1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// ARM NEON version of speed-critical encoding functions.
//
// adapted from libvpx (https://www.webmproject.org/code/)
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_NEON)
#include <assert.h>
#include "src/dsp/neon.h"
#include "src/enc/vp8i_enc.h"
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
// Inverse transform.
// This code is pretty much the same as TransformOne in the dec_neon.c, except
// for subtraction to *ref. See the comments there for algorithmic explanations.
static const int16_t kC1 = WEBP_TRANSFORM_AC3_C1;
static const int16_t kC2 =
WEBP_TRANSFORM_AC3_C2 / 2; // half of kC2, actually. See comment above.
// This code works but is *slower* than the inlined-asm version below
// (with gcc-4.6). So we disable it for now. Later, it'll be conditional to
// WEBP_USE_INTRINSICS define.
// With gcc-4.8, it's a little faster speed than inlined-assembly.
#if defined(WEBP_USE_INTRINSICS)
// Treats 'v' as an uint8x8_t and zero extends to an int16x8_t.
static WEBP_INLINE int16x8_t ConvertU8ToS16_NEON(uint32x2_t v) {
return vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(v)));
}
// Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result
// to the corresponding rows of 'dst'.
static WEBP_INLINE void SaturateAndStore4x4_NEON(uint8_t* const dst,
const int16x8_t dst01,
const int16x8_t dst23) {
// Unsigned saturate to 8b.
const uint8x8_t dst01_u8 = vqmovun_s16(dst01);
const uint8x8_t dst23_u8 = vqmovun_s16(dst23);
// Store the results.
vst1_lane_u32((uint32_t*)(dst + 0 * BPS), vreinterpret_u32_u8(dst01_u8), 0);
vst1_lane_u32((uint32_t*)(dst + 1 * BPS), vreinterpret_u32_u8(dst01_u8), 1);
vst1_lane_u32((uint32_t*)(dst + 2 * BPS), vreinterpret_u32_u8(dst23_u8), 0);
vst1_lane_u32((uint32_t*)(dst + 3 * BPS), vreinterpret_u32_u8(dst23_u8), 1);
}
static WEBP_INLINE void Add4x4_NEON(const int16x8_t row01,
const int16x8_t row23,
const uint8_t* const ref,
uint8_t* const dst) {
uint32x2_t dst01 = vdup_n_u32(0);
uint32x2_t dst23 = vdup_n_u32(0);
// Load the source pixels.
dst01 = vld1_lane_u32((uint32_t*)(ref + 0 * BPS), dst01, 0);
dst23 = vld1_lane_u32((uint32_t*)(ref + 2 * BPS), dst23, 0);
dst01 = vld1_lane_u32((uint32_t*)(ref + 1 * BPS), dst01, 1);
dst23 = vld1_lane_u32((uint32_t*)(ref + 3 * BPS), dst23, 1);
{
// Convert to 16b.
const int16x8_t dst01_s16 = ConvertU8ToS16_NEON(dst01);
const int16x8_t dst23_s16 = ConvertU8ToS16_NEON(dst23);
// Descale with rounding.
const int16x8_t out01 = vrsraq_n_s16(dst01_s16, row01, 3);
const int16x8_t out23 = vrsraq_n_s16(dst23_s16, row23, 3);
// Add the inverse transform.
SaturateAndStore4x4_NEON(dst, out01, out23);
}
}
static WEBP_INLINE void Transpose8x2_NEON(const int16x8_t in0,
const int16x8_t in1,
int16x8x2_t* const out) {
// a0 a1 a2 a3 | b0 b1 b2 b3 => a0 b0 c0 d0 | a1 b1 c1 d1
// c0 c1 c2 c3 | d0 d1 d2 d3 a2 b2 c2 d2 | a3 b3 c3 d3
const int16x8x2_t tmp0 = vzipq_s16(in0, in1); // a0 c0 a1 c1 a2 c2 ...
// b0 d0 b1 d1 b2 d2 ...
