisTracker.IsRowOriented()) {
lineHasBreakAfter = true;
} else if (isSingleLine) {
shouldPushRemainingItems = true;
if (&item == endmostItem) {
endmostItemOrLineHasBreakAfter = true;
}
} else {
// Bug 1806717: We haven't implemented fragmentation for
// multi-line column-oriented flex container, so we just ignore
// forced breaks for now.
}
}
}
} else {
// We already reflowed the item with the right content-box size, so we
// can simply move it into place.
MoveFlexItemToFinalPosition(item, framePos, aContainerSize);
}
if (!itemInPushedItems) {
const nscoord borderBoxBSize = item.Frame()->BSize(flexWM);
const nscoord bEndEdgeAfterPerItemShift =
framePos.B(flexWM) + borderBoxBSize;
// The item (or a fragment thereof) was placed in this flex container
// fragment. Update the max block-end edge with the item's block-end
// edge.
maxBlockEndEdgeOfChildren =
std::max(maxBlockEndEdgeOfChildren, bEndEdgeAfterPerItemShift);
if (frameBPosBeforePerItemShift) {
// Make the block-end edge relative to flex container's border-box
// because bEndEdgeAfterPerItemShift is relative to the border-box.
const nscoord bEndEdgeBeforePerItemShift =
containerContentBoxOrigin.B(flexWM) +
*frameBPosBeforePerItemShift + borderBoxBSize;
if (bAxisMetrics.mMaxBEndEdge) {
auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
before = std::max(before, bEndEdgeBeforePerItemShift);
after = std::max(after, bEndEdgeAfterPerItemShift);
} else {
bAxisMetrics.mMaxBEndEdge.emplace(bEndEdgeBeforePerItemShift,
bEndEdgeAfterPerItemShift);
}
}
if (item.Frame()->GetPrevInFlow()) {
// Items with a previous-continuation may experience some
// fragmentation-imposed growth in their block-size; we compute that
// here.
const nscoord bSizeOfThisFragment =
item.Frame()->ContentSize(flexWM).BSize(flexWM);
const nscoord consumedBSize = FlexItemConsumedBSize(item);
const nscoord unfragmentedBSize = item.BSize();
nscoord bSizeGrowthOfThisFragment = 0;
if (consumedBSize >= unfragmentedBSize) {
// The item's block-size has been grown to exceed the unfragmented
// block-size in the previous fragments.
bSizeGrowthOfThisFragment = bSizeOfThisFragment;
} else if (consumedBSize + bSizeOfThisFragment >= unfragmentedBSize) {
// The item's block-size just grows in the current fragment to
// exceed the unfragmented block-size.
bSizeGrowthOfThisFragment =
consumedBSize + bSizeOfThisFragment - unfragmentedBSize;
}
if (aAxisTracker.IsRowOriented()) {
if (&line == &startmostLine) {
bAxisMetrics.mBEndEdgeShift = std::max(
bAxisMetrics.mBEndEdgeShift, bSizeGrowthOfThisFragment);
}
} else {
MOZ_ASSERT(aAxisTracker.IsColumnOriented());
if (isSingleLine) {
if (&item == startmostItem) {
MOZ_ASSERT(bAxisMetrics.mBEndEdgeShift == 0,
"The item's frame is a continuation, so it "
"shouldn't shift!");
bAxisMetrics.mBEndEdgeShift = bSizeGrowthOfThisFragment;
}
} else {
// Bug 1806717: We need a more sophisticated solution for
// multi-line column-oriented flex container when each line has a
// different block-size growth value. For now, we don't deal with
// them.
}
}
}
}
// If the item has auto margins, and we were tracking the UsedMargin
// property, set the property to the computed margin values.
if (item.HasAnyAutoMargin()) {
nsMargin* propValue =
item.Frame()->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = item.PhysicalMargin();
}
}
}
if (aReflowInput.IsInFragmentedContext() && aAxisTracker.IsRowOriented()) {
// Propagate forced break values from the flex items to its flex line.
if (lineHasBreakBefore) {
if (&line == &startmostLine) {
if (!GetPrevInFlow() && !aReflowInput.mFlags.mIsTopOfPage) {
// If we are first-in-flow and not at top-of-page, early return here
// to propagate forced break-before from the startmost line to the
// flex container.
