summaryrefslogtreecommitdiffstats
path: root/layout/painting/nsCSSRenderingGradients.cpp
blob: 2fb2f0b024d7095f2cdde05f4bd8e97ef6e00447 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* utility functions for drawing borders and backgrounds */

#include "nsCSSRenderingGradients.h"

#include <tuple>

#include "gfx2DGlue.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Helpers.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/ProfilerLabels.h"

#include "nsLayoutUtils.h"
#include "nsStyleConsts.h"
#include "nsPresContext.h"
#include "nsPoint.h"
#include "nsRect.h"
#include "nsCSSColorUtils.h"
#include "gfxContext.h"
#include "nsStyleStructInlines.h"
#include "nsCSSProps.h"
#include "gfxUtils.h"
#include "gfxGradientCache.h"

#include "mozilla/layers/StackingContextHelper.h"
#include "mozilla/layers/WebRenderLayerManager.h"
#include "mozilla/webrender/WebRenderTypes.h"
#include "mozilla/webrender/WebRenderAPI.h"
#include "Units.h"

#include "mozilla/StaticPrefs_layout.h"

using namespace mozilla;
using namespace mozilla::gfx;

static CSSPoint ResolvePosition(const Position& aPos, const CSSSize& aSize) {
  CSSCoord h = aPos.horizontal.ResolveToCSSPixels(aSize.width);
  CSSCoord v = aPos.vertical.ResolveToCSSPixels(aSize.height);
  return CSSPoint(h, v);
}

// Given a box with size aBoxSize and origin (0,0), and an angle aAngle,
// and a starting point for the gradient line aStart, find the endpoint of
// the gradient line --- the intersection of the gradient line with a line
// perpendicular to aAngle that passes through the farthest corner in the
// direction aAngle.
static CSSPoint ComputeGradientLineEndFromAngle(const CSSPoint& aStart,
                                                double aAngle,
                                                const CSSSize& aBoxSize) {
  double dx = cos(-aAngle);
  double dy = sin(-aAngle);
  CSSPoint farthestCorner(dx > 0 ? aBoxSize.width : 0,
                          dy > 0 ? aBoxSize.height : 0);
  CSSPoint delta = farthestCorner - aStart;
  double u = delta.x * dy - delta.y * dx;
  return farthestCorner + CSSPoint(-u * dy, u * dx);
}

// Compute the start and end points of the gradient line for a linear gradient.
static std::tuple<CSSPoint, CSSPoint> ComputeLinearGradientLine(
    nsPresContext* aPresContext, const StyleGradient& aGradient,
    const CSSSize& aBoxSize) {
  using X = StyleHorizontalPositionKeyword;
  using Y = StyleVerticalPositionKeyword;

  const StyleLineDirection& direction = aGradient.AsLinear().direction;
  const bool isModern =
      aGradient.AsLinear().compat_mode == StyleGradientCompatMode::Modern;

  CSSPoint center(aBoxSize.width / 2, aBoxSize.height / 2);
  switch (direction.tag) {
    case StyleLineDirection::Tag::Angle: {
      double angle = direction.AsAngle().ToRadians();
      if (isModern) {
        angle = M_PI_2 - angle;
      }
      CSSPoint end = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
      CSSPoint start = CSSPoint(aBoxSize.width, aBoxSize.height) - end;
      return {start, end};
    }
    case StyleLineDirection::Tag::Vertical: {
      CSSPoint start(center.x, 0);
      CSSPoint end(center.x, aBoxSize.height);
      if (isModern == (direction.AsVertical() == Y::Top)) {
        std::swap(start.y, end.y);
      }
      return {start, end};
    }
    case StyleLineDirection::Tag::Horizontal: {
      CSSPoint start(0, center.y);
      CSSPoint end(aBoxSize.width, center.y);
      if (isModern == (direction.AsHorizontal() == X::Left)) {
        std::swap(start.x, end.x);
      }
      return {start, end};
    }
    case StyleLineDirection::Tag::Corner: {
      const auto& corner = direction.AsCorner();
      const X& h = corner._0;
      const Y& v = corner._1;

      if (isModern) {
        float xSign = h == X::Right ? 1.0 : -1.0;
        float ySign = v == Y::Top ? 1.0 : -1.0;
        double angle = atan2(ySign * aBoxSize.width, xSign * aBoxSize.height);
        CSSPoint end = ComputeGradientLineEndFromAngle(center, angle, aBoxSize);
        CSSPoint start = CSSPoint(aBoxSize.width, aBoxSize.height) - end;
        return {start, end};
      }

      CSSCoord startX = h == X::Left ? 0.0 : aBoxSize.width;
      CSSCoord startY = v == Y::Top ? 0.0 : aBoxSize.height;

      CSSPoint start(startX, startY);
      CSSPoint end = CSSPoint(aBoxSize.width, aBoxSize.height) - start;
      return {start, end};
    }
    default:
      break;
  }
  MOZ_ASSERT_UNREACHABLE("Unknown line direction");
  return {CSSPoint(), CSSPoint()};
}

using EndingShape = StyleGenericEndingShape<Length, LengthPercentage>;
using RadialGradientRadii =
    Variant<StyleShapeExtent, std::pair<CSSCoord, CSSCoord>>;

static RadialGradientRadii ComputeRadialGradientRadii(const EndingShape& aShape,
                                                      const CSSSize& aSize) {
  if (aShape.IsCircle()) {
    auto& circle = aShape.AsCircle();
    if (circle.IsExtent()) {
      return RadialGradientRadii(circle.AsExtent());
    }
    CSSCoord radius = circle.AsRadius().ToCSSPixels();
    return RadialGradientRadii(std::make_pair(radius, radius));
  }
  auto& ellipse = aShape.AsEllipse();
  if (ellipse.IsExtent()) {
    return RadialGradientRadii(ellipse.AsExtent());
  }

  auto& radii = ellipse.AsRadii();
  return RadialGradientRadii(
      std::make_pair(radii._0.ResolveToCSSPixels(aSize.width),
                     radii._1.ResolveToCSSPixels(aSize.height)));
}

// Compute the start and end points of the gradient line for a radial gradient.
// Also returns the horizontal and vertical radii defining the circle or
// ellipse to use.
static std::tuple<CSSPoint, CSSPoint, CSSCoord, CSSCoord>
ComputeRadialGradientLine(const StyleGradient& aGradient,
                          const CSSSize& aBoxSize) {
  const auto& radial = aGradient.AsRadial();
  const EndingShape& endingShape = radial.shape;
  const Position& position = radial.position;
  CSSPoint start = ResolvePosition(position, aBoxSize);