*out = vzipq_s16(tmp0.val[0], tmp0.val[1]);
}
static WEBP_INLINE void TransformPass_NEON(int16x8x2_t* const rows) {
// {rows} = in0 | in4
// in8 | in12
// B1 = in4 | in12
const int16x8_t B1 =
vcombine_s16(vget_high_s16(rows->val[0]), vget_high_s16(rows->val[1]));
// C0 = kC1 * in4 | kC1 * in12
// C1 = kC2 * in4 | kC2 * in12
const int16x8_t C0 = vsraq_n_s16(B1, vqdmulhq_n_s16(B1, kC1), 1);
const int16x8_t C1 = vqdmulhq_n_s16(B1, kC2);
const int16x4_t a = vqadd_s16(vget_low_s16(rows->val[0]),
vget_low_s16(rows->val[1])); // in0 + in8
const int16x4_t b = vqsub_s16(vget_low_s16(rows->val[0]),
vget_low_s16(rows->val[1])); // in0 - in8
// c = kC2 * in4 - kC1 * in12
// d = kC1 * in4 + kC2 * in12
const int16x4_t c = vqsub_s16(vget_low_s16(C1), vget_high_s16(C0));
const int16x4_t d = vqadd_s16(vget_low_s16(C0), vget_high_s16(C1));
const int16x8_t D0 = vcombine_s16(a, b); // D0 = a | b
const int16x8_t D1 = vcombine_s16(d, c); // D1 = d | c
const int16x8_t E0 = vqaddq_s16(D0, D1); // a+d | b+c
const int16x8_t E_tmp = vqsubq_s16(D0, D1); // a-d | b-c
const int16x8_t E1 = vcombine_s16(vget_high_s16(E_tmp), vget_low_s16(E_tmp));
Transpose8x2_NEON(E0, E1, rows);
}
static void ITransformOne_NEON(const uint8_t* ref,
const int16_t* in, uint8_t* dst) {
int16x8x2_t rows;
INIT_VECTOR2(rows, vld1q_s16(in + 0), vld1q_s16(in + 8));
TransformPass_NEON(&rows);
TransformPass_NEON(&rows);
Add4x4_NEON(rows.val[0], rows.val[1], ref, dst);
}
#else
static void ITransformOne_NEON(const uint8_t* ref,
const int16_t* in, uint8_t* dst) {
const int kBPS = BPS;
const int16_t kC1C2[] = { kC1, kC2, 0, 0 };
__asm__ volatile (
"vld1.16 {q1, q2}, [%[in]] \n"
"vld1.16 {d0}, [%[kC1C2]] \n"
// d2: in[0]
// d3: in[8]
// d4: in[4]
// d5: in[12]
"vswp d3, d4 \n"
// q8 = {in[4], in[12]} * kC1 * 2 >> 16
// q9 = {in[4], in[12]} * kC2 >> 16
"vqdmulh.s16 q8, q2, d0[0] \n"
"vqdmulh.s16 q9, q2, d0[1] \n"
// d22 = a = in[0] + in[8]
// d23 = b = in[0] - in[8]
"vqadd.s16 d22, d2, d3 \n"
"vqsub.s16 d23, d2, d3 \n"
// q8 = in[4]/[12] * kC1 >> 16
"vshr.s16 q8, q8, #1 \n"
// Add {in[4], in[12]} back after the multiplication.
"vqadd.s16 q8, q2, q8 \n"
// d20 = c = in[4]*kC2 - in[12]*kC1
// d21 = d = in[4]*kC1 + in[12]*kC2
"vqsub.s16 d20, d18, d17 \n"
"vqadd.s16 d21, d19, d16 \n"
// d2 = tmp[0] = a + d
// d3 = tmp[1] = b + c
// d4 = tmp[2] = b - c
// d5 = tmp[3] = a - d
"vqadd.s16 d2, d22, d21 \n"
"vqadd.s16 d3, d23, d20 \n"
"vqsub.s16 d4, d23, d20 \n"
"vqsub.s16 d5, d22, d21 \n"
"vzip.16 q1, q2 \n"
"vzip.16 q1, q2 \n"
"vswp d3, d4 \n"
// q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16
// q9 = {tmp[4], tmp[12]} * kC2 >> 16
"vqdmulh.s16 q8, q2, d0[0] \n"
"vqdmulh.s16 q9, q2, d0[1] \n"
// d22 = a = tmp[0] + tmp[8]
// d23 = b = tmp[0] - tmp[8]
"vqadd.s16 d22, d2, d3 \n"
"vqsub.s16 d23, d2, d3 \n"
"vshr.s16 q8, q8, #1 \n"
"vqadd.s16 q8, q2, q8 \n"
// d20 = c = in[4]*kC2 - in[12]*kC1
// d21 = d = in[4]*kC1 + in[12]*kC2
"vqsub.s16 d20, d18, d17 \n"
"vqadd.s16 d21, d19, d16 \n"
// d2 = tmp[0] = a + d
// d3 = tmp[1] = b + c
// d4 = tmp[2] = b - c
// d5 = tmp[3] = a - d
"vqadd.s16 d2, d22, d21 \n"
"vqadd.s16 d3, d23, d20 \n"
"vqsub.s16 d4, d23, d20 \n"
"vqsub.s16 d5, d22, d21 \n"
"vld1.32 d6[0], [%[ref]], %[kBPS] \n"
"vld1.32 d6[1], [%[ref]], %[kBPS] \n"
"vld1.32 d7[0], [%[ref]], %[kBPS] \n"
"vld1.32 d7[1], [%[ref]], %[kBPS] \n"
"sub %[ref], %[ref], %[kBPS], lsl #2 \n"
// (val) + 4 >> 3
"vrshr.s16 d2, d2, #3 \n"
"vrshr.s16 d3, d3, #3 \n"
"vrshr.s16 d4, d4, #3 \n"
"vrshr.s16 d5, d5, #3 \n"
"vzip.16 q1, q2 \n"
"vzip.16 q1, q2 \n"
// Must accumulate before saturating
"vmovl.u8 q8, d6 \n"
"vmovl.u8 q9, d7 \n"
"vqadd.s16 q1, q1, q8 \n"
"vqadd.s16 q2, q2, q9 \n"
"vqmovun.s16 d0, q1 \n"
"vqmovun.s16 d1, q2 \n"
"vst1.32 d0[0], [%[dst]], %[kBPS] \n"
"vst1.32 d0[1], [%[dst]], %[kBPS] \n"
"vst1.32 d1[0], [%[dst]], %[kBPS] \n"
"vst1.32 d1[1], [%[dst]] \n"
: [in] "+r"(in), [dst] "+r"(dst) // modified registers
: [kBPS] "r"(kBPS), [kC1C2] "r"(kC1C2), [ref] "r"(ref) // constants
: "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" // clobbered
);
}
#endif // WEBP_USE_INTRINSICS
static void ITransform_NEON(const uint8_t* ref,
const int16_t* in, uint8_t* dst, int do_two) {
ITransformOne_NEON(ref, in, dst);
if (do_two) {
ITransformOne_NEON(ref + 4, in + 16, dst + 4);
}
}
// Load all 4x4 pixels into a single uint8x16_t variable.
static uint8x16_t Load4x4_NEON(const uint8_t* src) {
uint32x4_t out = vdupq_n_u32(0);
out = vld1q_lane_u32((const uint32_t*)(src + 0 * BPS), out, 0);
out = vld1q_lane_u32((const uint32_t*)(src + 1 * BPS), out, 1);
out = vld1q_lane_u32((const uint32_t*)(src + 2 * BPS), out, 2);
out = vld1q_lane_u32((const uint32_t*)(src + 3 * BPS), out, 3);
return vreinterpretq_u8_u32(out);
}
// Forward transform.
