summaryrefslogtreecommitdiffstats
path: root/media/libwebp/sharpyuv/sharpyuv.c
blob: a0745648884388f4bce7575baafe1cf2cd005897 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Copyright 2022 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Sharp RGB to YUV conversion.
//
// Author: Skal (pascal.massimino@gmail.com)

#include "sharpyuv/sharpyuv.h"

#include <assert.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include "src/webp/types.h"
#include "sharpyuv/sharpyuv_cpu.h"
#include "sharpyuv/sharpyuv_dsp.h"
#include "sharpyuv/sharpyuv_gamma.h"

//------------------------------------------------------------------------------

int SharpYuvGetVersion(void) {
  return SHARPYUV_VERSION;
}

//------------------------------------------------------------------------------
// Sharp RGB->YUV conversion

static const int kNumIterations = 4;

#define YUV_FIX 16  // fixed-point precision for RGB->YUV
static const int kYuvHalf = 1 << (YUV_FIX - 1);

// Max bit depth so that intermediate calculations fit in 16 bits.
static const int kMaxBitDepth = 14;

// Returns the precision shift to use based on the input rgb_bit_depth.
static int GetPrecisionShift(int rgb_bit_depth) {
  // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
  // bits if needed.
  return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
                                               : (kMaxBitDepth - rgb_bit_depth);
}

typedef int16_t fixed_t;      // signed type with extra precision for UV
typedef uint16_t fixed_y_t;   // unsigned type with extra precision for W

//------------------------------------------------------------------------------

static uint8_t clip_8b(fixed_t v) {
  return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
}

static uint16_t clip(fixed_t v, int max) {
  return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
}

static fixed_y_t clip_bit_depth(int y, int bit_depth) {
  const int max = (1 << bit_depth) - 1;
  return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
}

//------------------------------------------------------------------------------

static int RGBToGray(int64_t r, int64_t g, int64_t b) {
  const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
  return (int)(luma >> YUV_FIX);
}

static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
                          int rgb_bit_depth) {
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
  const uint32_t A = SharpYuvGammaToLinear(a, bit_depth);
  const uint32_t B = SharpYuvGammaToLinear(b, bit_depth);
  const uint32_t C = SharpYuvGammaToLinear(c, bit_depth);
  const uint32_t D = SharpYuvGammaToLinear(d, bit_depth);
  return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth);
}

static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
                                int rgb_bit_depth) {
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
  int i;
  for (i = 0; i < w; ++i) {
    const uint32_t R = SharpYuvGammaToLinear(src[0 * w + i], bit_depth);
    const uint32_t G = SharpYuvGammaToLinear(src[1 * w + i], bit_depth);
    const uint32_t B = SharpYuvGammaToLinear(src[2 * w + i], bit_depth);
    const uint32_t Y = RGBToGray(R, G, B);
    dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth);
  }
}

static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
                         fixed_t* dst, int uv_w, int rgb_bit_depth) {
  int i;
  for (i = 0; i < uv_w; ++i) {
    const int r =
        ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
                  src2[0 * uv_w + 1], rgb_bit_depth);
    const int g =
        ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
                  src2[2 * uv_w + 1], rgb_bit_depth);
    const int b =
        ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
                  src2[4 * uv_w + 1], rgb_bit_depth);
    const int W = RGBToGray(r, g, b);
    dst[0 * uv_w] = (fixed_t)(r - W);
    dst[1 * uv_w] = (fixed_t)(g - W);
    dst[2 * uv_w] = (fixed_t)(b - W);
    dst  += 1;
    src1 += 2;
    src2 += 2;
  }
}

static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
  int i;
  assert(w > 0);
  for (i = 0; i < w; ++i) {
    y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
  }
}

//------------------------------------------------------------------------------

static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
  const int v0 = (A * 3 + B + 2) >> 2;
  return clip_bit_depth(v0 + W0, bit_depth);
}