  // Compute gradient shape: the x and y radii of an ellipse.
  CSSCoord radiusX, radiusY;
  CSSCoord leftDistance = Abs(start.x);
  CSSCoord rightDistance = Abs(aBoxSize.width - start.x);
  CSSCoord topDistance = Abs(start.y);
  CSSCoord bottomDistance = Abs(aBoxSize.height - start.y);

  auto radii = ComputeRadialGradientRadii(endingShape, aBoxSize);
  if (radii.is<StyleShapeExtent>()) {
    switch (radii.as<StyleShapeExtent>()) {
      case StyleShapeExtent::ClosestSide:
        radiusX = std::min(leftDistance, rightDistance);
        radiusY = std::min(topDistance, bottomDistance);
        if (endingShape.IsCircle()) {
          radiusX = radiusY = std::min(radiusX, radiusY);
        }
        break;
      case StyleShapeExtent::ClosestCorner: {
        // Compute x and y distances to nearest corner
        CSSCoord offsetX = std::min(leftDistance, rightDistance);
        CSSCoord offsetY = std::min(topDistance, bottomDistance);
        if (endingShape.IsCircle()) {
          radiusX = radiusY = NS_hypot(offsetX, offsetY);
        } else {
          // maintain aspect ratio
          radiusX = offsetX * M_SQRT2;
          radiusY = offsetY * M_SQRT2;
        }
        break;
      }
      case StyleShapeExtent::FarthestSide:
        radiusX = std::max(leftDistance, rightDistance);
        radiusY = std::max(topDistance, bottomDistance);
        if (endingShape.IsCircle()) {
          radiusX = radiusY = std::max(radiusX, radiusY);
        }
        break;
      case StyleShapeExtent::FarthestCorner: {
        // Compute x and y distances to nearest corner
        CSSCoord offsetX = std::max(leftDistance, rightDistance);
        CSSCoord offsetY = std::max(topDistance, bottomDistance);
        if (endingShape.IsCircle()) {
          radiusX = radiusY = NS_hypot(offsetX, offsetY);
        } else {
          // maintain aspect ratio
          radiusX = offsetX * M_SQRT2;
          radiusY = offsetY * M_SQRT2;
        }
        break;
      }
      default:
        MOZ_ASSERT_UNREACHABLE("Unknown shape extent keyword?");
        radiusX = radiusY = 0;
    }
  } else {
    auto pair = radii.as<std::pair<CSSCoord, CSSCoord>>();
    radiusX = pair.first;
    radiusY = pair.second;
  }

  // The gradient line end point is where the gradient line intersects
  // the ellipse.
  CSSPoint end = start + CSSPoint(radiusX, 0);
  return {start, end, radiusX, radiusY};
}

// Compute the center and the start angle of the conic gradient.
static std::tuple<CSSPoint, float> ComputeConicGradientProperties(
    const StyleGradient& aGradient, const CSSSize& aBoxSize) {
  const auto& conic = aGradient.AsConic();
  const Position& position = conic.position;
  float angle = static_cast<float>(conic.angle.ToRadians());
  CSSPoint center = ResolvePosition(position, aBoxSize);

  return {center, angle};
}

static float Interpolate(float aF1, float aF2, float aFrac) {
  return aF1 + aFrac * (aF2 - aF1);
}

static StyleAbsoluteColor Interpolate(const StyleAbsoluteColor& aLeft,
                                      const StyleAbsoluteColor& aRight,
                                      float aFrac) {
  // NOTE: This has to match the interpolation method that WebRender uses which
  // right now is sRGB. In the future we should implement interpolation in more
  // gradient color-spaces.
  static constexpr auto kMethod = StyleColorInterpolationMethod{
      StyleColorSpace::Srgb,
      StyleHueInterpolationMethod::Shorter,
  };
  return Servo_InterpolateColor(kMethod, &aRight, &aLeft, aFrac);
}

static nscoord FindTileStart(nscoord aDirtyCoord, nscoord aTilePos,
                             nscoord aTileDim) {
  NS_ASSERTION(aTileDim > 0, "Non-positive tile dimension");
  double multiples = floor(double(aDirtyCoord - aTilePos) / aTileDim);
  return NSToCoordRound(multiples * aTileDim + aTilePos);
}

static gfxFloat LinearGradientStopPositionForPoint(
    const gfxPoint& aGradientStart, const gfxPoint& aGradientEnd,
    const gfxPoint& aPoint) {
  gfxPoint d = aGradientEnd - aGradientStart;
  gfxPoint p = aPoint - aGradientStart;
  /**
   * Compute a parameter t such that a line perpendicular to the
   * d vector, passing through aGradientStart + d*t, also
   * passes through aPoint.
   *
   * t is given by
   *   (p.x - d.x*t)*d.x + (p.y - d.y*t)*d.y = 0
   *
   * Solving for t we get
   *   numerator = d.x*p.x + d.y*p.y
   *   denominator = d.x^2 + d.y^2
   *   t = numerator/denominator
   *
   * In nsCSSRendering::PaintGradient we know the length of d
   * is not zero.
   */
  double numerator = d.x.value * p.x.value + d.y.value * p.y.value;
  double denominator = d.x.value * d.x.value + d.y.value * d.y.value;
  return numerator / denominator;
}

static bool RectIsBeyondLinearGradientEdge(const gfxRect& aRect,
                                           const gfxMatrix& aPatternMatrix,
                                           const nsTArray<ColorStop>& aStops,
                                           const gfxPoint& aGradientStart,
                                           const gfxPoint& aGradientEnd,
                                           StyleAbsoluteColor* aOutEdgeColor) {
  gfxFloat topLeft = LinearGradientStopPositionForPoint(
      aGradientStart, aGradientEnd,
      aPatternMatrix.TransformPoint(aRect.TopLeft()));
  gfxFloat topRight = LinearGradientStopPositionForPoint(
      aGradientStart, aGradientEnd,
      aPatternMatrix.TransformPoint(aRect.TopRight()));
  gfxFloat bottomLeft = LinearGradientStopPositionForPoint(
      aGradientStart, aGradientEnd,
      aPatternMatrix.TransformPoint(aRect.BottomLeft()));
  gfxFloat bottomRight = LinearGradientStopPositionForPoint(
      aGradientStart, aGradientEnd,
      aPatternMatrix.TransformPoint(aRect.BottomRight()));

  const ColorStop& firstStop = aStops[0];
  if (topLeft < firstStop.mPosition && topRight < firstStop.mPosition &&
      bottomLeft < firstStop.mPosition && bottomRight < firstStop.mPosition) {
    *aOutEdgeColor = firstStop.mColor;
    return true;
  }

  const ColorStop& lastStop = aStops.LastElement();
  if (topLeft >= lastStop.mPosition && topRight >= lastStop.mPosition &&
      bottomLeft >= lastStop.mPosition && bottomRight >= lastStop.mPosition) {
    *aOutEdgeColor = lastStop.mColor;
    return true;
  }

  return false;
}

static void ResolveMidpoints(nsTArray<ColorStop>& stops) {
  for (size_t x = 1; x < stops.Length() - 1;) {
    if (!stops[x].mIsMidpoint) {
      x++;
      continue;
    }

    const auto& color1 = stops[x - 1].mColor;
    const auto& color2 = stops[x + 1].mColor;
    float offset1 = stops[x - 1].mPosition;
    float offset2 = stops[x + 1].mPosition;
    float offset = stops[x].mPosition;
    // check if everything coincides. If so, ignore the midpoint.
    if (offset - offset1 == offset2 - offset) {
      stops.RemoveElementAt(x);
      continue;
    }

    // Check if we coincide with the left colorstop.
    if (offset1 == offset) {
      // Morph the midpoint to a regular stop with the color of the next
      // color stop.
      stops[x].mColor = color2;
      stops[x].mIsMidpoint = false;
      continue;
    }