#if defined(WEBP_USE_INTRINSICS)
static WEBP_INLINE void Transpose4x4_S16_NEON(const int16x4_t A,
const int16x4_t B,
const int16x4_t C,
const int16x4_t D,
int16x8_t* const out01,
int16x8_t* const out32) {
const int16x4x2_t AB = vtrn_s16(A, B);
const int16x4x2_t CD = vtrn_s16(C, D);
const int32x2x2_t tmp02 = vtrn_s32(vreinterpret_s32_s16(AB.val[0]),
vreinterpret_s32_s16(CD.val[0]));
const int32x2x2_t tmp13 = vtrn_s32(vreinterpret_s32_s16(AB.val[1]),
vreinterpret_s32_s16(CD.val[1]));
*out01 = vreinterpretq_s16_s64(
vcombine_s64(vreinterpret_s64_s32(tmp02.val[0]),
vreinterpret_s64_s32(tmp13.val[0])));
*out32 = vreinterpretq_s16_s64(
vcombine_s64(vreinterpret_s64_s32(tmp13.val[1]),
vreinterpret_s64_s32(tmp02.val[1])));
}
static WEBP_INLINE int16x8_t DiffU8ToS16_NEON(const uint8x8_t a,
const uint8x8_t b) {
return vreinterpretq_s16_u16(vsubl_u8(a, b));
}
static void FTransform_NEON(const uint8_t* src, const uint8_t* ref,
int16_t* out) {
int16x8_t d0d1, d3d2; // working 4x4 int16 variables
{
const uint8x16_t S0 = Load4x4_NEON(src);
const uint8x16_t R0 = Load4x4_NEON(ref);
const int16x8_t D0D1 = DiffU8ToS16_NEON(vget_low_u8(S0), vget_low_u8(R0));
const int16x8_t D2D3 = DiffU8ToS16_NEON(vget_high_u8(S0), vget_high_u8(R0));
const int16x4_t D0 = vget_low_s16(D0D1);
const int16x4_t D1 = vget_high_s16(D0D1);
const int16x4_t D2 = vget_low_s16(D2D3);
const int16x4_t D3 = vget_high_s16(D2D3);
Transpose4x4_S16_NEON(D0, D1, D2, D3, &d0d1, &d3d2);
}
{ // 1rst pass
const int32x4_t kCst937 = vdupq_n_s32(937);
const int32x4_t kCst1812 = vdupq_n_s32(1812);
const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1)
const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2)
const int16x8_t a0a1_2 = vshlq_n_s16(a0a1, 3);
const int16x4_t tmp0 = vadd_s16(vget_low_s16(a0a1_2),
vget_high_s16(a0a1_2));
const int16x4_t tmp2 = vsub_s16(vget_low_s16(a0a1_2),
vget_high_s16(a0a1_2));
const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217);
const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217);
const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352);
const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352);
const int16x4_t tmp1 = vshrn_n_s32(vaddq_s32(a2_p_a3, kCst1812), 9);
const int16x4_t tmp3 = vshrn_n_s32(vaddq_s32(a3_m_a2, kCst937), 9);
Transpose4x4_S16_NEON(tmp0, tmp1, tmp2, tmp3, &d0d1, &d3d2);
}
{ // 2nd pass
// the (1<<16) addition is for the replacement: a3!=0 <-> 1-(a3==0)
const int32x4_t kCst12000 = vdupq_n_s32(12000 + (1 << 16));
const int32x4_t kCst51000 = vdupq_n_s32(51000);
const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1)
const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2)
const int16x4_t a0_k7 = vadd_s16(vget_low_s16(a0a1), vdup_n_s16(7));
const int16x4_t out0 = vshr_n_s16(vadd_s16(a0_k7, vget_high_s16(a0a1)), 4);
const int16x4_t out2 = vshr_n_s16(vsub_s16(a0_k7, vget_high_s16(a0a1)), 4);
const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217);
const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217);
const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352);
const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352);
const int16x4_t tmp1 = vaddhn_s32(a2_p_a3, kCst12000);
const int16x4_t out3 = vaddhn_s32(a3_m_a2, kCst51000);
const int16x4_t a3_eq_0 =
vreinterpret_s16_u16(vceq_s16(vget_low_s16(a3a2), vdup_n_s16(0)));
const int16x4_t out1 = vadd_s16(tmp1, a3_eq_0);
vst1_s16(out + 0, out0);
vst1_s16(out + 4, out1);
vst1_s16(out + 8, out2);
vst1_s16(out + 12, out3);
}
}
#else