//------------------------------------------------------------------------------

static WEBP_INLINE int Shift(int v, int shift) {
  return (shift >= 0) ? (v << shift) : (v >> -shift);
}

static void ImportOneRow(const uint8_t* const r_ptr,
                         const uint8_t* const g_ptr,
                         const uint8_t* const b_ptr,
                         int rgb_step,
                         int rgb_bit_depth,
                         int pic_width,
                         fixed_y_t* const dst) {
  // Convert the rgb_step from a number of bytes to a number of uint8_t or
  // uint16_t values depending the bit depth.
  const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
  int i;
  const int w = (pic_width + 1) & ~1;
  for (i = 0; i < pic_width; ++i) {
    const int off = i * step;
    const int shift = GetPrecisionShift(rgb_bit_depth);
    if (rgb_bit_depth == 8) {
      dst[i + 0 * w] = Shift(r_ptr[off], shift);
      dst[i + 1 * w] = Shift(g_ptr[off], shift);
      dst[i + 2 * w] = Shift(b_ptr[off], shift);
    } else {
      dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift);
      dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift);
      dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift);
    }
  }
  if (pic_width & 1) {  // replicate rightmost pixel
    dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
    dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
    dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
  }
}

static void InterpolateTwoRows(const fixed_y_t* const best_y,
                               const fixed_t* prev_uv,
                               const fixed_t* cur_uv,
                               const fixed_t* next_uv,
                               int w,
                               fixed_y_t* out1,
                               fixed_y_t* out2,
                               int rgb_bit_depth) {
  const int uv_w = w >> 1;
  const int len = (w - 1) >> 1;   // length to filter
  int k = 3;
  const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
  while (k-- > 0) {   // process each R/G/B segments in turn
    // special boundary case for i==0
    out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
    out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);

    SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
                      bit_depth);
    SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
                      bit_depth);

    // special boundary case for i == w - 1 when w is even
    if (!(w & 1)) {
      out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
                            best_y[w - 1 + 0], bit_depth);
      out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
                            best_y[w - 1 + w], bit_depth);
    }
    out1 += w;
    out2 += w;
    prev_uv += uv_w;
    cur_uv  += uv_w;
    next_uv += uv_w;
  }
}

static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
                                         const int coeffs[4], int sfix) {
  const int srounder = 1 << (YUV_FIX + sfix - 1);
  const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
                   coeffs[3] + srounder;
  return (luma >> (YUV_FIX + sfix));
}

static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
                            uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
                            int u_stride, uint8_t* v_ptr, int v_stride,
                            int rgb_bit_depth,
                            int yuv_bit_depth, int width, int height,
                            const SharpYuvConversionMatrix* yuv_matrix) {
  int i, j;
  const fixed_t* const best_uv_base = best_uv;
  const int w = (width + 1) & ~1;
  const int h = (height + 1) & ~1;
  const int uv_w = w >> 1;
  const int uv_h = h >> 1;
  const int sfix = GetPrecisionShift(rgb_bit_depth);
  const int yuv_max = (1 << yuv_bit_depth) - 1;

  for (best_uv = best_uv_base, j = 0; j < height; ++j) {
    for (i = 0; i < width; ++i) {
      const int off = (i >> 1);
      const int W = best_y[i];
      const int r = best_uv[off + 0 * uv_w] + W;
      const int g = best_uv[off + 1 * uv_w] + W;
      const int b = best_uv[off + 2 * uv_w] + W;
      const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
      if (yuv_bit_depth <= 8) {
        y_ptr[i] = clip_8b(y);
      } else {
        ((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
      }
    }
    best_y += w;
    best_uv += (j & 1) * 3 * uv_w;
    y_ptr += y_stride;
  }
  for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) {
    for (i = 0; i < uv_w; ++i) {
      const int off = i;
      // Note r, g and b values here are off by W, but a constant offset on all
      // 3 components doesn't change the value of u and v with a YCbCr matrix.
      const int r = best_uv[off + 0 * uv_w];
      const int g = best_uv[off + 1 * uv_w];
      const int b = best_uv[off + 2 * uv_w];
      const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
      const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
      if (yuv_bit_depth <= 8) {
        u_ptr[i] = clip_8b(u);
        v_ptr[i] = clip_8b(v);
      } else {
        ((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
        ((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
      }
    }
    best_uv += 3 * uv_w;
    u_ptr += u_stride;
    v_ptr += v_stride;
  }
  return 1;
}