    // Check if we coincide with the right colorstop.
    if (offset2 == offset) {
      // Morph the midpoint to a regular stop with the color of the previous
      // color stop.
      stops[x].mColor = color1;
      stops[x].mIsMidpoint = false;
      continue;
    }

    float midpoint = (offset - offset1) / (offset2 - offset1);
    ColorStop newStops[9];
    if (midpoint > .5f) {
      for (size_t y = 0; y < 7; y++) {
        newStops[y].mPosition = offset1 + (offset - offset1) * (7 + y) / 13;
      }

      newStops[7].mPosition = offset + (offset2 - offset) / 3;
      newStops[8].mPosition = offset + (offset2 - offset) * 2 / 3;
    } else {
      newStops[0].mPosition = offset1 + (offset - offset1) / 3;
      newStops[1].mPosition = offset1 + (offset - offset1) * 2 / 3;

      for (size_t y = 0; y < 7; y++) {
        newStops[y + 2].mPosition = offset + (offset2 - offset) * y / 13;
      }
    }
    // calculate colors

    for (auto& newStop : newStops) {
      // Calculate the intermediate color stops per the formula of the CSS
      // images spec. http://dev.w3.org/csswg/css-images/#color-stop-syntax 9
      // points were chosen since it is the minimum number of stops that always
      // give the smoothest appearace regardless of midpoint position and
      // difference in luminance of the end points.
      const float relativeOffset =
          (newStop.mPosition - offset1) / (offset2 - offset1);
      const float multiplier = powf(relativeOffset, logf(.5f) / logf(midpoint));

      auto srgb1 = color1.ToColorSpace(StyleColorSpace::Srgb);
      auto srgb2 = color2.ToColorSpace(StyleColorSpace::Srgb);

      const float red =
          srgb1.components._0 +
          multiplier * (srgb2.components._0 - srgb1.components._0);
      const float green =
          srgb1.components._1 +
          multiplier * (srgb2.components._1 - srgb1.components._1);
      const float blue =
          srgb1.components._2 +
          multiplier * (srgb2.components._2 - srgb1.components._2);
      const float alpha =
          srgb1.alpha + multiplier * (srgb2.alpha - srgb1.alpha);

      newStop.mColor = StyleAbsoluteColor::SrgbLegacy(red, green, blue, alpha);
    }

    stops.ReplaceElementsAt(x, 1, newStops, 9);
    x += 9;
  }
}

static StyleAbsoluteColor TransparentColor(const StyleAbsoluteColor& aColor) {
  auto color = aColor;
  color.alpha = 0.0f;
  return color;
}

// Adjusts and adds color stops in such a way that drawing the gradient with
// unpremultiplied interpolation looks nearly the same as if it were drawn with
// premultiplied interpolation.
static const float kAlphaIncrementPerGradientStep = 0.1f;
static void ResolvePremultipliedAlpha(nsTArray<ColorStop>& aStops) {
  for (size_t x = 1; x < aStops.Length(); x++) {
    const ColorStop leftStop = aStops[x - 1];
    const ColorStop rightStop = aStops[x];

    // if the left and right stop have the same alpha value, we don't need
    // to do anything. Hardstops should be instant, and also should never
    // require dealing with interpolation.
    if (leftStop.mColor.alpha == rightStop.mColor.alpha ||
        leftStop.mPosition == rightStop.mPosition) {
      continue;
    }

    // Is the stop on the left 100% transparent? If so, have it adopt the color
    // of the right stop
    if (leftStop.mColor.alpha == 0) {
      aStops[x - 1].mColor = TransparentColor(rightStop.mColor);
      continue;
    }

    // Is the stop on the right completely transparent?
    // If so, duplicate it and assign it the color on the left.
    if (rightStop.mColor.alpha == 0) {
      ColorStop newStop = rightStop;
      newStop.mColor = TransparentColor(leftStop.mColor);
      aStops.InsertElementAt(x, newStop);
      x++;
      continue;
    }

    // Now handle cases where one or both of the stops are partially
    // transparent.
    if (leftStop.mColor.alpha != 1.0f || rightStop.mColor.alpha != 1.0f) {
      // Calculate how many extra steps. We do a step per 10% transparency.
      size_t stepCount =
          NSToIntFloor(fabsf(leftStop.mColor.alpha - rightStop.mColor.alpha) /
                       kAlphaIncrementPerGradientStep);
      for (size_t y = 1; y < stepCount; y++) {
        float frac = static_cast<float>(y) / stepCount;
        ColorStop newStop(
            Interpolate(leftStop.mPosition, rightStop.mPosition, frac), false,
            Interpolate(leftStop.mColor, rightStop.mColor, frac));
        aStops.InsertElementAt(x, newStop);
        x++;
      }
    }
  }
}

static ColorStop InterpolateColorStop(const ColorStop& aFirst,
                                      const ColorStop& aSecond,
                                      double aPosition,
                                      const StyleAbsoluteColor& aDefault) {
  MOZ_ASSERT(aFirst.mPosition <= aPosition);
  MOZ_ASSERT(aPosition <= aSecond.mPosition);

  double delta = aSecond.mPosition - aFirst.mPosition;
  if (delta < 1e-6) {
    return ColorStop(aPosition, false, aDefault);
  }

  return ColorStop(aPosition, false,
                   Interpolate(aFirst.mColor, aSecond.mColor,
                               (aPosition - aFirst.mPosition) / delta));
}

// Clamp and extend the given ColorStop array in-place to fit exactly into the
// range [0, 1].
static void ClampColorStops(nsTArray<ColorStop>& aStops) {
  MOZ_ASSERT(aStops.Length() > 0);

  // If all stops are outside the range, then get rid of everything and replace
  // with a single colour.
  if (aStops.Length() < 2 || aStops[0].mPosition > 1 ||
      aStops.LastElement().mPosition < 0) {
    const auto c = aStops[0].mPosition > 1 ? aStops[0].mColor
                                           : aStops.LastElement().mColor;
    aStops.Clear();
    aStops.AppendElement(ColorStop(0, false, c));
    return;
  }

  // Create the 0 and 1 points if they fall in the range of |aStops|, and
  // discard all stops outside the range [0, 1].
  // XXX: If we have stops positioned at 0 or 1, we only keep the innermost of
  // those stops. This should be fine for the current user(s) of this function.
  for (size_t i = aStops.Length() - 1; i > 0; i--) {
    if (aStops[i - 1].mPosition < 1 && aStops[i].mPosition >= 1) {
      // Add a point to position 1.
      aStops[i] =
          InterpolateColorStop(aStops[i - 1], aStops[i],
                               /* aPosition = */ 1, aStops[i - 1].mColor);
      // Remove all the elements whose position is greater than 1.
      aStops.RemoveLastElements(aStops.Length() - (i + 1));
    }
    if (aStops[i - 1].mPosition <= 0 && aStops[i].mPosition > 0) {
      // Add a point to position 0.
      aStops[i - 1] =
          InterpolateColorStop(aStops[i - 1], aStops[i],
                               /* aPosition = */ 0, aStops[i].mColor);
      // Remove all of the preceding stops -- they are all negative.
      aStops.RemoveElementsAt(0, i - 1);
      break;
    }
  }

  MOZ_ASSERT(aStops[0].mPosition >= -1e6);
  MOZ_ASSERT(aStops.LastElement().mPosition - 1 <= 1e6);