nsReflowStatus childrenStatus;
childrenStatus.SetInlineLineBreakBeforeAndReset();
return {0, childrenStatus};
}
} else {
// Current non-startmost line has forced break-before, so push all the
// items in this line.
for (const FlexItem& item : line.Items()) {
pushedItems.Insert(item.Frame());
incompleteItems.Remove(item.Frame());
overflowIncompleteItems.Remove(item.Frame());
}
shouldPushRemainingItems = true;
}
}
if (lineHasBreakAfter) {
shouldPushRemainingItems = true;
if (&line == &endmostLine) {
endmostItemOrLineHasBreakAfter = true;
}
}
}
// Now we've finished processing all the items in the startmost line.
// Determine the amount by which the startmost line's block-end edge has
// shifted, so we can apply the same shift for the remaining lines.
if (GetPrevInFlow() && aAxisTracker.IsRowOriented() &&
&line == &startmostLine && bAxisMetrics.mMaxBEndEdge) {
auto& [before, after] = *bAxisMetrics.mMaxBEndEdge;
bAxisMetrics.mBEndEdgeShift =
std::max(bAxisMetrics.mBEndEdgeShift, after - before);
}
}
if (!aFlr.mPlaceholders.IsEmpty()) {
ReflowPlaceholders(aReflowInput, aFlr.mPlaceholders,
containerContentBoxOrigin, aContainerSize);
}
nsReflowStatus childrenStatus;
if (!pushedItems.IsEmpty() || !incompleteItems.IsEmpty()) {
childrenStatus.SetIncomplete();
} else if (!overflowIncompleteItems.IsEmpty()) {
childrenStatus.SetOverflowIncomplete();
} else if (endmostItemOrLineHasBreakAfter) {
childrenStatus.SetInlineLineBreakAfter();
}
PushIncompleteChildren(pushedItems, incompleteItems, overflowIncompleteItems);
// TODO: Try making this a fatal assertion after we fix bug 1751260.
NS_ASSERTION(childrenStatus.IsFullyComplete() ||
aAvailableSizeForItems.BSize(flexWM) != NS_UNCONSTRAINEDSIZE,
"We shouldn't have any incomplete children if the available "
"block-size is unconstrained!");
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_FLEX_DID_PUSH_ITEMS);
}
if (GetPrevInFlow()) {
aFragmentData.mCumulativeBEndEdgeShift += bAxisMetrics.mBEndEdgeShift;
}
return {maxBlockEndEdgeOfChildren, childrenStatus};
}
void nsFlexContainerFrame::PopulateReflowOutput(
ReflowOutput& aReflowOutput, const ReflowInput& aReflowInput,
nsReflowStatus& aStatus, const LogicalSize& aContentBoxSize,
const LogicalMargin& aBorderPadding, const nscoord aConsumedBSize,
const bool aMayNeedNextInFlow, const nscoord aMaxBlockEndEdgeOfChildren,
const nsReflowStatus& aChildrenStatus,
const FlexboxAxisTracker& aAxisTracker, FlexLayoutResult& aFlr) {
const WritingMode flexWM = aReflowInput.GetWritingMode();
// Compute flex container's desired size (in its own writing-mode).
LogicalSize desiredSizeInFlexWM(flexWM);
desiredSizeInFlexWM.ISize(flexWM) =
aContentBoxSize.ISize(flexWM) + aBorderPadding.IStartEnd(flexWM);
// Unconditionally skip adding block-end border and padding for now. We add it
// lower down, after we've established baseline and decided whether bottom
// border-padding fits (if we're fragmented).
const nscoord effectiveContentBSizeWithBStartBP =
aContentBoxSize.BSize(flexWM) - aConsumedBSize +
aBorderPadding.BStart(flexWM);
nscoord blockEndContainerBP = aBorderPadding.BEnd(flexWM);
if (aMayNeedNextInFlow) {
// We assume our status should be reported as incomplete because we may need
// a next-in-flow.
bool isStatusIncomplete = true;
const nscoord availableBSizeMinusBEndBP =
aReflowInput.AvailableBSize() - aBorderPadding.BEnd(flexWM);
if (aMaxBlockEndEdgeOfChildren <= availableBSizeMinusBEndBP) {
// Consume all the available block-size.