// adapted from vp8/encoder/arm/neon/shortfdct_neon.asm
static const int16_t kCoeff16[] = {
5352, 5352, 5352, 5352, 2217, 2217, 2217, 2217
};
static const int32_t kCoeff32[] = {
1812, 1812, 1812, 1812,
937, 937, 937, 937,
12000, 12000, 12000, 12000,
51000, 51000, 51000, 51000
};
static void FTransform_NEON(const uint8_t* src, const uint8_t* ref,
int16_t* out) {
const int kBPS = BPS;
const uint8_t* src_ptr = src;
const uint8_t* ref_ptr = ref;
const int16_t* coeff16 = kCoeff16;
const int32_t* coeff32 = kCoeff32;
__asm__ volatile (
// load src into q4, q5 in high half
"vld1.8 {d8}, [%[src_ptr]], %[kBPS] \n"
"vld1.8 {d10}, [%[src_ptr]], %[kBPS] \n"
"vld1.8 {d9}, [%[src_ptr]], %[kBPS] \n"
"vld1.8 {d11}, [%[src_ptr]] \n"
// load ref into q6, q7 in high half
"vld1.8 {d12}, [%[ref_ptr]], %[kBPS] \n"
"vld1.8 {d14}, [%[ref_ptr]], %[kBPS] \n"
"vld1.8 {d13}, [%[ref_ptr]], %[kBPS] \n"
"vld1.8 {d15}, [%[ref_ptr]] \n"
// Pack the high values in to q4 and q6
"vtrn.32 q4, q5 \n"
"vtrn.32 q6, q7 \n"
// d[0-3] = src - ref
"vsubl.u8 q0, d8, d12 \n"
"vsubl.u8 q1, d9, d13 \n"
// load coeff16 into q8(d16=5352, d17=2217)
"vld1.16 {q8}, [%[coeff16]] \n"
// load coeff32 high half into q9 = 1812, q10 = 937
"vld1.32 {q9, q10}, [%[coeff32]]! \n"
// load coeff32 low half into q11=12000, q12=51000
"vld1.32 {q11,q12}, [%[coeff32]] \n"
// part 1
// Transpose. Register dN is the same as dN in C
"vtrn.32 d0, d2 \n"
"vtrn.32 d1, d3 \n"
"vtrn.16 d0, d1 \n"
"vtrn.16 d2, d3 \n"
"vadd.s16 d4, d0, d3 \n" // a0 = d0 + d3
"vadd.s16 d5, d1, d2 \n" // a1 = d1 + d2
"vsub.s16 d6, d1, d2 \n" // a2 = d1 - d2
"vsub.s16 d7, d0, d3 \n" // a3 = d0 - d3
"vadd.s16 d0, d4, d5 \n" // a0 + a1
"vshl.s16 d0, d0, #3 \n" // temp[0+i*4] = (a0+a1) << 3
"vsub.s16 d2, d4, d5 \n" // a0 - a1
"vshl.s16 d2, d2, #3 \n" // (temp[2+i*4] = (a0-a1) << 3
"vmlal.s16 q9, d7, d16 \n" // a3*5352 + 1812
"vmlal.s16 q10, d7, d17 \n" // a3*2217 + 937
"vmlal.s16 q9, d6, d17 \n" // a2*2217 + a3*5352 + 1812
"vmlsl.s16 q10, d6, d16 \n" // a3*2217 + 937 - a2*5352
// temp[1+i*4] = (d2*2217 + d3*5352 + 1812) >> 9
// temp[3+i*4] = (d3*2217 + 937 - d2*5352) >> 9
"vshrn.s32 d1, q9, #9 \n"
"vshrn.s32 d3, q10, #9 \n"
// part 2
// transpose d0=ip[0], d1=ip[4], d2=ip[8], d3=ip[12]
"vtrn.32 d0, d2 \n"
"vtrn.32 d1, d3 \n"
"vtrn.16 d0, d1 \n"
"vtrn.16 d2, d3 \n"
"vmov.s16 d26, #7 \n"
"vadd.s16 d4, d0, d3 \n" // a1 = ip[0] + ip[12]
"vadd.s16 d5, d1, d2 \n" // b1 = ip[4] + ip[8]
"vsub.s16 d6, d1, d2 \n" // c1 = ip[4] - ip[8]
"vadd.s16 d4, d4, d26 \n" // a1 + 7
"vsub.s16 d7, d0, d3 \n" // d1 = ip[0] - ip[12]
"vadd.s16 d0, d4, d5 \n" // op[0] = a1 + b1 + 7
"vsub.s16 d2, d4, d5 \n" // op[8] = a1 - b1 + 7
"vmlal.s16 q11, d7, d16 \n" // d1*5352 + 12000
"vmlal.s16 q12, d7, d17 \n" // d1*2217 + 51000
"vceq.s16 d4, d7, #0 \n"
"vshr.s16 d0, d0, #4 \n"
"vshr.s16 d2, d2, #4 \n"
"vmlal.s16 q11, d6, d17 \n" // c1*2217 + d1*5352 + 12000
"vmlsl.s16 q12, d6, d16 \n" // d1*2217 - c1*5352 + 51000
"vmvn d4, d4 \n" // !(d1 == 0)
// op[4] = (c1*2217 + d1*5352 + 12000)>>16
"vshrn.s32 d1, q11, #16 \n"
// op[4] += (d1!=0)
"vsub.s16 d1, d1, d4 \n"
// op[12]= (d1*2217 - c1*5352 + 51000)>>16
"vshrn.s32 d3, q12, #16 \n"
// set result to out array
"vst1.16 {q0, q1}, [%[out]] \n"
: [src_ptr] "+r"(src_ptr), [ref_ptr] "+r"(ref_ptr),
[coeff32] "+r"(coeff32) // modified registers
: [kBPS] "r"(kBPS), [coeff16] "r"(coeff16),
[out] "r"(out) // constants
: "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9",
"q10", "q11", "q12", "q13" // clobbered
);
}
#endif
