1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
// Copyright 2023 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for palette analysis.
//
// Author: Vincent Rabaud (vrabaud@google.com)
#include "src/utils/palette.h"
#include <assert.h>
#include <stdlib.h>
#include "src/dsp/lossless_common.h"
#include "src/utils/color_cache_utils.h"
#include "src/utils/utils.h"
#include "src/webp/encode.h"
#include "src/webp/format_constants.h"
// -----------------------------------------------------------------------------
// Palette reordering for smaller sum of deltas (and for smaller storage).
static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
const uint32_t a = WebPMemToUint32((uint8_t*)p1);
const uint32_t b = WebPMemToUint32((uint8_t*)p2);
assert(a != b);
return (a < b) ? -1 : 1;
}
static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
return (v <= 128) ? v : (256 - v);
}
// Computes a value that is related to the entropy created by the
// palette entry diff.
//
// Note that the last & 0xff is a no-operation in the next statement, but
// removed by most compilers and is here only for regularity of the code.
static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
const uint32_t diff = VP8LSubPixels(col1, col2);
const int kMoreWeightForRGBThanForAlpha = 9;
uint32_t score;
score = PaletteComponentDistance((diff >> 0) & 0xff);
score += PaletteComponentDistance((diff >> 8) & 0xff);
score += PaletteComponentDistance((diff >> 16) & 0xff);
score *= kMoreWeightForRGBThanForAlpha;
score += PaletteComponentDistance((diff >> 24) & 0xff);
return score;
}
static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
const uint32_t tmp = *col1;
*col1 = *col2;
*col2 = tmp;
}
int SearchColorNoIdx(const uint32_t sorted[], uint32_t color, int num_colors) {
int low = 0, hi = num_colors;
if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
while (1) {
const int mid = (low + hi) >> 1;
if (sorted[mid] == color) {
return mid;
} else if (sorted[mid] < color) {
low = mid;
} else {
hi = mid;
}
}
assert(0);
return 0;
}
void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
uint32_t sorted[], uint32_t idx_map[]) {
uint32_t i;
memcpy(sorted, palette, num_colors * sizeof(*sorted));
qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
for (i = 0; i < num_colors; ++i) {
idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
}
}
//------------------------------------------------------------------------------
#define COLOR_HASH_SIZE (MAX_PALETTE_SIZE * 4)
#define COLOR_HASH_RIGHT_SHIFT 22 // 32 - log2(COLOR_HASH_SIZE).
int GetColorPalette(const WebPPicture* const pic, uint32_t* const palette) {
int i;
int x, y;
int num_colors = 0;
uint8_t in_use[COLOR_HASH_SIZE] = {0};
uint32_t colors[COLOR_HASH_SIZE] = {0};
const uint32_t* argb = pic->argb;
const int width = pic->width;
const int height = pic->height;
uint32_t last_pix = ~argb[0]; // so we're sure that last_pix != argb[0]
assert(pic != NULL);
assert(pic->use_argb);
for (y = 0; y < height; ++y) {
for (x = 0; x < width; ++x) {
int key;
if (argb[x] == last_pix) {
continue;
}
last_pix = argb[x];
key = VP8LHashPix(last_pix, COLOR_HASH_RIGHT_SHIFT);
while (1) {
if (!in_use[key]) {
colors[key] = last_pix;
in_use[key] = 1;
++num_colors;
if (num_colors > MAX_PALETTE_SIZE) {
return MAX_PALETTE_SIZE + 1; // Exact count not needed.
}
break;
} else if (colors[key] == last_pix) {
break; // The color is already there.
} else {
// Some other color sits here, so do linear conflict resolution.
++key;
key &= (COLOR_HASH_SIZE - 1); // Key mask.