desiredSizeInFlexWM.BSize(flexWM) = availableBSizeMinusBEndBP;
} else {
// This case happens if we have some tall unbreakable children exceeding
// the available block-size.
desiredSizeInFlexWM.BSize(flexWM) = std::min(
effectiveContentBSizeWithBStartBP, aMaxBlockEndEdgeOfChildren);
if ((aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE ||
aChildrenStatus.IsFullyComplete()) &&
aMaxBlockEndEdgeOfChildren >= effectiveContentBSizeWithBStartBP) {
// We have some tall unbreakable child that's sticking off the end of
// our fragment, *and* forcing us to consume all of our remaining
// content block-size and call ourselves complete.
//
// - If we have a definite block-size: we get here if the tall child
// makes us reach that block-size.
// - If we have a content-based block-size: we get here if the tall
// child makes us reach the content-based block-size from a
// theoretical unfragmented layout, *and* all our children are
// complete. (Note that if we have some incomplete child, then we
// instead prefer to return an incomplete status, so we can get a
// next-in-flow to include that child's requested next-in-flow, in the
// spirit of having a block-size that fits the content.)
//
// TODO: the auto-height case might need more subtlety; see bug 1828977.
isStatusIncomplete = false;
// We also potentially need to get the unskipped block-end border and
// padding (if we assumed it'd be skipped as part of our tentative
// assumption that we'd be incomplete).
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
blockEndContainerBP =
aReflowInput.ComputedLogicalBorderPadding(flexWM).BEnd(flexWM);
}
}
}
if (isStatusIncomplete) {
aStatus.SetIncomplete();
}
} else {
// Our own effective content-box block-size can fit within the available
// block-size.
desiredSizeInFlexWM.BSize(flexWM) = effectiveContentBSizeWithBStartBP;
}
// Now, we account for how the block-end border and padding (if any) impacts
// our desired size. If adding it pushes us over the available block-size,
// then we become incomplete (unless we already weren't asking for any
// block-size, in which case we stay complete to avoid looping forever).
//
// NOTE: If we have auto block-size, we allow our block-end border and padding
// to push us over the available block-size without requesting a continuation,
// for consistency with the behavior of "display:block" elements.
const nscoord effectiveContentBSizeWithBStartEndBP =
desiredSizeInFlexWM.BSize(flexWM) + blockEndContainerBP;
if (aReflowInput.AvailableBSize() != NS_UNCONSTRAINEDSIZE &&
effectiveContentBSizeWithBStartEndBP > aReflowInput.AvailableBSize() &&
desiredSizeInFlexWM.BSize(flexWM) != 0 &&
aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
// We couldn't fit with the block-end border and padding included, so we'll
// need a continuation.
aStatus.SetIncomplete();
if (aReflowInput.mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Slice) {
blockEndContainerBP = 0;
}
}
// The variable "blockEndContainerBP" now accurately reflects how much (if
// any) block-end border and padding we want for this frame, so we can proceed
// to add it in.
desiredSizeInFlexWM.BSize(flexWM) += blockEndContainerBP;
if (aStatus.IsComplete() && !aChildrenStatus.IsFullyComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
// If we are the first-in-flow and not fully complete (either our block-size
// or any of our flex items cannot fit in the available block-size), and the
// style requires us to avoid breaking inside, set the status to prompt our
// parent to push us to the next page/column.
if (!GetPrevInFlow() && !aStatus.IsFullyComplete() &&
ShouldAvoidBreakInside(aReflowInput)) {
aStatus.SetInlineLineBreakBeforeAndReset();
return;
}
// Propagate forced break values from flex items or flex lines.
if (aChildrenStatus.IsInlineBreakBefore()) {
aStatus.SetInlineLineBreakBeforeAndReset();
}
if (aChildrenStatus.IsInlineBreakAfter()) {
aStatus.SetInlineLineBreakAfter();
}
// If we haven't established a baseline for the container yet, i.e. if we
// don't have any flex item in the startmost flex line that participates in
// baseline alignment, then use the startmost flex item to derive the
// container's baseline.