  // The end points won't exist yet if they don't fall in the original range of
  // |aStops|. Create them if needed.
  if (aStops[0].mPosition > 0) {
    aStops.InsertElementAt(0, ColorStop(0, false, aStops[0].mColor));
  }
  if (aStops.LastElement().mPosition < 1) {
    aStops.AppendElement(ColorStop(1, false, aStops.LastElement().mColor));
  }
}

namespace mozilla {

template <typename T>
static StyleAbsoluteColor GetSpecifiedColor(
    const StyleGenericGradientItem<StyleColor, T>& aItem,
    const ComputedStyle& aStyle) {
  if (aItem.IsInterpolationHint()) {
    return StyleAbsoluteColor::TRANSPARENT_BLACK;
  }
  const StyleColor& c = aItem.IsSimpleColorStop()
                            ? aItem.AsSimpleColorStop()
                            : aItem.AsComplexColorStop().color;

  return c.ResolveColor(aStyle.StyleText()->mColor);
}

static Maybe<double> GetSpecifiedGradientPosition(
    const StyleGenericGradientItem<StyleColor, StyleLengthPercentage>& aItem,
    CSSCoord aLineLength) {
  if (aItem.IsSimpleColorStop()) {
    return Nothing();
  }

  const LengthPercentage& pos = aItem.IsComplexColorStop()
                                    ? aItem.AsComplexColorStop().position
                                    : aItem.AsInterpolationHint();

  if (pos.ConvertsToPercentage()) {
    return Some(pos.ToPercentage());
  }

  if (aLineLength < 1e-6) {
    return Some(0.0);
  }
  return Some(pos.ResolveToCSSPixels(aLineLength) / aLineLength);
}

// aLineLength argument is unused for conic-gradients.
static Maybe<double> GetSpecifiedGradientPosition(
    const StyleGenericGradientItem<StyleColor, StyleAngleOrPercentage>& aItem,
    CSSCoord aLineLength) {
  if (aItem.IsSimpleColorStop()) {
    return Nothing();
  }

  const StyleAngleOrPercentage& pos = aItem.IsComplexColorStop()
                                          ? aItem.AsComplexColorStop().position
                                          : aItem.AsInterpolationHint();

  if (pos.IsPercentage()) {
    return Some(pos.AsPercentage()._0);
  }

  return Some(pos.AsAngle().ToRadians() / (2 * M_PI));
}

template <typename T>
static nsTArray<ColorStop> ComputeColorStopsForItems(
    ComputedStyle* aComputedStyle,
    Span<const StyleGenericGradientItem<StyleColor, T>> aItems,
    CSSCoord aLineLength) {
  MOZ_ASSERT(aItems.Length() >= 2,
             "The parser should reject gradients with less than two stops");

  nsTArray<ColorStop> stops(aItems.Length());

  // If there is a run of stops before stop i that did not have specified
  // positions, then this is the index of the first stop in that run.
  Maybe<size_t> firstUnsetPosition;
  for (size_t i = 0; i < aItems.Length(); ++i) {
    const auto& stop = aItems[i];
    double position;

    Maybe<double> specifiedPosition =
        GetSpecifiedGradientPosition(stop, aLineLength);

    if (specifiedPosition) {
      position = *specifiedPosition;
    } else if (i == 0) {
      // First stop defaults to position 0.0
      position = 0.0;
    } else if (i == aItems.Length() - 1) {
      // Last stop defaults to position 1.0
      position = 1.0;
    } else {
      // Other stops with no specified position get their position assigned
      // later by interpolation, see below.
      // Remember where the run of stops with no specified position starts,
      // if it starts here.
      if (firstUnsetPosition.isNothing()) {
        firstUnsetPosition.emplace(i);
      }
      MOZ_ASSERT(!stop.IsInterpolationHint(),
                 "Interpolation hints always specify position");
      auto color = GetSpecifiedColor(stop, *aComputedStyle);
      stops.AppendElement(ColorStop(0, false, color));
      continue;
    }

    if (i > 0) {
      // Prevent decreasing stop positions by advancing this position
      // to the previous stop position, if necessary
      double previousPosition = firstUnsetPosition
                                    ? stops[*firstUnsetPosition - 1].mPosition
                                    : stops[i - 1].mPosition;
      position = std::max(position, previousPosition);
    }
    auto stopColor = GetSpecifiedColor(stop, *aComputedStyle);
    stops.AppendElement(
        ColorStop(position, stop.IsInterpolationHint(), stopColor));
    if (firstUnsetPosition) {
      // Interpolate positions for all stops that didn't have a specified
      // position
      double p = stops[*firstUnsetPosition - 1].mPosition;
      double d = (stops[i].mPosition - p) / (i - *firstUnsetPosition + 1);
      for (size_t j = *firstUnsetPosition; j < i; ++j) {
        p += d;
        stops[j].mPosition = p;
      }
      firstUnsetPosition.reset();
    }
  }

  return stops;
}

static nsTArray<ColorStop> ComputeColorStops(ComputedStyle* aComputedStyle,
                                             const StyleGradient& aGradient,
                                             CSSCoord aLineLength) {
  if (aGradient.IsLinear()) {
    return ComputeColorStopsForItems(
        aComputedStyle, aGradient.AsLinear().items.AsSpan(), aLineLength);
  }
  if (aGradient.IsRadial()) {
    return ComputeColorStopsForItems(
        aComputedStyle, aGradient.AsRadial().items.AsSpan(), aLineLength);
  }
  return ComputeColorStopsForItems(
      aComputedStyle, aGradient.AsConic().items.AsSpan(), aLineLength);
}

nsCSSGradientRenderer nsCSSGradientRenderer::Create(
    nsPresContext* aPresContext, ComputedStyle* aComputedStyle,
    const StyleGradient& aGradient, const nsSize& aIntrinsicSize) {
  auto srcSize = CSSSize::FromAppUnits(aIntrinsicSize);

  // Compute "gradient line" start and end relative to the intrinsic size of
  // the gradient.
  CSSPoint lineStart, lineEnd, center;  // center is for conic gradients only
  CSSCoord radiusX = 0, radiusY = 0;    // for radial gradients only
  float angle = 0.0;                    // for conic gradients only
  if (aGradient.IsLinear()) {
    std::tie(lineStart, lineEnd) =
        ComputeLinearGradientLine(aPresContext, aGradient, srcSize);
  } else if (aGradient.IsRadial()) {
    std::tie(lineStart, lineEnd, radiusX, radiusY) =
        ComputeRadialGradientLine(aGradient, srcSize);
  } else {
    MOZ_ASSERT(aGradient.IsConic());
    std::tie(center, angle) =
        ComputeConicGradientProperties(aGradient, srcSize);
  }
  // Avoid sending Infs or Nans to downwind draw targets.
  if (!lineStart.IsFinite() || !lineEnd.IsFinite()) {
    lineStart = lineEnd = CSSPoint(0, 0);
  }
  if (!center.IsFinite()) {
    center = CSSPoint(0, 0);
  }
  CSSCoord lineLength =
      NS_hypot(lineEnd.x - lineStart.x, lineEnd.y - lineStart.y);

  // Build color stop array and compute stop positions
  nsTArray<ColorStop> stops =
      ComputeColorStops(aComputedStyle, aGradient, lineLength);