#define LOAD_LANE_16b(VALUE, LANE) do { \
(VALUE) = vld1_lane_s16(src, (VALUE), (LANE)); \
src += stride; \
} while (0)
static void FTransformWHT_NEON(const int16_t* src, int16_t* out) {
const int stride = 16;
const int16x4_t zero = vdup_n_s16(0);
int32x4x4_t tmp0;
int16x4x4_t in;
INIT_VECTOR4(in, zero, zero, zero, zero);
LOAD_LANE_16b(in.val[0], 0);
LOAD_LANE_16b(in.val[1], 0);
LOAD_LANE_16b(in.val[2], 0);
LOAD_LANE_16b(in.val[3], 0);
LOAD_LANE_16b(in.val[0], 1);
LOAD_LANE_16b(in.val[1], 1);
LOAD_LANE_16b(in.val[2], 1);
LOAD_LANE_16b(in.val[3], 1);
LOAD_LANE_16b(in.val[0], 2);
LOAD_LANE_16b(in.val[1], 2);
LOAD_LANE_16b(in.val[2], 2);
LOAD_LANE_16b(in.val[3], 2);
LOAD_LANE_16b(in.val[0], 3);
LOAD_LANE_16b(in.val[1], 3);
LOAD_LANE_16b(in.val[2], 3);
LOAD_LANE_16b(in.val[3], 3);
{
// a0 = in[0 * 16] + in[2 * 16]
// a1 = in[1 * 16] + in[3 * 16]
// a2 = in[1 * 16] - in[3 * 16]
// a3 = in[0 * 16] - in[2 * 16]
const int32x4_t a0 = vaddl_s16(in.val[0], in.val[2]);
const int32x4_t a1 = vaddl_s16(in.val[1], in.val[3]);
const int32x4_t a2 = vsubl_s16(in.val[1], in.val[3]);
const int32x4_t a3 = vsubl_s16(in.val[0], in.val[2]);
tmp0.val[0] = vaddq_s32(a0, a1);
tmp0.val[1] = vaddq_s32(a3, a2);
tmp0.val[2] = vsubq_s32(a3, a2);
tmp0.val[3] = vsubq_s32(a0, a1);
}
{
const int32x4x4_t tmp1 = Transpose4x4_NEON(tmp0);
// a0 = tmp[0 + i] + tmp[ 8 + i]
// a1 = tmp[4 + i] + tmp[12 + i]
// a2 = tmp[4 + i] - tmp[12 + i]
// a3 = tmp[0 + i] - tmp[ 8 + i]
const int32x4_t a0 = vaddq_s32(tmp1.val[0], tmp1.val[2]);
const int32x4_t a1 = vaddq_s32(tmp1.val[1], tmp1.val[3]);
const int32x4_t a2 = vsubq_s32(tmp1.val[1], tmp1.val[3]);
const int32x4_t a3 = vsubq_s32(tmp1.val[0], tmp1.val[2]);
const int32x4_t b0 = vhaddq_s32(a0, a1); // (a0 + a1) >> 1
const int32x4_t b1 = vhaddq_s32(a3, a2); // (a3 + a2) >> 1
const int32x4_t b2 = vhsubq_s32(a3, a2); // (a3 - a2) >> 1
const int32x4_t b3 = vhsubq_s32(a0, a1); // (a0 - a1) >> 1
const int16x4_t out0 = vmovn_s32(b0);
const int16x4_t out1 = vmovn_s32(b1);
const int16x4_t out2 = vmovn_s32(b2);
const int16x4_t out3 = vmovn_s32(b3);
vst1_s16(out + 0, out0);
vst1_s16(out + 4, out1);
vst1_s16(out + 8, out2);
vst1_s16(out + 12, out3);
}
}
#undef LOAD_LANE_16b
//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.
// a 0123, b 0123
// a 4567, b 4567
// a 89ab, b 89ab
// a cdef, b cdef
//
// transpose
//
// a 048c, b 048c
// a 159d, b 159d
// a 26ae, b 26ae
// a 37bf, b 37bf
//
static WEBP_INLINE int16x8x4_t DistoTranspose4x4S16_NEON(int16x8x4_t q4_in) {
const int16x8x2_t q2_tmp0 = vtrnq_s16(q4_in.val[0], q4_in.val[1]);
const int16x8x2_t q2_tmp1 = vtrnq_s16(q4_in.val[2], q4_in.val[3]);
const int32x4x2_t q2_tmp2 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[0]),
vreinterpretq_s32_s16(q2_tmp1.val[0]));
const int32x4x2_t q2_tmp3 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[1]),
vreinterpretq_s32_s16(q2_tmp1.val[1]));
q4_in.val[0] = vreinterpretq_s16_s32(q2_tmp2.val[0]);
q4_in.val[2] = vreinterpretq_s16_s32(q2_tmp2.val[1]);
q4_in.val[1] = vreinterpretq_s16_s32(q2_tmp3.val[0]);
q4_in.val[3] = vreinterpretq_s16_s32(q2_tmp3.val[1]);
return q4_in;
}
static WEBP_INLINE int16x8x4_t DistoHorizontalPass_NEON(
const int16x8x4_t q4_in) {
// {a0, a1} = {in[0] + in[2], in[1] + in[3]}
// {a3, a2} = {in[0] - in[2], in[1] - in[3]}
const int16x8_t q_a0 = vaddq_s16(q4_in.val[0], q4_in.val[2]);
const int16x8_t q_a1 = vaddq_s16(q4_in.val[1], q4_in.val[3]);
const int16x8_t q_a3 = vsubq_s16(q4_in.val[0], q4_in.val[2]);
const int16x8_t q_a2 = vsubq_s16(q4_in.val[1], q4_in.val[3]);