if (const FlexLine& line = StartmostLine(aFlr.mLines, aAxisTracker);
aFlr.mAscent == nscoord_MIN && !line.IsEmpty()) {
const FlexItem& item = line.StartmostItem(aAxisTracker);
aFlr.mAscent = item.Frame()
->GetLogicalPosition(
flexWM, desiredSizeInFlexWM.GetPhysicalSize(flexWM))
.B(flexWM) +
item.ResolvedAscent(true);
}
// Likewise, if we don't have any flex item in the endmost flex line that
// participates in last baseline alignment, then use the endmost flex item to
// derived the container's last baseline.
if (const FlexLine& line = EndmostLine(aFlr.mLines, aAxisTracker);
aFlr.mAscentForLast == nscoord_MIN && !line.IsEmpty()) {
const FlexItem& item = line.EndmostItem(aAxisTracker);
const nscoord lastAscent =
item.Frame()
->GetLogicalPosition(flexWM,
desiredSizeInFlexWM.GetPhysicalSize(flexWM))
.B(flexWM) +
item.ResolvedAscent(false);
aFlr.mAscentForLast = desiredSizeInFlexWM.BSize(flexWM) - lastAscent;
}
if (aFlr.mAscent == nscoord_MIN) {
// Still don't have our baseline set -- this happens if we have no
// children, if our children are huge enough that they have nscoord_MIN
// as their baseline, or our content is hidden in which case, we'll use the
// wrong baseline (but no big deal).
NS_WARNING_ASSERTION(
HidesContentForLayout() || aFlr.mLines[0].IsEmpty(),
"Have flex items but didn't get an ascent - that's odd (or there are "
"just gigantic sizes involved)");
// Per spec, synthesize baseline from the flex container's content box
// (i.e. use block-end side of content-box)
// XXXdholbert This only makes sense if parent's writing mode is
// horizontal (& even then, really we should be using the BSize in terms
// of the parent's writing mode, not ours). Clean up in bug 1155322.
aFlr.mAscent = effectiveContentBSizeWithBStartBP;
}
if (aFlr.mAscentForLast == nscoord_MIN) {
// Still don't have our last baseline set -- this happens if we have no
// children, if our children are huge enough that they have nscoord_MIN
// as their baseline, or our content is hidden in which case, we'll use the
// wrong baseline (but no big deal).
NS_WARNING_ASSERTION(
HidesContentForLayout() || aFlr.mLines[0].IsEmpty(),
"Have flex items but didn't get an ascent - that's odd (or there are "
"just gigantic sizes involved)");
// Per spec, synthesize baseline from the flex container's content box
// (i.e. use block-end side of content-box)
// XXXdholbert This only makes sense if parent's writing mode is
// horizontal (& even then, really we should be using the BSize in terms
// of the parent's writing mode, not ours). Clean up in bug 1155322.
aFlr.mAscentForLast = blockEndContainerBP;
}
if (HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) {
// This will force our parent to call GetLogicalBaseline, which will
// synthesize a margin-box baseline.
aReflowOutput.SetBlockStartAscent(ReflowOutput::ASK_FOR_BASELINE);
} else {
// XXXdholbert aFlr.mAscent needs to be in terms of our parent's
// writing-mode here. See bug 1155322.
aReflowOutput.SetBlockStartAscent(aFlr.mAscent);
}
// Cache the container baselines so that our parent can baseline-align us.
mFirstBaseline = aFlr.mAscent;
mLastBaseline = aFlr.mAscentForLast;
// Convert flex container's final desired size to parent's WM, for outparam.
aReflowOutput.SetSize(flexWM, desiredSizeInFlexWM);
}
void nsFlexContainerFrame::MoveFlexItemToFinalPosition(
const FlexItem& aItem, const LogicalPoint& aFramePos,
const nsSize& aContainerSize) {
const WritingMode outerWM = aItem.ContainingBlockWM();
const nsStyleDisplay* display = aItem.Frame()->StyleDisplay();
LogicalPoint pos(aFramePos);
if (display->IsRelativelyOrStickyPositionedStyle()) {
// If the item is relatively positioned, look up its offsets (cached from
// previous reflow). A sticky positioned item can pass a dummy
// logicalOffsets into ApplyRelativePositioning().