  ResolveMidpoints(stops);

  nsCSSGradientRenderer renderer;
  renderer.mPresContext = aPresContext;
  renderer.mGradient = &aGradient;
  renderer.mStops = std::move(stops);
  renderer.mLineStart = {
      aPresContext->CSSPixelsToDevPixels(lineStart.x),
      aPresContext->CSSPixelsToDevPixels(lineStart.y),
  };
  renderer.mLineEnd = {
      aPresContext->CSSPixelsToDevPixels(lineEnd.x),
      aPresContext->CSSPixelsToDevPixels(lineEnd.y),
  };
  renderer.mRadiusX = aPresContext->CSSPixelsToDevPixels(radiusX);
  renderer.mRadiusY = aPresContext->CSSPixelsToDevPixels(radiusY);
  renderer.mCenter = {
      aPresContext->CSSPixelsToDevPixels(center.x),
      aPresContext->CSSPixelsToDevPixels(center.y),
  };
  renderer.mAngle = angle;
  return renderer;
}

void nsCSSGradientRenderer::Paint(gfxContext& aContext, const nsRect& aDest,
                                  const nsRect& aFillArea,
                                  const nsSize& aRepeatSize,
                                  const CSSIntRect& aSrc,
                                  const nsRect& aDirtyRect, float aOpacity) {
  AUTO_PROFILER_LABEL("nsCSSGradientRenderer::Paint", GRAPHICS);

  if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
    return;
  }

  nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();

  gfxFloat lineLength =
      NS_hypot(mLineEnd.x - mLineStart.x, mLineEnd.y - mLineStart.y);
  bool cellContainsFill = aDest.Contains(aFillArea);

  // If a non-repeating linear gradient is axis-aligned and there are no gaps
  // between tiles, we can optimise away most of the work by converting to a
  // repeating linear gradient and filling the whole destination rect at once.
  bool forceRepeatToCoverTiles =
      mGradient->IsLinear() &&
      (mLineStart.x == mLineEnd.x) != (mLineStart.y == mLineEnd.y) &&
      aRepeatSize.width == aDest.width && aRepeatSize.height == aDest.height &&
      !(mGradient->Repeating()) && !aSrc.IsEmpty() && !cellContainsFill;

  gfxMatrix matrix;
  if (forceRepeatToCoverTiles) {
    // Length of the source rectangle along the gradient axis.
    double rectLen;
    // The position of the start of the rectangle along the gradient.
    double offset;

    // The gradient line is "backwards". Flip the line upside down to make
    // things easier, and then rotate the matrix to turn everything back the
    // right way up.
    if (mLineStart.x > mLineEnd.x || mLineStart.y > mLineEnd.y) {
      std::swap(mLineStart, mLineEnd);
      matrix.PreScale(-1, -1);
    }

    // Fit the gradient line exactly into the source rect.
    // aSrc is relative to aIntrinsincSize.
    // srcRectDev will be relative to srcSize, so in the same coordinate space
    // as lineStart / lineEnd.
    gfxRect srcRectDev = nsLayoutUtils::RectToGfxRect(
        CSSPixel::ToAppUnits(aSrc), appUnitsPerDevPixel);
    if (mLineStart.x != mLineEnd.x) {
      rectLen = srcRectDev.width;
      offset = (srcRectDev.x - mLineStart.x) / lineLength;
      mLineStart.x = srcRectDev.x;
      mLineEnd.x = srcRectDev.XMost();
    } else {
      rectLen = srcRectDev.height;
      offset = (srcRectDev.y - mLineStart.y) / lineLength;
      mLineStart.y = srcRectDev.y;
      mLineEnd.y = srcRectDev.YMost();
    }

    // Adjust gradient stop positions for the new gradient line.
    double scale = lineLength / rectLen;
    for (size_t i = 0; i < mStops.Length(); i++) {
      mStops[i].mPosition = (mStops[i].mPosition - offset) * fabs(scale);
    }

    // Clamp or extrapolate gradient stops to exactly [0, 1].
    ClampColorStops(mStops);

    lineLength = rectLen;
  }

  // Eliminate negative-position stops if the gradient is radial.
  double firstStop = mStops[0].mPosition;
  if (mGradient->IsRadial() && firstStop < 0.0) {
    if (mGradient->AsRadial().flags & StyleGradientFlags::REPEATING) {
      // Choose an instance of the repeated pattern that gives us all positive
      // stop-offsets.
      double lastStop = mStops[mStops.Length() - 1].mPosition;
      double stopDelta = lastStop - firstStop;
      // If all the stops are in approximately the same place then logic below
      // will kick in that makes us draw just the last stop color, so don't
      // try to do anything in that case. We certainly need to avoid
      // dividing by zero.
      if (stopDelta >= 1e-6) {
        double instanceCount = ceil(-firstStop / stopDelta);
        // Advance stops by instanceCount multiples of the period of the
        // repeating gradient.
        double offset = instanceCount * stopDelta;
        for (uint32_t i = 0; i < mStops.Length(); i++) {
          mStops[i].mPosition += offset;
        }
      }
    } else {
      // Move negative-position stops to position 0.0. We may also need
      // to set the color of the stop to the color the gradient should have
      // at the center of the ellipse.
      for (uint32_t i = 0; i < mStops.Length(); i++) {
        double pos = mStops[i].mPosition;
        if (pos < 0.0) {
          mStops[i].mPosition = 0.0;
          // If this is the last stop, we don't need to adjust the color,
          // it will fill the entire area.
          if (i < mStops.Length() - 1) {
            double nextPos = mStops[i + 1].mPosition;
            // If nextPos is approximately equal to pos, then we don't
            // need to adjust the color of this stop because it's
            // not going to be displayed.
            // If nextPos is negative, we don't need to adjust the color of
            // this stop since it's not going to be displayed because
            // nextPos will also be moved to 0.0.
            if (nextPos >= 0.0 && nextPos - pos >= 1e-6) {
              // Compute how far the new position 0.0 is along the interval
              // between pos and nextPos.
              // XXX Color interpolation (in cairo, too) should use the
              // CSS 'color-interpolation' property!
              float frac = float((0.0 - pos) / (nextPos - pos));
              mStops[i].mColor =
                  Interpolate(mStops[i].mColor, mStops[i + 1].mColor, frac);
            }
          }
        }
      }
    }
    firstStop = mStops[0].mPosition;
    MOZ_ASSERT(firstStop >= 0.0, "Failed to fix stop offsets");
  }

  if (mGradient->IsRadial() &&
      !(mGradient->AsRadial().flags & StyleGradientFlags::REPEATING)) {
    // Direct2D can only handle a particular class of radial gradients because
    // of the way the it specifies gradients. Setting firstStop to 0, when we
    // can, will help us stay on the fast path. Currently we don't do this
    // for repeating gradients but we could by adjusting the stop collection
    // to start at 0
    firstStop = 0;
  }

  double lastStop = mStops[mStops.Length() - 1].mPosition;
  // Cairo gradients must have stop positions in the range [0, 1]. So,
  // stop positions will be normalized below by subtracting firstStop and then
  // multiplying by stopScale.
  double stopScale;
  double stopOrigin = firstStop;
  double stopEnd = lastStop;
  double stopDelta = lastStop - firstStop;
  bool zeroRadius =
      mGradient->IsRadial() && (mRadiusX < 1e-6 || mRadiusY < 1e-6);
  if (stopDelta < 1e-6 || (!mGradient->IsConic() && lineLength < 1e-6) ||
      zeroRadius) {
    // Stops are all at the same place. Map all stops to 0.0.
    // For repeating radial gradients, or for any radial gradients with
    // a zero radius, we need to fill with the last stop color, so just set
    // both radii to 0.
    if (mGradient->Repeating() || zeroRadius) {
      mRadiusX = mRadiusY = 0.0;
    }
    stopDelta = 0.0;
  }