//------------------------------------------------------------------------------
// Main function

static void* SafeMalloc(uint64_t nmemb, size_t size) {
  const uint64_t total_size = nmemb * (uint64_t)size;
  if (total_size != (size_t)total_size) return NULL;
  return malloc((size_t)total_size);
}

#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T)))

static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
                            const uint8_t* b_ptr, int rgb_step, int rgb_stride,
                            int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
                            uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
                            int v_stride, int yuv_bit_depth, int width,
                            int height,
                            const SharpYuvConversionMatrix* yuv_matrix) {
  // we expand the right/bottom border if needed
  const int w = (width + 1) & ~1;
  const int h = (height + 1) & ~1;
  const int uv_w = w >> 1;
  const int uv_h = h >> 1;
  uint64_t prev_diff_y_sum = ~0;
  int j, iter;

  // TODO(skal): allocate one big memory chunk. But for now, it's easier
  // for valgrind debugging to have several chunks.
  fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t);   // scratch
  fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
  fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
  fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
  fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
  fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
  fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
  fixed_y_t* best_y = best_y_base;
  fixed_y_t* target_y = target_y_base;
  fixed_t* best_uv = best_uv_base;
  fixed_t* target_uv = target_uv_base;
  const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
  int ok;
  assert(w > 0);
  assert(h > 0);

  if (best_y_base == NULL || best_uv_base == NULL ||
      target_y_base == NULL || target_uv_base == NULL ||
      best_rgb_y == NULL || best_rgb_uv == NULL ||
      tmp_buffer == NULL) {
    ok = 0;
    goto End;
  }

  // Import RGB samples to W/RGB representation.
  for (j = 0; j < height; j += 2) {
    const int is_last_row = (j == height - 1);
    fixed_y_t* const src1 = tmp_buffer + 0 * w;
    fixed_y_t* const src2 = tmp_buffer + 3 * w;

    // prepare two rows of input
    ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
                 src1);
    if (!is_last_row) {
      ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
                   rgb_step, rgb_bit_depth, width, src2);
    } else {
      memcpy(src2, src1, 3 * w * sizeof(*src2));
    }
    StoreGray(src1, best_y + 0, w);
    StoreGray(src2, best_y + w, w);

    UpdateW(src1, target_y, w, rgb_bit_depth);
    UpdateW(src2, target_y + w, w, rgb_bit_depth);
    UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth);
    memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
    best_y += 2 * w;
    best_uv += 3 * uv_w;
    target_y += 2 * w;
    target_uv += 3 * uv_w;
    r_ptr += 2 * rgb_stride;
    g_ptr += 2 * rgb_stride;
    b_ptr += 2 * rgb_stride;
  }

  // Iterate and resolve clipping conflicts.
  for (iter = 0; iter < kNumIterations; ++iter) {
    const fixed_t* cur_uv = best_uv_base;
    const fixed_t* prev_uv = best_uv_base;
    uint64_t diff_y_sum = 0;

    best_y = best_y_base;
    best_uv = best_uv_base;
    target_y = target_y_base;
    target_uv = target_uv_base;
    for (j = 0; j < h; j += 2) {
      fixed_y_t* const src1 = tmp_buffer + 0 * w;
      fixed_y_t* const src2 = tmp_buffer + 3 * w;
      {
        const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
        InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
                           src1, src2, rgb_bit_depth);
        prev_uv = cur_uv;
        cur_uv = next_uv;
      }

      UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth);
      UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth);
      UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth);

