summaryrefslogtreecommitdiffstats
path: root/mfbt/SmallPointerArray.h
blob: c63e3980f9a55adc5ee81474106f749b5a5a46af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A vector of pointers space-optimized for a small number of elements. */

#ifndef mozilla_SmallPointerArray_h
#define mozilla_SmallPointerArray_h

#include "mozilla/Assertions.h"
#include "mozilla/PodOperations.h"

#include <algorithm>
#include <cstddef>
#include <new>
#include <vector>

namespace mozilla {

// Array class for situations where a small number of NON-NULL elements (<= 2)
// is expected, a large number of elements must be accommodated if necessary,
// and the size of the class must be minimal. Typical vector implementations
// will fulfill the first two requirements by simply adding inline storage
// alongside the rest of their member variables. While this strategy works,
// it brings unnecessary storage overhead for vectors with an expected small
// number of elements. This class is intended to deal with that problem.
//
// This class is similar in performance to a vector class. Accessing its
// elements when it has not grown over a size of 2 does not require an extra
// level of indirection and will therefore be faster.
//
// The minimum (inline) size is 2 * sizeof(void*).
//
// Any modification of the array invalidates any outstanding iterators.
template <typename T>
class SmallPointerArray {
 public:
  SmallPointerArray() {
    // List-initialization would be nicer, but it only lets you initialize the
    // first union member.
    mArray[0].mValue = nullptr;
    mArray[1].mVector = nullptr;
  }

  ~SmallPointerArray() {
    if (!first()) {
      delete maybeVector();
    }
  }

  SmallPointerArray(SmallPointerArray&& aOther) {
    PodCopy(mArray, aOther.mArray, 2);
    aOther.mArray[0].mValue = nullptr;
    aOther.mArray[1].mVector = nullptr;
  }

  SmallPointerArray& operator=(SmallPointerArray&& aOther) {
    std::swap(mArray, aOther.mArray);
    return *this;
  }

  void Clear() {
    if (first()) {
      first() = nullptr;
      new (&mArray[1].mValue) std::vector<T*>*(nullptr);
      return;
    }

    delete maybeVector();
    mArray[1].mVector = nullptr;
  }

  void AppendElement(T* aElement) {
    // Storing nullptr as an element is not permitted, but we do check for it
    // to avoid corruption issues in non-debug builds.

    // In addition to this we assert in debug builds to point out mistakes to
    // users of the class.
    MOZ_ASSERT(aElement != nullptr);
    if (aElement == nullptr) {
      return;
    }

    if (!first()) {
      auto* vec = maybeVector();
      if (!vec) {
        first() = aElement;
        new (&mArray[1].mValue) T*(nullptr);
        return;
      }

      vec->push_back(aElement);
      return;
    }

    if (!second()) {
      second() = aElement;
      return;
    }

    auto* vec = new std::vector<T*>({first(), second(), aElement});
    first() = nullptr;
    new (&mArray[1].mVector) std::vector<T*>*(vec);
  }

  bool RemoveElement(T* aElement) {
    MOZ_ASSERT(aElement != nullptr);
    if (aElement == nullptr) {
      return false;
    }

    if (first() == aElement) {
      // Expected case.
      T* maybeSecond = second();
      first() = maybeSecond;
      if (maybeSecond) {
        second() = nullptr;
      } else {
        new (&mArray[1].mVector) std::vector<T*>*(nullptr);
      }

      return true;
    }

    if (first()) {
      if (second() == aElement) {
        second() = nullptr;
        return true;
      }
      return false;
    }

    if (auto* vec = maybeVector()) {
      for (auto iter = vec->begin(); iter != vec->end(); iter++) {
        if (*iter == aElement) {
          vec->erase(iter);
          return true;
        }
      }
    }
    return false;
  }

  bool Contains(T* aElement) const {
    MOZ_ASSERT(aElement != nullptr);
    if (aElement == nullptr) {
      return false;
    }

    if (T* v = first()) {
      return v == aElement || second() == aElement;
    }

    if (auto* vec = maybeVector()) {
      return std::find(vec->begin(), vec->end(), aElement) != vec->end();
    }

    return false;
  }

  size_t Length() const {
    if (first()) {
      return second() ? 2 : 1;
    }

    if (auto* vec = maybeVector()) {
      return vec->size();
    }

    return 0;
  }

  bool IsEmpty() const { return Length() == 0; }

  T* ElementAt(size_t aIndex) const {
    MOZ_ASSERT(aIndex < Length());
    if (first()) {
      return mArray[aIndex].mValue;
    }

    auto* vec = maybeVector();
    MOZ_ASSERT(vec, "must have backing vector if accessing an element");
    return (*vec)[aIndex];
  }

  T* operator[](size_t aIndex) const { return ElementAt(aIndex); }

  using iterator = T**;
  using const_iterator = const T**;

  // Methods for range-based for loops. Manipulation invalidates these.
  iterator begin() { return beginInternal(); }
  const_iterator begin() const { return beginInternal(); }
  const_iterator cbegin() const { return begin(); }
  iterator end() { return beginInternal() + Length(); }
  const_iterator end() const { return beginInternal() + Length(); }
  const_iterator cend() const { return end(); }

 private:
  T** beginInternal() const {
    if (first()) {
      static_assert(sizeof(T*) == sizeof(Element),
                    "pointer ops on &first() must produce adjacent "
                    "Element::mValue arms");
      return &first();
    }

    auto* vec = maybeVector();
    if (!vec) {
      return &first();
    }

    if (vec->empty()) {
      return nullptr;
    }

    return &(*vec)[0];
  }

  // Accessors for |mArray| element union arms.

  T*& first() const { return const_cast<T*&>(mArray[0].mValue); }

  T*& second() const {
    MOZ_ASSERT(first(), "first() must be non-null to have a T* second pointer");
    return const_cast<T*&>(mArray[1].mValue);
  }

  std::vector<T*>* maybeVector() const {
    MOZ_ASSERT(!first(),
               "function must only be called when this is either empty or has "
               "std::vector-backed elements");
    return mArray[1].mVector;
  }

  // In C++ active-union-arm terms:
  //
  //   - mArray[0].mValue is always active: a possibly null T*;
  //   - if mArray[0].mValue is null, mArray[1].mVector is active: a possibly
  //     null std::vector<T*>*; if mArray[0].mValue isn't null, mArray[1].mValue
  //     is active: a possibly null T*.
  //
  // SmallPointerArray begins empty, with mArray[1].mVector active and null.
  // Code that makes mArray[0].mValue non-null, i.e. assignments to first(),
  // must placement-new mArray[1].mValue with the proper value; code that goes
  // the opposite direction, making mArray[0].mValue null, must placement-new
  // mArray[1].mVector with the proper value.
  //
  // When !mArray[0].mValue && !mArray[1].mVector, the array is empty.
  //
  // When mArray[0].mValue && !mArray[1].mValue, the array has size 1 and
  // contains mArray[0].mValue.
  //
  // When mArray[0] && mArray[1], the array has size 2 and contains
  // mArray[0].mValue and mArray[1].mValue.
  //
  // When !mArray[0].mValue && mArray[1].mVector, mArray[1].mVector contains
  // the contents of an array of arbitrary size (even less than two if it ever
  // contained three elements and elements were removed).
  union Element {
    T* mValue;
    std::vector<T*>* mVector;
  } mArray[2];
};

}  // namespace mozilla

#endif  // mozilla_SmallPointerArray_h