  // Don't normalize non-repeating or degenerate gradients below 0..1
  // This keeps the gradient line as large as the box and doesn't
  // lets us avoiding having to get padding correct for stops
  // at 0 and 1
  if (!mGradient->Repeating() || stopDelta == 0.0) {
    stopOrigin = std::min(stopOrigin, 0.0);
    stopEnd = std::max(stopEnd, 1.0);
  }
  stopScale = 1.0 / (stopEnd - stopOrigin);

  // Create the gradient pattern.
  RefPtr<gfxPattern> gradientPattern;
  gfxPoint gradientStart;
  gfxPoint gradientEnd;
  if (mGradient->IsLinear()) {
    // Compute the actual gradient line ends we need to pass to cairo after
    // stops have been normalized.
    gradientStart = mLineStart + (mLineEnd - mLineStart) * stopOrigin;
    gradientEnd = mLineStart + (mLineEnd - mLineStart) * stopEnd;

    if (stopDelta == 0.0) {
      // Stops are all at the same place. For repeating gradients, this will
      // just paint the last stop color. We don't need to do anything.
      // For non-repeating gradients, this should render as two colors, one
      // on each "side" of the gradient line segment, which is a point. All
      // our stops will be at 0.0; we just need to set the direction vector
      // correctly.
      gradientEnd = gradientStart + (mLineEnd - mLineStart);
    }

    gradientPattern = new gfxPattern(gradientStart.x, gradientStart.y,
                                     gradientEnd.x, gradientEnd.y);
  } else if (mGradient->IsRadial()) {
    NS_ASSERTION(firstStop >= 0.0,
                 "Negative stops not allowed for radial gradients");

    // To form an ellipse, we'll stretch a circle vertically, if necessary.
    // So our radii are based on radiusX.
    double innerRadius = mRadiusX * stopOrigin;
    double outerRadius = mRadiusX * stopEnd;
    if (stopDelta == 0.0) {
      // Stops are all at the same place.  See above (except we now have
      // the inside vs. outside of an ellipse).
      outerRadius = innerRadius + 1;
    }
    gradientPattern = new gfxPattern(mLineStart.x, mLineStart.y, innerRadius,
                                     mLineStart.x, mLineStart.y, outerRadius);
    if (mRadiusX != mRadiusY) {
      // Stretch the circles into ellipses vertically by setting a transform
      // in the pattern.
      // Recall that this is the transform from user space to pattern space.
      // So to stretch the ellipse by factor of P vertically, we scale
      // user coordinates by 1/P.
      matrix.PreTranslate(mLineStart);
      matrix.PreScale(1.0, mRadiusX / mRadiusY);
      matrix.PreTranslate(-mLineStart);
    }
  } else {
    gradientPattern =
        new gfxPattern(mCenter.x, mCenter.y, mAngle, stopOrigin, stopEnd);
  }
  // Use a pattern transform to take account of source and dest rects
  matrix.PreTranslate(gfxPoint(mPresContext->CSSPixelsToDevPixels(aSrc.x),
                               mPresContext->CSSPixelsToDevPixels(aSrc.y)));
  matrix.PreScale(
      gfxFloat(nsPresContext::CSSPixelsToAppUnits(aSrc.width)) / aDest.width,
      gfxFloat(nsPresContext::CSSPixelsToAppUnits(aSrc.height)) / aDest.height);
  gradientPattern->SetMatrix(matrix);

  if (stopDelta == 0.0) {
    // Non-repeating gradient with all stops in same place -> just add
    // first stop and last stop, both at position 0.
    // Repeating gradient with all stops in the same place, or radial
    // gradient with radius of 0 -> just paint the last stop color.
    // We use firstStop offset to keep |stops| with same units (will later
    // normalize to 0).
    auto firstColor(mStops[0].mColor);
    auto lastColor(mStops.LastElement().mColor);
    mStops.Clear();

    if (!mGradient->Repeating() && !zeroRadius) {
      mStops.AppendElement(ColorStop(firstStop, false, firstColor));
    }
    mStops.AppendElement(ColorStop(firstStop, false, lastColor));
  }

  ResolvePremultipliedAlpha(mStops);

  bool isRepeat = mGradient->Repeating() || forceRepeatToCoverTiles;

  // Now set normalized color stops in pattern.
  // Offscreen gradient surface cache (not a tile):
  // On some backends (e.g. D2D), the GradientStops object holds an offscreen
  // surface which is a lookup table used to evaluate the gradient. This surface
  // can use much memory (ram and/or GPU ram) and can be expensive to create. So
  // we cache it. The cache key correlates 1:1 with the arguments for
  // CreateGradientStops (also the implied backend type) Note that GradientStop
  // is a simple struct with a stop value (while GradientStops has the surface).
  nsTArray<gfx::GradientStop> rawStops(mStops.Length());
  rawStops.SetLength(mStops.Length());
  for (uint32_t i = 0; i < mStops.Length(); i++) {
    rawStops[i].color = ToDeviceColor(mStops[i].mColor);
    rawStops[i].color.a *= aOpacity;
    rawStops[i].offset = stopScale * (mStops[i].mPosition - stopOrigin);
  }
  RefPtr<mozilla::gfx::GradientStops> gs =
      gfxGradientCache::GetOrCreateGradientStops(
          aContext.GetDrawTarget(), rawStops,
          isRepeat ? gfx::ExtendMode::REPEAT : gfx::ExtendMode::CLAMP);
  gradientPattern->SetColorStops(gs);

  // Paint gradient tiles. This isn't terribly efficient, but doing it this
  // way is simple and sure to get pixel-snapping right. We could speed things
  // up by drawing tiles into temporary surfaces and copying those to the
  // destination, but after pixel-snapping tiles may not all be the same size.
  nsRect dirty;
  if (!dirty.IntersectRect(aDirtyRect, aFillArea)) return;

  gfxRect areaToFill =
      nsLayoutUtils::RectToGfxRect(aFillArea, appUnitsPerDevPixel);
  gfxRect dirtyAreaToFill =
      nsLayoutUtils::RectToGfxRect(dirty, appUnitsPerDevPixel);
  dirtyAreaToFill.RoundOut();

  Matrix ctm = aContext.CurrentMatrix();
  bool isCTMPreservingAxisAlignedRectangles =
      ctm.PreservesAxisAlignedRectangles();

  // xStart/yStart are the top-left corner of the top-left tile.
  nscoord xStart = FindTileStart(dirty.x, aDest.x, aRepeatSize.width);
  nscoord yStart = FindTileStart(dirty.y, aDest.y, aRepeatSize.height);
  nscoord xEnd = forceRepeatToCoverTiles ? xStart + aDest.width : dirty.XMost();
  nscoord yEnd =
      forceRepeatToCoverTiles ? yStart + aDest.height : dirty.YMost();

  if (TryPaintTilesWithExtendMode(aContext, gradientPattern, xStart, yStart,
                                  dirtyAreaToFill, aDest, aRepeatSize,
                                  forceRepeatToCoverTiles)) {
    return;
  }