LogicalMargin logicalOffsets(outerWM);
if (display->IsRelativelyPositionedStyle()) {
nsMargin* cachedOffsets =
aItem.Frame()->GetProperty(nsIFrame::ComputedOffsetProperty());
MOZ_ASSERT(
cachedOffsets,
"relpos previously-reflowed frame should've cached its offsets");
logicalOffsets = LogicalMargin(outerWM, *cachedOffsets);
}
ReflowInput::ApplyRelativePositioning(aItem.Frame(), outerWM,
logicalOffsets, &pos, aContainerSize);
}
FLEX_ITEM_LOG(aItem.Frame(), "Moving item to its desired position %s",
ToString(pos).c_str());
aItem.Frame()->SetPosition(outerWM, pos, aContainerSize);
PositionFrameView(aItem.Frame());
PositionChildViews(aItem.Frame());
}
nsReflowStatus nsFlexContainerFrame::ReflowFlexItem(
const FlexboxAxisTracker& aAxisTracker, const ReflowInput& aReflowInput,
const FlexItem& aItem, const LogicalPoint& aFramePos,
const bool aIsAdjacentWithBStart, const LogicalSize& aAvailableSize,
const nsSize& aContainerSize) {
FLEX_ITEM_LOG(aItem.Frame(), "Doing final reflow");
// Returns true if we should use 'auto' in block axis's StyleSizeOverrides to
// allow fragmentation-imposed block-size growth.
auto ComputeBSizeOverrideWithAuto = [&]() {
if (!aReflowInput.IsInFragmentedContext()) {
return false;
}
if (aItem.Frame()->IsReplaced()) {
// Disallow fragmentation-imposed block-size growth for replaced elements
// since they are monolithic, and cannot be fragmented.
return false;
}
if (aItem.HasAspectRatio()) {
// Aspect-ratio's automatic content-based minimum size doesn't work
// properly in a fragmented context (Bug 1868284) when we use 'auto'
// block-size to apply the fragmentation-imposed block-size growth.
// Disable it for now so that items with aspect-ratios can still use their
// known block-sizes (from flex layout algorithm) in final reflow.
return false;
}
if (aItem.IsBlockAxisMainAxis()) {
if (aItem.IsFlexBaseSizeContentBSize()) {
// The flex item resolved its indefinite flex-basis to the content
// block-size.
if (aItem.IsMainMinSizeContentBSize()) {
// The item's flex base size and main min-size are both content
// block-size. We interpret this content-based block-size as
// permission to apply fragmentation-imposed block-size growth.
return true;
}
if (aReflowInput.ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
// The flex container has an indefinite block-size. We allow the
// item's to apply fragmentation-imposed block-size growth.
return true;
}
}
return false;
}
MOZ_ASSERT(aItem.IsBlockAxisCrossAxis());
MOZ_ASSERT(aItem.IsStretched(),
"No need to override block-size with 'auto' if the item is not "
"stretched in the cross axis!");
Maybe<nscoord> measuredBSize = aItem.MeasuredBSize();
if (measuredBSize && aItem.CrossSize() == *measuredBSize) {
// The item has a measured content-based block-size due to having an
// indefinite cross-size. If its cross-size is equal to the content-based
// block-size, then it is the tallest item that established the cross-size
// of the flex line. We allow it apply fragmentation-imposed block-size
// growth.
//
// Note: We only allow the tallest item to grow because it is likely to
// have the most impact on the overall flex container block-size growth.
// This is not a perfect solution since other shorter items in the same
// line might also have fragmentation-imposed block-size growth, but
// currently there is no reliable way to detect whether they will outgrow
// the tallest item.
return true;
}
return false;
};
StyleSizeOverrides sizeOverrides;
bool overrideBSizeWithAuto = false;
// Override flex item's main size.
if (aItem.IsInlineAxisMainAxis()) {
sizeOverrides.mStyleISize.emplace(aItem.StyleMainSize());
FLEX_LOGV("Main size (inline-size) override: %d", aItem.MainSize());
} else {
overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto();
if (overrideBSizeWithAuto) {
sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
FLEX_LOGV("Main size (block-size) override: Auto");
} else {
sizeOverrides.mStyleBSize.emplace(aItem.StyleMainSize());
FLEX_LOGV("Main size (block-size) override: %d", aItem.MainSize());
}
}
// Override flex item's cross size if it was stretched in the cross axis (in
// which case we're imposing a cross size).