int16x8x4_t q4_out;
// tmp[0] = a0 + a1
// tmp[1] = a3 + a2
// tmp[2] = a3 - a2
// tmp[3] = a0 - a1
INIT_VECTOR4(q4_out,
vabsq_s16(vaddq_s16(q_a0, q_a1)),
vabsq_s16(vaddq_s16(q_a3, q_a2)),
vabdq_s16(q_a3, q_a2), vabdq_s16(q_a0, q_a1));
return q4_out;
}
static WEBP_INLINE int16x8x4_t DistoVerticalPass_NEON(const uint8x8x4_t q4_in) {
const int16x8_t q_a0 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[0],
q4_in.val[2]));
const int16x8_t q_a1 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[1],
q4_in.val[3]));
const int16x8_t q_a2 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[1],
q4_in.val[3]));
const int16x8_t q_a3 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[0],
q4_in.val[2]));
int16x8x4_t q4_out;
INIT_VECTOR4(q4_out,
vaddq_s16(q_a0, q_a1), vaddq_s16(q_a3, q_a2),
vsubq_s16(q_a3, q_a2), vsubq_s16(q_a0, q_a1));
return q4_out;
}
static WEBP_INLINE int16x4x4_t DistoLoadW_NEON(const uint16_t* w) {
const uint16x8_t q_w07 = vld1q_u16(&w[0]);
const uint16x8_t q_w8f = vld1q_u16(&w[8]);
int16x4x4_t d4_w;
INIT_VECTOR4(d4_w,
vget_low_s16(vreinterpretq_s16_u16(q_w07)),
vget_high_s16(vreinterpretq_s16_u16(q_w07)),
vget_low_s16(vreinterpretq_s16_u16(q_w8f)),
vget_high_s16(vreinterpretq_s16_u16(q_w8f)));
return d4_w;
}
static WEBP_INLINE int32x2_t DistoSum_NEON(const int16x8x4_t q4_in,
const int16x4x4_t d4_w) {
int32x2_t d_sum;
// sum += w[ 0] * abs(b0);
// sum += w[ 4] * abs(b1);
// sum += w[ 8] * abs(b2);
// sum += w[12] * abs(b3);
int32x4_t q_sum0 = vmull_s16(d4_w.val[0], vget_low_s16(q4_in.val[0]));
int32x4_t q_sum1 = vmull_s16(d4_w.val[1], vget_low_s16(q4_in.val[1]));
int32x4_t q_sum2 = vmull_s16(d4_w.val[2], vget_low_s16(q4_in.val[2]));
int32x4_t q_sum3 = vmull_s16(d4_w.val[3], vget_low_s16(q4_in.val[3]));
q_sum0 = vmlsl_s16(q_sum0, d4_w.val[0], vget_high_s16(q4_in.val[0]));
q_sum1 = vmlsl_s16(q_sum1, d4_w.val[1], vget_high_s16(q4_in.val[1]));
q_sum2 = vmlsl_s16(q_sum2, d4_w.val[2], vget_high_s16(q4_in.val[2]));
q_sum3 = vmlsl_s16(q_sum3, d4_w.val[3], vget_high_s16(q4_in.val[3]));
q_sum0 = vaddq_s32(q_sum0, q_sum1);
q_sum2 = vaddq_s32(q_sum2, q_sum3);
q_sum2 = vaddq_s32(q_sum0, q_sum2);
d_sum = vpadd_s32(vget_low_s32(q_sum2), vget_high_s32(q_sum2));
d_sum = vpadd_s32(d_sum, d_sum);
return d_sum;
}
#define LOAD_LANE_32b(src, VALUE, LANE) \
(VALUE) = vld1_lane_u32((const uint32_t*)(src), (VALUE), (LANE))
// Hadamard transform
// Returns the weighted sum of the absolute value of transformed coefficients.
// w[] contains a row-major 4 by 4 symmetric matrix.
static int Disto4x4_NEON(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
uint32x2_t d_in_ab_0123 = vdup_n_u32(0);
uint32x2_t d_in_ab_4567 = vdup_n_u32(0);
uint32x2_t d_in_ab_89ab = vdup_n_u32(0);
uint32x2_t d_in_ab_cdef = vdup_n_u32(0);
uint8x8x4_t d4_in;
// load data a, b
LOAD_LANE_32b(a + 0 * BPS, d_in_ab_0123, 0);
LOAD_LANE_32b(a + 1 * BPS, d_in_ab_4567, 0);
LOAD_LANE_32b(a + 2 * BPS, d_in_ab_89ab, 0);
LOAD_LANE_32b(a + 3 * BPS, d_in_ab_cdef, 0);
LOAD_LANE_32b(b + 0 * BPS, d_in_ab_0123, 1);
LOAD_LANE_32b(b + 1 * BPS, d_in_ab_4567, 1);
LOAD_LANE_32b(b + 2 * BPS, d_in_ab_89ab, 1);
LOAD_LANE_32b(b + 3 * BPS, d_in_ab_cdef, 1);
INIT_VECTOR4(d4_in,
vreinterpret_u8_u32(d_in_ab_0123),
vreinterpret_u8_u32(d_in_ab_4567),
vreinterpret_u8_u32(d_in_ab_89ab),
vreinterpret_u8_u32(d_in_ab_cdef));
{
// Vertical pass first to avoid a transpose (vertical and horizontal passes
// are commutative because w/kWeightY is symmetric) and subsequent
// transpose.