      // update two rows of Y and one row of RGB
      diff_y_sum +=
          SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w,
                          rgb_bit_depth + GetPrecisionShift(rgb_bit_depth));
      SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);

      best_y += 2 * w;
      best_uv += 3 * uv_w;
      target_y += 2 * w;
      target_uv += 3 * uv_w;
    }
    // test exit condition
    if (iter > 0) {
      if (diff_y_sum < diff_y_threshold) break;
      if (diff_y_sum > prev_diff_y_sum) break;
    }
    prev_diff_y_sum = diff_y_sum;
  }

  // final reconstruction
  ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
                        u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
                        width, height, yuv_matrix);

 End:
  free(best_y_base);
  free(best_uv_base);
  free(target_y_base);
  free(target_uv_base);
  free(best_rgb_y);
  free(best_rgb_uv);
  free(tmp_buffer);
  return ok;
}
#undef SAFE_ALLOC

#if defined(WEBP_USE_THREAD) && !defined(_WIN32)
#include <pthread.h>  // NOLINT

#define LOCK_ACCESS \
    static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \
    if (pthread_mutex_lock(&sharpyuv_lock)) return
#define UNLOCK_ACCESS_AND_RETURN                  \
    do {                                          \
      (void)pthread_mutex_unlock(&sharpyuv_lock); \
      return;                                     \
    } while (0)
#else  // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
#define LOCK_ACCESS do {} while (0)
#define UNLOCK_ACCESS_AND_RETURN return
#endif  // defined(WEBP_USE_THREAD) && !defined(_WIN32)

// Hidden exported init function.
// By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed,
// users can declare it as extern and call it with an alternate VP8CPUInfo
// function.
extern VP8CPUInfo SharpYuvGetCPUInfo;
SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func);
void SharpYuvInit(VP8CPUInfo cpu_info_func) {
  static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
      (VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
  LOCK_ACCESS;
  // Only update SharpYuvGetCPUInfo when called from external code to avoid a
  // race on reading the value in SharpYuvConvert().
  if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) {
    SharpYuvGetCPUInfo = cpu_info_func;
  }
  if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) {
    UNLOCK_ACCESS_AND_RETURN;
  }

  SharpYuvInitDsp();
  SharpYuvInitGammaTables();

  sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo;
  UNLOCK_ACCESS_AND_RETURN;
}

int SharpYuvConvert(const void* r_ptr, const void* g_ptr,
                    const void* b_ptr, int rgb_step, int rgb_stride,
                    int rgb_bit_depth, void* y_ptr, int y_stride,
                    void* u_ptr, int u_stride, void* v_ptr,
                    int v_stride, int yuv_bit_depth, int width,
                    int height, const SharpYuvConversionMatrix* yuv_matrix) {
  SharpYuvConversionMatrix scaled_matrix;
  const int rgb_max = (1 << rgb_bit_depth) - 1;
  const int rgb_round = 1 << (rgb_bit_depth - 1);
  const int yuv_max = (1 << yuv_bit_depth) - 1;
  const int sfix = GetPrecisionShift(rgb_bit_depth);

  if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX ||
      r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
      u_ptr == NULL || v_ptr == NULL) {
    return 0;
  }
  if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
      rgb_bit_depth != 16) {
    return 0;
  }
  if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
    return 0;
  }
  if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) {
    // Step/stride should be even for uint16_t buffers.
    return 0;
  }
  if (yuv_bit_depth > 8 &&
      (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
    // Stride should be even for uint16_t buffers.
    return 0;
  }
  // The address of the function pointer is used to avoid a read race.
  SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo);

  // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
  // rgb->yuv conversion matrix.
  if (rgb_bit_depth == yuv_bit_depth) {
    memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
  } else {
    int i;
    for (i = 0; i < 3; ++i) {
      scaled_matrix.rgb_to_y[i] =
          (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
      scaled_matrix.rgb_to_u[i] =
          (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
      scaled_matrix.rgb_to_v[i] =
          (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
    }
  }
  // Also incorporate precision change scaling.
  scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
  scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
  scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);

  return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride,
                          rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride,
                          v_ptr, v_stride, yuv_bit_depth, width, height,
                          &scaled_matrix);
}

//------------------------------------------------------------------------------