if (aItem.IsStretched()) {
if (aItem.IsInlineAxisCrossAxis()) {
sizeOverrides.mStyleISize.emplace(aItem.StyleCrossSize());
FLEX_LOGV("Cross size (inline-size) override: %d", aItem.CrossSize());
} else {
overrideBSizeWithAuto = ComputeBSizeOverrideWithAuto();
if (overrideBSizeWithAuto) {
sizeOverrides.mStyleBSize.emplace(StyleSize::Auto());
FLEX_LOGV("Cross size (block-size) override: Auto");
} else {
sizeOverrides.mStyleBSize.emplace(aItem.StyleCrossSize());
FLEX_LOGV("Cross size (block-size) override: %d", aItem.CrossSize());
}
}
}
if (sizeOverrides.mStyleBSize) {
// We are overriding the block-size. For robustness, we always assume that
// this represents a block-axis resize for the frame. This may be
// conservative, but we do capture all the conditions in the block-axis
// (checked in NeedsFinalReflow()) that make this item require a final
// reflow. This sets relevant flags in ReflowInput::InitResizeFlags().
aItem.Frame()->SetHasBSizeChange(true);
}
ReflowInput childReflowInput(PresContext(), aReflowInput, aItem.Frame(),
aAvailableSize, Nothing(), {}, sizeOverrides,
{ComputeSizeFlag::ShrinkWrap});
if (overrideBSizeWithAuto) {
// If we use 'auto' to override the item's block-size, set the item's
// original block-size to min-size as a lower bound.
childReflowInput.SetComputedMinBSize(aItem.BSize());
// Set the item's block-size as the percentage basis so that its children
// can resolve percentage sizes correctly.
childReflowInput.SetPercentageBasisInBlockAxis(aItem.BSize());
}
if (aItem.TreatBSizeAsIndefinite() && aItem.IsBlockAxisMainAxis()) {
childReflowInput.mFlags.mTreatBSizeAsIndefinite = true;
}
if (aItem.IsStretched() && aItem.IsBlockAxisCrossAxis()) {
// This item is stretched (in the cross axis), and that axis is its block
// axis. That stretching effectively gives it a relative BSize.
// XXXdholbert This flag only makes a difference if we use the flex items'
// frame-state when deciding whether to reflow them -- and we don't, as of
// the changes in bug 851607. So this has no effect right now, but it might
// make a difference if we optimize to use dirty bits in the
// future. (Reftests flexbox-resizeviewport-1.xhtml and -2.xhtml are
// intended to catch any regressions here, if we end up relying on this bit
// & neglecting to set it.)
aItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
if (!aIsAdjacentWithBStart) {
// mIsTopOfPage bit in childReflowInput is carried over from aReflowInput.
// However, if this item's position is not adjacent with the flex
// container's content-box block-start edge, we should clear it.
childReflowInput.mFlags.mIsTopOfPage = false;
}
// NOTE: Be very careful about doing anything else with childReflowInput
// after this point, because some of its methods (e.g. SetComputedWidth)
// internally call InitResizeFlags and stomp on mVResize & mHResize.
FLEX_ITEM_LOG(aItem.Frame(), "Reflowing item at its desired position %s",
ToString(aFramePos).c_str());
// CachedFlexItemData is stored in item's writing mode, so we pass
// aChildReflowInput into ReflowOutput's constructor.
ReflowOutput childReflowOutput(childReflowInput);
nsReflowStatus childStatus;
WritingMode outerWM = aReflowInput.GetWritingMode();
ReflowChild(aItem.Frame(), PresContext(), childReflowOutput, childReflowInput,
outerWM, aFramePos, aContainerSize, ReflowChildFlags::Default,
childStatus);
// XXXdholbert Perhaps we should call CheckForInterrupt here; see bug 1495532.