const int16x8x4_t q4_v = DistoVerticalPass_NEON(d4_in);
const int16x4x4_t d4_w = DistoLoadW_NEON(w);
// horizontal pass
const int16x8x4_t q4_t = DistoTranspose4x4S16_NEON(q4_v);
const int16x8x4_t q4_h = DistoHorizontalPass_NEON(q4_t);
int32x2_t d_sum = DistoSum_NEON(q4_h, d4_w);
// abs(sum2 - sum1) >> 5
d_sum = vabs_s32(d_sum);
d_sum = vshr_n_s32(d_sum, 5);
return vget_lane_s32(d_sum, 0);
}
}
#undef LOAD_LANE_32b
static int Disto16x16_NEON(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
int D = 0;
int x, y;
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
for (x = 0; x < 16; x += 4) {
D += Disto4x4_NEON(a + x + y, b + x + y, w);
}
}
return D;
}
//------------------------------------------------------------------------------
static void CollectHistogram_NEON(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block,
VP8Histogram* const histo) {
const uint16x8_t max_coeff_thresh = vdupq_n_u16(MAX_COEFF_THRESH);
int j;
int distribution[MAX_COEFF_THRESH + 1] = { 0 };
for (j = start_block; j < end_block; ++j) {
int16_t out[16];
FTransform_NEON(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
{
int k;
const int16x8_t a0 = vld1q_s16(out + 0);
const int16x8_t b0 = vld1q_s16(out + 8);
const uint16x8_t a1 = vreinterpretq_u16_s16(vabsq_s16(a0));
const uint16x8_t b1 = vreinterpretq_u16_s16(vabsq_s16(b0));
const uint16x8_t a2 = vshrq_n_u16(a1, 3);
const uint16x8_t b2 = vshrq_n_u16(b1, 3);
const uint16x8_t a3 = vminq_u16(a2, max_coeff_thresh);
const uint16x8_t b3 = vminq_u16(b2, max_coeff_thresh);
vst1q_s16(out + 0, vreinterpretq_s16_u16(a3));
vst1q_s16(out + 8, vreinterpretq_s16_u16(b3));
// Convert coefficients to bin.
for (k = 0; k < 16; ++k) {
++distribution[out[k]];
}
}
}
VP8SetHistogramData(distribution, histo);
}
//------------------------------------------------------------------------------
static WEBP_INLINE void AccumulateSSE16_NEON(const uint8_t* const a,
const uint8_t* const b,
uint32x4_t* const sum) {
const uint8x16_t a0 = vld1q_u8(a);
const uint8x16_t b0 = vld1q_u8(b);
const uint8x16_t abs_diff = vabdq_u8(a0, b0);
const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff),
vget_low_u8(abs_diff));
const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff),
vget_high_u8(abs_diff));
/* pair-wise adds and widen */
const uint32x4_t sum1 = vpaddlq_u16(prod1);
const uint32x4_t sum2 = vpaddlq_u16(prod2);
*sum = vaddq_u32(*sum, vaddq_u32(sum1, sum2));
}
// Horizontal sum of all four uint32_t values in 'sum'.
static int SumToInt_NEON(uint32x4_t sum) {
#if WEBP_AARCH64
return (int)vaddvq_u32(sum);
#else
const uint64x2_t sum2 = vpaddlq_u32(sum);
const uint32x2_t sum3 = vadd_u32(vreinterpret_u32_u64(vget_low_u64(sum2)),
vreinterpret_u32_u64(vget_high_u64(sum2)));
return (int)vget_lane_u32(sum3, 0);
#endif
}
static int SSE16x16_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 16; ++y) {
AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum);
}
return SumToInt_NEON(sum);
}
static int SSE16x8_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 8; ++y) {
AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum);
}
return SumToInt_NEON(sum);
}
static int SSE8x8_NEON(const uint8_t* a, const uint8_t* b) {
uint32x4_t sum = vdupq_n_u32(0);
int y;
for (y = 0; y < 8; ++y) {
const uint8x8_t a0 = vld1_u8(a + y * BPS);
const uint8x8_t b0 = vld1_u8(b + y * BPS);
const uint8x8_t abs_diff = vabd_u8(a0, b0);
const uint16x8_t prod = vmull_u8(abs_diff, abs_diff);
sum = vpadalq_u16(sum, prod);
}
return SumToInt_NEON(sum);
}
static int SSE4x4_NEON(const uint8_t* a, const uint8_t* b) {
const uint8x16_t a0 = Load4x4_NEON(a);
const uint8x16_t b0 = Load4x4_NEON(b);
const uint8x16_t abs_diff = vabdq_u8(a0, b0);
const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff),
vget_low_u8(abs_diff));
const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff),
vget_high_u8(abs_diff));
/* pair-wise adds and widen */
const uint32x4_t sum1 = vpaddlq_u16(prod1);
const uint32x4_t sum2 = vpaddlq_u16(prod2);
return SumToInt_NEON(vaddq_u32(sum1, sum2));
}
//------------------------------------------------------------------------------
// Compilation with gcc-4.6.x is problematic for now.