  // x and y are the top-left corner of the tile to draw
  for (nscoord y = yStart; y < yEnd; y += aRepeatSize.height) {
    for (nscoord x = xStart; x < xEnd; x += aRepeatSize.width) {
      // The coordinates of the tile
      gfxRect tileRect = nsLayoutUtils::RectToGfxRect(
          nsRect(x, y, aDest.width, aDest.height), appUnitsPerDevPixel);
      // The actual area to fill with this tile is the intersection of this
      // tile with the overall area we're supposed to be filling
      gfxRect fillRect =
          forceRepeatToCoverTiles ? areaToFill : tileRect.Intersect(areaToFill);
      // Try snapping the fill rect. Snap its top-left and bottom-right
      // independently to preserve the orientation.
      gfxPoint snappedFillRectTopLeft = fillRect.TopLeft();
      gfxPoint snappedFillRectTopRight = fillRect.TopRight();
      gfxPoint snappedFillRectBottomRight = fillRect.BottomRight();
      // Snap three points instead of just two to ensure we choose the
      // correct orientation if there's a reflection.
      if (isCTMPreservingAxisAlignedRectangles &&
          aContext.UserToDevicePixelSnapped(snappedFillRectTopLeft, true) &&
          aContext.UserToDevicePixelSnapped(snappedFillRectBottomRight, true) &&
          aContext.UserToDevicePixelSnapped(snappedFillRectTopRight, true)) {
        if (snappedFillRectTopLeft.x == snappedFillRectBottomRight.x ||
            snappedFillRectTopLeft.y == snappedFillRectBottomRight.y) {
          // Nothing to draw; avoid scaling by zero and other weirdness that
          // could put the context in an error state.
          continue;
        }
        // Set the context's transform to the transform that maps fillRect to
        // snappedFillRect. The part of the gradient that was going to
        // exactly fill fillRect will fill snappedFillRect instead.
        gfxMatrix transform = gfxUtils::TransformRectToRect(
            fillRect, snappedFillRectTopLeft, snappedFillRectTopRight,
            snappedFillRectBottomRight);
        aContext.SetMatrixDouble(transform);
      }
      aContext.NewPath();
      aContext.Rectangle(fillRect);

      gfxRect dirtyFillRect = fillRect.Intersect(dirtyAreaToFill);
      gfxRect fillRectRelativeToTile = dirtyFillRect - tileRect.TopLeft();
      auto edgeColor = StyleAbsoluteColor::TRANSPARENT_BLACK;
      if (mGradient->IsLinear() && !isRepeat &&
          RectIsBeyondLinearGradientEdge(fillRectRelativeToTile, matrix, mStops,
                                         gradientStart, gradientEnd,
                                         &edgeColor)) {
        edgeColor.alpha *= aOpacity;
        aContext.SetColor(ToSRGBColor(edgeColor));
      } else {
        aContext.SetMatrixDouble(
            aContext.CurrentMatrixDouble().Copy().PreTranslate(
                tileRect.TopLeft()));
        aContext.SetPattern(gradientPattern);
      }
      aContext.Fill();
      aContext.SetMatrix(ctm);
    }
  }
}

bool nsCSSGradientRenderer::TryPaintTilesWithExtendMode(
    gfxContext& aContext, gfxPattern* aGradientPattern, nscoord aXStart,
    nscoord aYStart, const gfxRect& aDirtyAreaToFill, const nsRect& aDest,
    const nsSize& aRepeatSize, bool aForceRepeatToCoverTiles) {
  // If we have forced a non-repeating gradient to repeat to cover tiles,
  // then it will be faster to just paint it once using that optimization
  if (aForceRepeatToCoverTiles) {
    return false;
  }

  nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();

  // We can only use this fast path if we don't have to worry about pixel
  // snapping, and there is no spacing between tiles. We could handle spacing
  // by increasing the size of tileSurface and leaving it transparent, but I'm
  // not sure it's worth it
  bool canUseExtendModeForTiling = (aXStart % appUnitsPerDevPixel == 0) &&
                                   (aYStart % appUnitsPerDevPixel == 0) &&
                                   (aDest.width % appUnitsPerDevPixel == 0) &&
                                   (aDest.height % appUnitsPerDevPixel == 0) &&
                                   (aRepeatSize.width == aDest.width) &&
                                   (aRepeatSize.height == aDest.height);

  if (!canUseExtendModeForTiling) {
    return false;
  }

  IntSize tileSize{
      NSAppUnitsToIntPixels(aDest.width, appUnitsPerDevPixel),
      NSAppUnitsToIntPixels(aDest.height, appUnitsPerDevPixel),
  };

  // Check whether this is a reasonable surface size and doesn't overflow
  // before doing calculations with the tile size
  if (!Factory::ReasonableSurfaceSize(tileSize)) {
    return false;
  }

  // We only want to do this when there are enough tiles to justify the
  // overhead of painting to an offscreen surface. The heuristic here
  // is when we will be painting at least 16 tiles or more, this is kind
  // of arbitrary
  bool shouldUseExtendModeForTiling =
      aDirtyAreaToFill.Area() > (tileSize.width * tileSize.height) * 16.0;

  if (!shouldUseExtendModeForTiling) {
    return false;
  }

  // Draw the gradient pattern into a surface for our single tile
  RefPtr<gfx::SourceSurface> tileSurface;
  {
    RefPtr<gfx::DrawTarget> tileTarget =
        aContext.GetDrawTarget()->CreateSimilarDrawTarget(
            tileSize, gfx::SurfaceFormat::B8G8R8A8);
    if (!tileTarget || !tileTarget->IsValid()) {
      return false;
    }

    {
      gfxContext tileContext(tileTarget);

      tileContext.SetPattern(aGradientPattern);
      tileContext.Paint();
    }

    tileSurface = tileTarget->Snapshot();
    tileTarget = nullptr;
  }

  // Draw the gradient using tileSurface as a repeating pattern masked by
  // the dirtyRect
  Matrix tileTransform = Matrix::Translation(
      NSAppUnitsToFloatPixels(aXStart, appUnitsPerDevPixel),
      NSAppUnitsToFloatPixels(aYStart, appUnitsPerDevPixel));

  aContext.NewPath();
  aContext.Rectangle(aDirtyAreaToFill);
  aContext.Fill(SurfacePattern(tileSurface, ExtendMode::REPEAT, tileTransform));

  return true;
}

class MOZ_STACK_CLASS WrColorStopInterpolator
    : public ColorStopInterpolator<WrColorStopInterpolator> {
 public:
  WrColorStopInterpolator(
      const nsTArray<ColorStop>& aStops,
      const StyleColorInterpolationMethod& aStyleColorInterpolationMethod,
      float aOpacity, nsTArray<wr::GradientStop>& aResult)
      : ColorStopInterpolator(aStops, aStyleColorInterpolationMethod),
        mResult(aResult),
        mOpacity(aOpacity),
        mOutputStop(0) {}

  void CreateStops() {
    mResult.SetLengthAndRetainStorage(0);
    // we always emit at least two stops (start and end) for each input stop,
    // which avoids ambiguity with incomplete oklch/lch/hsv/hsb color stops for
    // the last stop pair, where the last color stop can't be interpreted on its
    // own because it actually depends on the previous stop.
    mResult.SetLength(mStops.Length() * 2 + kFullRangeExtraStops);
    mOutputStop = 0;
    ColorStopInterpolator::CreateStops();
    mResult.SetLength(mOutputStop);
  }

  void CreateStop(float aPosition, DeviceColor aColor) {
    if (mOutputStop < mResult.Capacity()) {
      mResult[mOutputStop].color = wr::ToColorF(aColor);
      mResult[mOutputStop].color.a *= mOpacity;
      mResult[mOutputStop].offset = aPosition;
      mOutputStop++;
    }
  }

 private:
  nsTArray<wr::GradientStop>& mResult;
  float mOpacity;
  uint32_t mOutputStop;
};

void nsCSSGradientRenderer::BuildWebRenderParameters(
    float aOpacity, wr::ExtendMode& aMode, nsTArray<wr::GradientStop>& aStops,
    LayoutDevicePoint& aLineStart, LayoutDevicePoint& aLineEnd,
    LayoutDeviceSize& aGradientRadius, LayoutDevicePoint& aGradientCenter,
    float& aGradientAngle) {
  aMode =
      mGradient->Repeating() ? wr::ExtendMode::Repeat : wr::ExtendMode::Clamp;