FinishReflowChild(aItem.Frame(), PresContext(), childReflowOutput,
&childReflowInput, outerWM, aFramePos, aContainerSize,
ReflowChildFlags::ApplyRelativePositioning);
aItem.SetAscent(childReflowOutput.BlockStartAscent());
// Update our cached flex item info:
if (auto* cached = aItem.Frame()->GetProperty(CachedFlexItemData::Prop())) {
cached->Update(childReflowInput, childReflowOutput,
FlexItemReflowType::Final);
} else {
cached = new CachedFlexItemData(childReflowInput, childReflowOutput,
FlexItemReflowType::Final);
aItem.Frame()->SetProperty(CachedFlexItemData::Prop(), cached);
}
return childStatus;
}
void nsFlexContainerFrame::ReflowPlaceholders(
const ReflowInput& aReflowInput, nsTArray<nsIFrame*>& aPlaceholders,
const LogicalPoint& aContentBoxOrigin, const nsSize& aContainerSize) {
WritingMode outerWM = aReflowInput.GetWritingMode();
// As noted in this method's documentation, we'll reflow every entry in
// |aPlaceholders| at the container's content-box origin.
for (nsIFrame* placeholder : aPlaceholders) {
MOZ_ASSERT(placeholder->IsPlaceholderFrame(),
"placeholders array should only contain placeholder frames");
WritingMode wm = placeholder->GetWritingMode();
LogicalSize availSize = aReflowInput.ComputedSize(wm);
ReflowInput childReflowInput(PresContext(), aReflowInput, placeholder,
availSize);
// No need to set the -webkit-line-clamp related flags when reflowing
// a placeholder.
ReflowOutput childReflowOutput(outerWM);
nsReflowStatus childStatus;
ReflowChild(placeholder, PresContext(), childReflowOutput, childReflowInput,
outerWM, aContentBoxOrigin, aContainerSize,
ReflowChildFlags::Default, childStatus);
FinishReflowChild(placeholder, PresContext(), childReflowOutput,
&childReflowInput, outerWM, aContentBoxOrigin,
aContainerSize, ReflowChildFlags::Default);
// Mark the placeholder frame to indicate that it's not actually at the
// element's static position, because we need to apply CSS Alignment after
// we determine the OOF's size:
placeholder->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
}
nscoord nsFlexContainerFrame::IntrinsicISize(gfxContext* aRenderingContext,
IntrinsicISizeType aType) {
nscoord containerISize = 0;
const nsStylePosition* stylePos = StylePosition();
const FlexboxAxisTracker axisTracker(this);
nscoord mainGapSize;
if (axisTracker.IsRowOriented()) {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mColumnGap,
NS_UNCONSTRAINEDSIZE);
} else {
mainGapSize = nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap,
NS_UNCONSTRAINEDSIZE);
}
const bool useMozBoxCollapseBehavior =
StyleVisibility()->UseLegacyCollapseBehavior();
// The loop below sets aside space for a gap before each item besides the
// first. This bool helps us handle that special-case.
bool onFirstChild = true;
for (nsIFrame* childFrame : mFrames) {
// Skip out-of-flow children because they don't participate in flex layout.
if (childFrame->IsPlaceholderFrame()) {
continue;
}
if (useMozBoxCollapseBehavior &&
childFrame->StyleVisibility()->IsCollapse()) {
// If we're using legacy "visibility:collapse" behavior, then we don't
// care about the sizes of any collapsed children.
continue;
}
nscoord childISize = nsLayoutUtils::IntrinsicForContainer(
aRenderingContext, childFrame, aType);
// * For a row-oriented single-line flex container, the intrinsic
// {min/pref}-isize is the sum of its items' {min/pref}-isizes and
// (n-1) column gaps.
// * For a column-oriented flex container, the intrinsic min isize
// is the max of its items' min isizes.
// * For a row-oriented multi-line flex container, the intrinsic
// pref isize is former (sum), and its min isize is the latter (max).