}
}
}
argb += pic->argb_stride;
}
if (palette != NULL) { // Fill the colors into palette.
num_colors = 0;
for (i = 0; i < COLOR_HASH_SIZE; ++i) {
if (in_use[i]) {
palette[num_colors] = colors[i];
++num_colors;
}
}
qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
}
return num_colors;
}
#undef COLOR_HASH_SIZE
#undef COLOR_HASH_RIGHT_SHIFT
// -----------------------------------------------------------------------------
// The palette has been sorted by alpha. This function checks if the other
// components of the palette have a monotonic development with regards to
// position in the palette. If all have monotonic development, there is
// no benefit to re-organize them greedily. A monotonic development
// would be spotted in green-only situations (like lossy alpha) or gray-scale
// images.
static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
int num_colors) {
uint32_t predict = 0x000000;
int i;
uint8_t sign_found = 0x00;
for (i = 0; i < num_colors; ++i) {
const uint32_t diff = VP8LSubPixels(palette[i], predict);
const uint8_t rd = (diff >> 16) & 0xff;
const uint8_t gd = (diff >> 8) & 0xff;
const uint8_t bd = (diff >> 0) & 0xff;
if (rd != 0x00) {
sign_found |= (rd < 0x80) ? 1 : 2;
}
if (gd != 0x00) {
sign_found |= (gd < 0x80) ? 8 : 16;
}
if (bd != 0x00) {
sign_found |= (bd < 0x80) ? 64 : 128;
}
predict = palette[i];
}
return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
}
static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
int num_colors, uint32_t* const palette) {
uint32_t predict = 0x00000000;
int i, k;
memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
// Find greedily always the closest color of the predicted color to minimize
// deltas in the palette. This reduces storage needs since the
// palette is stored with delta encoding.
for (i = 0; i < num_colors; ++i) {
int best_ix = i;
uint32_t best_score = ~0U;
for (k = i; k < num_colors; ++k) {
const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
if (best_score > cur_score) {
best_score = cur_score;
best_ix = k;
}
}
SwapColor(&palette[best_ix], &palette[i]);
predict = palette[i];
}
}
// -----------------------------------------------------------------------------
// Modified Zeng method from "A Survey on Palette Reordering
// Methods for Improving the Compression of Color-Indexed Images" by Armando J.
// Pinho and Antonio J. R. Neves.
// Finds the biggest cooccurrence in the matrix.
static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
uint32_t num_colors, uint8_t* const c1,
uint8_t* const c2) {
// Find the index that is most frequently located adjacent to other
// (different) indexes.
uint32_t best_sum = 0u;
uint32_t i, j, best_cooccurrence;
*c1 = 0u;
for (i = 0; i < num_colors; ++i) {
uint32_t sum = 0;
for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
if (sum > best_sum) {
best_sum = sum;
*c1 = i;
}
}
// Find the index that is most frequently found adjacent to *c1.
*c2 = 0u;
best_cooccurrence = 0u;
for (i = 0; i < num_colors; ++i) {
if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
best_cooccurrence = cooccurrence[*c1 * num_colors + i];
*c2 = i;
}
}
assert(*c1 != *c2);
}
// Builds the cooccurrence matrix
static int CoOccurrenceBuild(const WebPPicture* const pic,
const uint32_t* const palette, uint32_t num_colors,
uint32_t* cooccurrence) {
uint32_t *lines, *line_top, *line_current, *line_tmp;
int x, y;
const uint32_t* src = pic->argb;
uint32_t prev_pix = ~src[0];
uint32_t prev_idx = 0u;
uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
uint32_t palette_sorted[MAX_PALETTE_SIZE];
lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
if (lines == NULL) {
return 0;
}
line_top = &lines[0];
line_current = &lines[pic->width];
PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
for (y = 0; y < pic->height; ++y) {
for (x = 0; x < pic->width; ++x) {
const uint32_t pix = src[x];
if (pix != prev_pix) {
prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
prev_pix = pix;
}
line_current[x] = prev_idx;
// 4-connectivity is what works best as mentioned in "On the relation
// between Memon's and the modified Zeng's palette reordering methods".
