1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Author: Jyrki Alakuijala (jyrki@google.com)
//
// Entropy encoding (Huffman) for webp lossless.
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "src/utils/huffman_encode_utils.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
// -----------------------------------------------------------------------------
// Util function to optimize the symbol map for RLE coding
// Heuristics for selecting the stride ranges to collapse.
static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
return abs(a - b) < 4;
}
// Change the population counts in a way that the consequent
// Huffman tree compression, especially its RLE-part, give smaller output.
static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
uint32_t* const counts) {
// 1) Let's make the Huffman code more compatible with rle encoding.
int i;
for (; length >= 0; --length) {
if (length == 0) {
return; // All zeros.
}
if (counts[length - 1] != 0) {
// Now counts[0..length - 1] does not have trailing zeros.
break;
}
}
// 2) Let's mark all population counts that already can be encoded
// with an rle code.
{
// Let's not spoil any of the existing good rle codes.
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
uint32_t symbol = counts[0];
int stride = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || counts[i] != symbol) {
if ((symbol == 0 && stride >= 5) ||
(symbol != 0 && stride >= 7)) {
int k;
for (k = 0; k < stride; ++k) {
good_for_rle[i - k - 1] = 1;
}
}
stride = 1;
if (i != length) {
symbol = counts[i];
}
} else {
++stride;
}
}
}
// 3) Let's replace those population counts that lead to more rle codes.
{
uint32_t stride = 0;
uint32_t limit = counts[0];
uint32_t sum = 0;
for (i = 0; i < length + 1; ++i) {
if (i == length || good_for_rle[i] ||
(i != 0 && good_for_rle[i - 1]) ||
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
if (stride >= 4 || (stride >= 3 && sum == 0)) {
uint32_t k;
// The stride must end, collapse what we have, if we have enough (4).
uint32_t count = (sum + stride / 2) / stride;
if (count < 1) {
count = 1;
}
if (sum == 0) {
// Don't make an all zeros stride to be upgraded to ones.
count = 0;
}
for (k = 0; k < stride; ++k) {
// We don't want to change value at counts[i],
// that is already belonging to the next stride. Thus - 1.
counts[i - k - 1] = count;
}
}
stride = 0;
sum = 0;
if (i < length - 3) {
// All interesting strides have a count of at least 4,
// at least when non-zeros.
limit = (counts[i] + counts[i + 1] +
counts[i + 2] + counts[i + 3] + 2) / 4;
} else if (i < length) {
limit = counts[i];
} else {
limit = 0;
}
}
++stride;
if (i != length) {
sum += counts[i];
if (stride >= 4) {
limit = (sum + stride / 2) / stride;
}
}
}
}
}
// A comparer function for two Huffman trees: sorts first by 'total count'
// (more comes first), and then by 'value' (more comes first).
static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
if (t1->total_count_ > t2->total_count_) {
return -1;
} else if (t1->total_count_ < t2->total_count_) {
return 1;
} else {
assert(t1->value_ != t2->value_);
return (t1->value_ < t2->value_) ? -1 : 1;
}
}
static void SetBitDepths(const HuffmanTree* const tree,
const HuffmanTree* const pool,
uint8_t* const bit_depths, int level) {
if (tree->pool_index_left_ >= 0) {
SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
} else {
bit_depths[tree->value_] = level;
}
}
// Create an optimal Huffman tree.
//
// (data,length): population counts.
// tree_limit: maximum bit depth (inclusive) of the codes.
// bit_depths[]: how many bits are used for the symbol.
//
// Returns 0 when an error has occurred.
//
// The catch here is that the tree cannot be arbitrarily deep
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See https://en.wikipedia.org/wiki/Huffman_coding
static void GenerateOptimalTree(const uint32_t* const histogram,
int histogram_size,
HuffmanTree* tree, int tree_depth_limit,
uint8_t* const bit_depths) {
uint32_t count_min;
HuffmanTree* tree_pool;
int tree_size_orig = 0;
int i;
for (i = 0; i < histogram_size; ++i) {
if (histogram[i] != 0) {
++tree_size_orig;
}
}
if (tree_size_orig == 0) { // pretty optimal already!
return;
}
tree_pool = tree + tree_size_orig;
// For block sizes with less than 64k symbols we never need to do a
// second iteration of this loop.
// If we actually start running inside this loop a lot, we would perhaps
// be better off with the Katajainen algorithm.
assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
for (count_min = 1; ; count_min *= 2) {
int tree_size = tree_size_orig;
// We need to pack the Huffman tree in tree_depth_limit bits.