bool isSingleLine = (StyleFlexWrap::Nowrap == stylePos->mFlexWrap);
if (axisTracker.IsRowOriented() &&
(isSingleLine || aType == IntrinsicISizeType::PrefISize)) {
containerISize += childISize;
if (!onFirstChild) {
containerISize += mainGapSize;
}
onFirstChild = false;
} else { // (col-oriented, or MinISize for multi-line row flex container)
containerISize = std::max(containerISize, childISize);
}
}
return containerISize;
}
/* virtual */
nscoord nsFlexContainerFrame::GetMinISize(gfxContext* aRenderingContext) {
if (mCachedMinISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
mCachedMinISize = *containISize;
} else {
mCachedMinISize =
IntrinsicISize(aRenderingContext, IntrinsicISizeType::MinISize);
}
}
return mCachedMinISize;
}
/* virtual */
nscoord nsFlexContainerFrame::GetPrefISize(gfxContext* aRenderingContext) {
if (mCachedPrefISize == NS_INTRINSIC_ISIZE_UNKNOWN) {
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
mCachedPrefISize = *containISize;
} else {
mCachedPrefISize =
IntrinsicISize(aRenderingContext, IntrinsicISizeType::PrefISize);
}
}
return mCachedPrefISize;
}
int32_t nsFlexContainerFrame::GetNumLines() const {
// TODO(emilio, bug 1793251): Treating all row oriented frames as single-lines
// might not be great for flex-wrap'd containers, consider trying to do
// better? We probably would need to persist more stuff than we do after
// layout.
return FlexboxAxisInfo(this).mIsRowOriented ? 1 : mFrames.GetLength();
}
bool nsFlexContainerFrame::IsLineIteratorFlowRTL() {
FlexboxAxisInfo info(this);
if (info.mIsRowOriented) {
const bool isRtl = StyleVisibility()->mDirection == StyleDirection::Rtl;
return info.mIsMainAxisReversed != isRtl;
}
return false;
}
Result<nsILineIterator::LineInfo, nsresult> nsFlexContainerFrame::GetLine(
int32_t aLineNumber) {
if (aLineNumber < 0 || aLineNumber >= GetNumLines()) {
return Err(NS_ERROR_FAILURE);
}
FlexboxAxisInfo info(this);
LineInfo lineInfo;
if (info.mIsRowOriented) {
lineInfo.mLineBounds = GetRect();
lineInfo.mFirstFrameOnLine = mFrames.FirstChild();
// This isn't quite ideal for multi-line row flexbox, see bug 1793251.
lineInfo.mNumFramesOnLine = mFrames.GetLength();
} else {
// TODO(emilio, bug 1793322): Deal with column-reverse (mIsMainAxisReversed)
nsIFrame* f = mFrames.FrameAt(aLineNumber);
lineInfo.mLineBounds = f->GetRect();
lineInfo.mFirstFrameOnLine = f;
lineInfo.mNumFramesOnLine = 1;
}
return lineInfo;
}
int32_t nsFlexContainerFrame::FindLineContaining(nsIFrame* aFrame,
int32_t aStartLine) {
const int32_t index = mFrames.IndexOf(aFrame);
if (index < 0) {
return -1;
}
const FlexboxAxisInfo info(this);
if (info.mIsRowOriented) {
return 0;
}
if (index < aStartLine) {
return -1;
}
return index;
}
NS_IMETHODIMP
nsFlexContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered,
nsIFrame** aFirstVisual,
nsIFrame** aLastVisual) {
*aIsReordered = false;
*aFirstVisual = nullptr;
*aLastVisual = nullptr;
return NS_OK;
}
NS_IMETHODIMP
nsFlexContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos,
nsIFrame** aFrameFound,
bool* aPosIsBeforeFirstFrame,
bool* aPosIsAfterLastFrame) {
const auto wm = GetWritingMode();
const LogicalPoint pos(wm, aPos, GetSize());
const FlexboxAxisInfo info(this);
*aFrameFound = nullptr;
*aPosIsBeforeFirstFrame = true;
*aPosIsAfterLastFrame = false;
if (!info.mIsRowOriented) {
nsIFrame* f = mFrames.FrameAt(aLineNumber);
if (!f) {
return NS_OK;
}
auto rect = f->GetLogicalRect(wm, GetSize());
*aFrameFound = f;
*aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm);
*aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm);
return NS_OK;
}
LineFrameFinder finder(aPos, GetSize(), GetWritingMode(),
IsLineIteratorFlowRTL());
for (nsIFrame* f : mFrames) {
finder.Scan(f);
if (finder.IsDone()) {
break;
}
}
finder.Finish(aFrameFound, aPosIsBeforeFirstFrame, aPosIsAfterLastFrame);
return NS_OK;
}
|