if (x > 0 && prev_idx != line_current[x - 1]) {
const uint32_t left_idx = line_current[x - 1];
++cooccurrence[prev_idx * num_colors + left_idx];
++cooccurrence[left_idx * num_colors + prev_idx];
}
if (y > 0 && prev_idx != line_top[x]) {
const uint32_t top_idx = line_top[x];
++cooccurrence[prev_idx * num_colors + top_idx];
++cooccurrence[top_idx * num_colors + prev_idx];
}
}
line_tmp = line_top;
line_top = line_current;
line_current = line_tmp;
src += pic->argb_stride;
}
WebPSafeFree(lines);
return 1;
}
struct Sum {
uint8_t index;
uint32_t sum;
};
static int PaletteSortModifiedZeng(const WebPPicture* const pic,
const uint32_t* const palette_in,
uint32_t num_colors,
uint32_t* const palette) {
uint32_t i, j, ind;
uint8_t remapping[MAX_PALETTE_SIZE];
uint32_t* cooccurrence;
struct Sum sums[MAX_PALETTE_SIZE];
uint32_t first, last;
uint32_t num_sums;
// TODO(vrabaud) check whether one color images should use palette or not.
if (num_colors <= 1) return 1;
// Build the co-occurrence matrix.
cooccurrence =
(uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
if (cooccurrence == NULL) {
return 0;
}
if (!CoOccurrenceBuild(pic, palette_in, num_colors, cooccurrence)) {
WebPSafeFree(cooccurrence);
return 0;
}
// Initialize the mapping list with the two best indices.
CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
// We need to append and prepend to the list of remapping. To this end, we
// actually define the next start/end of the list as indices in a vector (with
// a wrap around when the end is reached).
first = 0;
last = 1;
num_sums = num_colors - 2; // -2 because we know the first two values
if (num_sums > 0) {
// Initialize the sums with the first two remappings and find the best one
struct Sum* best_sum = &sums[0];
best_sum->index = 0u;
best_sum->sum = 0u;
for (i = 0, j = 0; i < num_colors; ++i) {
if (i == remapping[0] || i == remapping[1]) continue;
sums[j].index = i;
sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
cooccurrence[i * num_colors + remapping[1]];
if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
++j;
}
while (num_sums > 0) {
const uint8_t best_index = best_sum->index;
// Compute delta to know if we need to prepend or append the best index.
int32_t delta = 0;
const int32_t n = num_colors - num_sums;
for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
const uint16_t l_j = remapping[(ind + j) % num_colors];
delta += (n - 1 - 2 * (int32_t)j) *
(int32_t)cooccurrence[best_index * num_colors + l_j];
}
if (delta > 0) {
first = (first == 0) ? num_colors - 1 : first - 1;
remapping[first] = best_index;
} else {
++last;
remapping[last] = best_index;
}
// Remove best_sum from sums.
*best_sum = sums[num_sums - 1];
--num_sums;
// Update all the sums and find the best one.
best_sum = &sums[0];
for (i = 0; i < num_sums; ++i) {
sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
}
}
}
assert((last + 1) % num_colors == first);
WebPSafeFree(cooccurrence);
// Re-map the palette.
for (i = 0; i < num_colors; ++i) {
palette[i] = palette_in[remapping[(first + i) % num_colors]];
}
return 1;
}
// -----------------------------------------------------------------------------
int PaletteSort(PaletteSorting method, const struct WebPPicture* const pic,
const uint32_t* const palette_sorted, uint32_t num_colors,
uint32_t* const palette) {
switch (method) {
case kSortedDefault:
// Nothing to do, we have already sorted the palette.
memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
return 1;
case kMinimizeDelta:
PaletteSortMinimizeDeltas(palette_sorted, num_colors, palette);
return 1;
case kModifiedZeng:
return PaletteSortModifiedZeng(pic, palette_sorted, num_colors, palette);
case kUnusedPalette:
case kPaletteSortingNum:
break;
}
assert(0);
return 0;
}
|