// So, we try by faking histogram entries to be at least 'count_min'.
int idx = 0;
int j;
for (j = 0; j < histogram_size; ++j) {
if (histogram[j] != 0) {
const uint32_t count =
(histogram[j] < count_min) ? count_min : histogram[j];
tree[idx].total_count_ = count;
tree[idx].value_ = j;
tree[idx].pool_index_left_ = -1;
tree[idx].pool_index_right_ = -1;
++idx;
}
}
// Build the Huffman tree.
qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
if (tree_size > 1) { // Normal case.
int tree_pool_size = 0;
while (tree_size > 1) { // Finish when we have only one root.
uint32_t count;
tree_pool[tree_pool_size++] = tree[tree_size - 1];
tree_pool[tree_pool_size++] = tree[tree_size - 2];
count = tree_pool[tree_pool_size - 1].total_count_ +
tree_pool[tree_pool_size - 2].total_count_;
tree_size -= 2;
{
// Search for the insertion point.
int k;
for (k = 0; k < tree_size; ++k) {
if (tree[k].total_count_ <= count) {
break;
}
}
memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
tree[k].total_count_ = count;
tree[k].value_ = -1;
tree[k].pool_index_left_ = tree_pool_size - 1;
tree[k].pool_index_right_ = tree_pool_size - 2;
tree_size = tree_size + 1;
}
}
SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
} else if (tree_size == 1) { // Trivial case: only one element.
bit_depths[tree[0].value_] = 1;
}
{
// Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
int max_depth = bit_depths[0];
for (j = 1; j < histogram_size; ++j) {
if (max_depth < bit_depths[j]) {
max_depth = bit_depths[j];
}
}
if (max_depth <= tree_depth_limit) {
break;
}
}
}
}
// -----------------------------------------------------------------------------
// Coding of the Huffman tree values
static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
HuffmanTreeToken* tokens,
int value, int prev_value) {
assert(value <= MAX_ALLOWED_CODE_LENGTH);
if (value != prev_value) {
tokens->code = value;
tokens->extra_bits = 0;
++tokens;
--repetitions;
}
while (repetitions >= 1) {
if (repetitions < 3) {
int i;
for (i = 0; i < repetitions; ++i) {
tokens->code = value;
tokens->extra_bits = 0;
++tokens;
}
break;
} else if (repetitions < 7) {
tokens->code = 16;
tokens->extra_bits = repetitions - 3;
++tokens;
break;
} else {
tokens->code = 16;
tokens->extra_bits = 3;
++tokens;
repetitions -= 6;
}
}
return tokens;
}
static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
HuffmanTreeToken* tokens) {
while (repetitions >= 1) {
if (repetitions < 3) {
int i;
for (i = 0; i < repetitions; ++i) {
tokens->code = 0; // 0-value
tokens->extra_bits = 0;
++tokens;
}
break;
} else if (repetitions < 11) {
tokens->code = 17;
tokens->extra_bits = repetitions - 3;
++tokens;
break;
} else if (repetitions < 139) {
tokens->code = 18;
tokens->extra_bits = repetitions - 11;
++tokens;
break;
} else {
tokens->code = 18;
tokens->extra_bits = 0x7f; // 138 repeated 0s
++tokens;
repetitions -= 138;
}
}
return tokens;
}
int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
HuffmanTreeToken* tokens, int max_tokens) {
HuffmanTreeToken* const starting_token = tokens;
HuffmanTreeToken* const ending_token = tokens + max_tokens;
const int depth_size = tree->num_symbols;
int prev_value = 8; // 8 is the initial value for rle.
int i = 0;
assert(tokens != NULL);
while (i < depth_size) {
const int value = tree->code_lengths[i];
int k = i + 1;
int runs;
while (k < depth_size && tree->code_lengths[k] == value) ++k;
runs = k - i;
if (value == 0) {
tokens = CodeRepeatedZeros(runs, tokens);
} else {
tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
prev_value = value;
}
i += runs;
assert(tokens <= ending_token);
}
(void)ending_token; // suppress 'unused variable' warning
return (int)(tokens - starting_token);
}
// -----------------------------------------------------------------------------
// Pre-reversed 4-bit values.
static const uint8_t kReversedBits[16] = {
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};
static uint32_t ReverseBits(int num_bits, uint32_t bits) {
uint32_t retval = 0;
int i = 0;
while (i < num_bits) {
i += 4;
retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
bits >>= 4;
}
retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
return retval;
}
// Get the actual bit values for a tree of bit depths.
static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
// 0 bit-depth means that the symbol does not exist.
int i;
int len;
uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
assert(tree != NULL);
len = tree->num_symbols;
for (i = 0; i < len; ++i) {
const int code_length = tree->code_lengths[i];
assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
++depth_count[code_length];
}
depth_count[0] = 0; // ignore unused symbol
next_code[0] = 0;
{
uint32_t code = 0;
for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
code = (code + depth_count[i - 1]) << 1;
next_code[i] = code;
}
}
for (i = 0; i < len; ++i) {
const int code_length = tree->code_lengths[i];
tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
}
}
// -----------------------------------------------------------------------------
// Main entry point
void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
uint8_t* const buf_rle, HuffmanTree* const huff_tree,
HuffmanTreeCode* const huff_code) {
const int num_symbols = huff_code->num_symbols;
memset(buf_rle, 0, num_symbols * sizeof(*buf_rle));
OptimizeHuffmanForRle(num_symbols, buf_rle, histogram);
GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit,
huff_code->code_lengths);
// Create the actual bit codes for the bit lengths.
ConvertBitDepthsToSymbols(huff_code);
}
|