#if !defined(WORK_AROUND_GCC)
static int16x8_t Quantize_NEON(int16_t* const in,
const VP8Matrix* const mtx, int offset) {
const uint16x8_t sharp = vld1q_u16(&mtx->sharpen_[offset]);
const uint16x8_t q = vld1q_u16(&mtx->q_[offset]);
const uint16x8_t iq = vld1q_u16(&mtx->iq_[offset]);
const uint32x4_t bias0 = vld1q_u32(&mtx->bias_[offset + 0]);
const uint32x4_t bias1 = vld1q_u32(&mtx->bias_[offset + 4]);
const int16x8_t a = vld1q_s16(in + offset); // in
const uint16x8_t b = vreinterpretq_u16_s16(vabsq_s16(a)); // coeff = abs(in)
const int16x8_t sign = vshrq_n_s16(a, 15); // sign
const uint16x8_t c = vaddq_u16(b, sharp); // + sharpen
const uint32x4_t m0 = vmull_u16(vget_low_u16(c), vget_low_u16(iq));
const uint32x4_t m1 = vmull_u16(vget_high_u16(c), vget_high_u16(iq));
const uint32x4_t m2 = vhaddq_u32(m0, bias0);
const uint32x4_t m3 = vhaddq_u32(m1, bias1); // (coeff * iQ + bias) >> 1
const uint16x8_t c0 = vcombine_u16(vshrn_n_u32(m2, 16),
vshrn_n_u32(m3, 16)); // QFIX=17 = 16+1
const uint16x8_t c1 = vminq_u16(c0, vdupq_n_u16(MAX_LEVEL));
const int16x8_t c2 = veorq_s16(vreinterpretq_s16_u16(c1), sign);
const int16x8_t c3 = vsubq_s16(c2, sign); // restore sign
const int16x8_t c4 = vmulq_s16(c3, vreinterpretq_s16_u16(q));
vst1q_s16(in + offset, c4);
assert(QFIX == 17); // this function can't work as is if QFIX != 16+1
return c3;
}
static const uint8_t kShuffles[4][8] = {
{ 0, 1, 2, 3, 8, 9, 16, 17 },
{ 10, 11, 4, 5, 6, 7, 12, 13 },
{ 18, 19, 24, 25, 26, 27, 20, 21 },
{ 14, 15, 22, 23, 28, 29, 30, 31 }
};
static int QuantizeBlock_NEON(int16_t in[16], int16_t out[16],
const VP8Matrix* const mtx) {
const int16x8_t out0 = Quantize_NEON(in, mtx, 0);
const int16x8_t out1 = Quantize_NEON(in, mtx, 8);
uint8x8x4_t shuffles;
// vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use
// non-standard versions there.
#if defined(__APPLE__) && WEBP_AARCH64 && \
defined(__apple_build_version__) && (__apple_build_version__< 6020037)
uint8x16x2_t all_out;
INIT_VECTOR2(all_out, vreinterpretq_u8_s16(out0), vreinterpretq_u8_s16(out1));
INIT_VECTOR4(shuffles,
vtbl2q_u8(all_out, vld1_u8(kShuffles[0])),
vtbl2q_u8(all_out, vld1_u8(kShuffles[1])),
vtbl2q_u8(all_out, vld1_u8(kShuffles[2])),
vtbl2q_u8(all_out, vld1_u8(kShuffles[3])));
#else
uint8x8x4_t all_out;
INIT_VECTOR4(all_out,
vreinterpret_u8_s16(vget_low_s16(out0)),
vreinterpret_u8_s16(vget_high_s16(out0)),
vreinterpret_u8_s16(vget_low_s16(out1)),
vreinterpret_u8_s16(vget_high_s16(out1)));
INIT_VECTOR4(shuffles,
vtbl4_u8(all_out, vld1_u8(kShuffles[0])),
vtbl4_u8(all_out, vld1_u8(kShuffles[1])),
vtbl4_u8(all_out, vld1_u8(kShuffles[2])),
vtbl4_u8(all_out, vld1_u8(kShuffles[3])));
#endif
// Zigzag reordering
vst1_u8((uint8_t*)(out + 0), shuffles.val[0]);
vst1_u8((uint8_t*)(out + 4), shuffles.val[1]);
vst1_u8((uint8_t*)(out + 8), shuffles.val[2]);
vst1_u8((uint8_t*)(out + 12), shuffles.val[3]);
// test zeros
if (*(uint64_t*)(out + 0) != 0) return 1;
if (*(uint64_t*)(out + 4) != 0) return 1;
if (*(uint64_t*)(out + 8) != 0) return 1;
if (*(uint64_t*)(out + 12) != 0) return 1;
return 0;
}
static int Quantize2Blocks_NEON(int16_t in[32], int16_t out[32],
const VP8Matrix* const mtx) {
int nz;
nz = QuantizeBlock_NEON(in + 0 * 16, out + 0 * 16, mtx) << 0;
nz |= QuantizeBlock_NEON(in + 1 * 16, out + 1 * 16, mtx) << 1;
return nz;
}
#endif // !WORK_AROUND_GCC
//------------------------------------------------------------------------------
// Entry point
extern void VP8EncDspInitNEON(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitNEON(void) {
VP8ITransform = ITransform_NEON;
VP8FTransform = FTransform_NEON;
VP8FTransformWHT = FTransformWHT_NEON;
VP8TDisto4x4 = Disto4x4_NEON;
VP8TDisto16x16 = Disto16x16_NEON;
VP8CollectHistogram = CollectHistogram_NEON;
VP8SSE16x16 = SSE16x16_NEON;
VP8SSE16x8 = SSE16x8_NEON;
VP8SSE8x8 = SSE8x8_NEON;
VP8SSE4x4 = SSE4x4_NEON;
#if !defined(WORK_AROUND_GCC)
VP8EncQuantizeBlock = QuantizeBlock_NEON;
VP8EncQuantize2Blocks = Quantize2Blocks_NEON;
#endif
}
#else // !WEBP_USE_NEON
WEBP_DSP_INIT_STUB(VP8EncDspInitNEON)
#endif // WEBP_USE_NEON
|