  // If the interpolation space is not sRGB, or if color management is active,
  // we need to add additional stops so that the sRGB interpolation in WebRender
  // still closely approximates the correct curves.  We prefer avoiding this if
  // the gradient is simple because WebRender has fast rendering of linear
  // gradients with 2 stops (which represent >99% of all gradients on the web).
  //
  // WebRender doesn't have easy access to StyleAbsoluteColor and CMS display
  // color correction, so we just expand the gradient stop table significantly
  // so that gamma and hue interpolation errors become imperceptible.
  //
  // This always turns into 128 pairs of stops inside WebRender as an
  // implementation detail, so the number of stops we generate here should have
  // very little impact on performance as the texture upload is always the same,
  // except for the special linear gradient 2-stop case, and it is gpucache so
  // if it does not change it is not re-uploaded.
  //
  // Color management bugs that this addresses:
  // * https://bugzilla.mozilla.org/show_bug.cgi?id=939387
  // * https://bugzilla.mozilla.org/show_bug.cgi?id=1248178
  StyleColorInterpolationMethod styleColorInterpolationMethod =
      mGradient->ColorInterpolationMethod();
  if (mStops.Length() >= 2 &&
      (styleColorInterpolationMethod.space != StyleColorSpace::Srgb ||
       gfxPlatform::GetCMSMode() == CMSMode::All)) {
    WrColorStopInterpolator interpolator(mStops, styleColorInterpolationMethod,
                                         aOpacity, aStops);
    interpolator.CreateStops();
  } else {
    aStops.SetLength(mStops.Length());
    for (uint32_t i = 0; i < mStops.Length(); i++) {
      aStops[i].color = wr::ToColorF(ToDeviceColor(mStops[i].mColor));
      aStops[i].color.a *= aOpacity;
      aStops[i].offset = (float)mStops[i].mPosition;
    }
  }

  aLineStart = LayoutDevicePoint(mLineStart.x, mLineStart.y);
  aLineEnd = LayoutDevicePoint(mLineEnd.x, mLineEnd.y);
  aGradientRadius = LayoutDeviceSize(mRadiusX, mRadiusY);
  aGradientCenter = LayoutDevicePoint(mCenter.x, mCenter.y);
  aGradientAngle = mAngle;
}

void nsCSSGradientRenderer::BuildWebRenderDisplayItems(
    wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc,
    const nsRect& aDest, const nsRect& aFillArea, const nsSize& aRepeatSize,
    const CSSIntRect& aSrc, bool aIsBackfaceVisible, float aOpacity) {
  if (aDest.IsEmpty() || aFillArea.IsEmpty()) {
    return;
  }

  wr::ExtendMode extendMode;
  nsTArray<wr::GradientStop> stops;
  LayoutDevicePoint lineStart;
  LayoutDevicePoint lineEnd;
  LayoutDeviceSize gradientRadius;
  LayoutDevicePoint gradientCenter;
  float gradientAngle;
  BuildWebRenderParameters(aOpacity, extendMode, stops, lineStart, lineEnd,
                           gradientRadius, gradientCenter, gradientAngle);

  nscoord appUnitsPerDevPixel = mPresContext->AppUnitsPerDevPixel();

  nsPoint firstTile =
      nsPoint(FindTileStart(aFillArea.x, aDest.x, aRepeatSize.width),
              FindTileStart(aFillArea.y, aDest.y, aRepeatSize.height));

  // Translate the parameters into device coordinates
  LayoutDeviceRect clipBounds =
      LayoutDevicePixel::FromAppUnits(aFillArea, appUnitsPerDevPixel);
  LayoutDeviceRect firstTileBounds = LayoutDevicePixel::FromAppUnits(
      nsRect(firstTile, aDest.Size()), appUnitsPerDevPixel);
  LayoutDeviceSize tileRepeat =
      LayoutDevicePixel::FromAppUnits(aRepeatSize, appUnitsPerDevPixel);

  // Calculate the bounds of the gradient display item, which starts at the
  // first tile and extends to the end of clip bounds
  LayoutDevicePoint tileToClip =
      clipBounds.BottomRight() - firstTileBounds.TopLeft();
  LayoutDeviceRect gradientBounds = LayoutDeviceRect(
      firstTileBounds.TopLeft(), LayoutDeviceSize(tileToClip.x, tileToClip.y));

  // Calculate the tile spacing, which is the repeat size minus the tile size
  LayoutDeviceSize tileSpacing = tileRepeat - firstTileBounds.Size();

  // srcTransform is used for scaling the gradient to match aSrc
  LayoutDeviceRect srcTransform = LayoutDeviceRect(
      nsPresContext::CSSPixelsToAppUnits(aSrc.x),
      nsPresContext::CSSPixelsToAppUnits(aSrc.y),
      aDest.width / ((float)nsPresContext::CSSPixelsToAppUnits(aSrc.width)),
      aDest.height / ((float)nsPresContext::CSSPixelsToAppUnits(aSrc.height)));

  lineStart.x = (lineStart.x - srcTransform.x) * srcTransform.width;
  lineStart.y = (lineStart.y - srcTransform.y) * srcTransform.height;

  gradientCenter.x = (gradientCenter.x - srcTransform.x) * srcTransform.width;
  gradientCenter.y = (gradientCenter.y - srcTransform.y) * srcTransform.height;

  if (mGradient->IsLinear()) {
    lineEnd.x = (lineEnd.x - srcTransform.x) * srcTransform.width;
    lineEnd.y = (lineEnd.y - srcTransform.y) * srcTransform.height;

    aBuilder.PushLinearGradient(
        mozilla::wr::ToLayoutRect(gradientBounds),
        mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
        mozilla::wr::ToLayoutPoint(lineStart),
        mozilla::wr::ToLayoutPoint(lineEnd), stops, extendMode,
        mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
        mozilla::wr::ToLayoutSize(tileSpacing));
  } else if (mGradient->IsRadial()) {
    gradientRadius.width *= srcTransform.width;
    gradientRadius.height *= srcTransform.height;

    aBuilder.PushRadialGradient(
        mozilla::wr::ToLayoutRect(gradientBounds),
        mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
        mozilla::wr::ToLayoutPoint(lineStart),
        mozilla::wr::ToLayoutSize(gradientRadius), stops, extendMode,
        mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
        mozilla::wr::ToLayoutSize(tileSpacing));
  } else {
    MOZ_ASSERT(mGradient->IsConic());
    aBuilder.PushConicGradient(
        mozilla::wr::ToLayoutRect(gradientBounds),
        mozilla::wr::ToLayoutRect(clipBounds), aIsBackfaceVisible,
        mozilla::wr::ToLayoutPoint(gradientCenter), gradientAngle, stops,
        extendMode, mozilla::wr::ToLayoutSize(firstTileBounds.Size()),
        mozilla::wr::ToLayoutSize(tileSpacing));
  }
}

}  // namespace mozilla