1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/**
* A sorted tree with optimal access times, where recently-accessed elements
* are faster to access again.
*/
#ifndef mozilla_SplayTree_h
#define mozilla_SplayTree_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
namespace mozilla {
template <class T, class C>
class SplayTree;
template <typename T>
class SplayTreeNode {
public:
template <class A, class B>
friend class SplayTree;
SplayTreeNode() : mLeft(nullptr), mRight(nullptr), mParent(nullptr) {}
private:
T* mLeft;
T* mRight;
T* mParent;
};
/**
* Class which represents a splay tree.
* Splay trees are balanced binary search trees for which search, insert and
* remove are all amortized O(log n), but where accessing a node makes it
* faster to access that node in the future.
*
* T indicates the type of tree elements, Comparator must have a static
* compare(const T&, const T&) method ordering the elements. The compare
* method must be free from side effects.
*/
template <typename T, class Comparator>
class SplayTree {
T* mRoot;
public:
constexpr SplayTree() : mRoot(nullptr) {}
bool empty() const { return !mRoot; }
T* find(const T& aValue) {
if (empty()) {
return nullptr;
}
T* last = lookup(aValue);
splay(last);
return Comparator::compare(aValue, *last) == 0 ? last : nullptr;
}
void insert(T* aValue) {
MOZ_ASSERT(!find(*aValue), "Duplicate elements are not allowed.");
if (!mRoot) {
mRoot = aValue;
return;
}
T* last = lookup(*aValue);
int cmp = Comparator::compare(*aValue, *last);
finishInsertion(last, cmp, aValue);
}
T* findOrInsert(const T& aValue);
T* remove(const T& aValue) {
T* last = lookup(aValue);
MOZ_ASSERT(last, "This tree must contain the element being removed.");
MOZ_ASSERT(Comparator::compare(aValue, *last) == 0);
// Splay the tree so that the item to remove is the root.
splay(last);
MOZ_ASSERT(last == mRoot);
// Find another node which can be swapped in for the root: either the
// rightmost child of the root's left, or the leftmost child of the
// root's right.
T* swap;
T* swapChild;
if (mRoot->mLeft) {
swap = mRoot->mLeft;
while (swap->mRight) {
swap = swap->mRight;
}
swapChild = swap->mLeft;
} else if (mRoot->mRight) {
swap = mRoot->mRight;
while (swap->mLeft) {
swap = swap->mLeft;
}
swapChild = swap->mRight;
} else {
T* result = mRoot;
mRoot = nullptr;
return result;
}
// The selected node has at most one child, in swapChild. Detach it
// from the subtree by replacing it with that child.
if (swap == swap->mParent->mLeft) {
swap->mParent->mLeft = swapChild;
} else {
swap->mParent->mRight = swapChild;
}
if (swapChild) {
swapChild->mParent = swap->mParent;
}
// Make the selected node the new root.
mRoot = swap;
mRoot->mParent = nullptr;
mRoot->mLeft = last->mLeft;
mRoot->mRight = last->mRight;
if (mRoot->mLeft) {
mRoot->mLeft->mParent = mRoot;
}
if (mRoot->mRight) {
mRoot->mRight->mParent = mRoot;
}
last->mLeft = nullptr;
last->mRight = nullptr;
return last;
}
T* removeMin() {
MOZ_ASSERT(mRoot, "No min to remove!");
T* min = mRoot;
while (min->mLeft) {
min = min->mLeft;
}
return remove(*min);
}
// For testing purposes only.
void checkCoherency() { checkCoherency(mRoot, nullptr); }
private:
/**
* Returns the node in this comparing equal to |aValue|, or a node just
* greater or just less than |aValue| if there is no such node.
*/
T* lookup(const T& aValue) {
MOZ_ASSERT(!empty());
T* node = mRoot;
T* parent;
do {
parent = node;
int c = Comparator::compare(aValue, *node);
if (c == 0) {
return node;
} else if (c < 0) {
node = node->mLeft;
} else {
node = node->mRight;
}
} while (node);
return parent;
}
void finishInsertion(T* aLast, int32_t aCmp, T* aNew) {
MOZ_ASSERT(aCmp, "Nodes shouldn't be equal!");
T** parentPointer = (aCmp < 0) ? &aLast->mLeft : &aLast->mRight;
MOZ_ASSERT(!*parentPointer);
*parentPointer = aNew;
aNew->mParent = aLast;
splay(aNew);
}
/**
* Rotate the tree until |node| is at the root of the tree. Performing
* the rotations in this fashion preserves the amortized balancing of
* the tree.
*/
void splay(T* aNode) {
MOZ_ASSERT(aNode);
while (aNode != mRoot) {
T* parent = aNode->mParent;
if (parent == mRoot) {
// Zig rotation.
rotate(aNode);
MOZ_ASSERT(aNode == mRoot);
return;
}
T* grandparent = parent->mParent;
if ((parent->mLeft == aNode) == (grandparent->mLeft == parent)) {
// Zig-zig rotation.
rotate(parent);
rotate(aNode);
} else {
// Zig-zag rotation.
rotate(aNode);
rotate(aNode);
}
}
}
void rotate(T* aNode) {
// Rearrange nodes so that aNode becomes the parent of its current
// parent, while preserving the sortedness of the tree.
T* parent = aNode->mParent;
if (parent->mLeft == aNode) {
// x y
// y c ==> a x
// a b b c
parent->mLeft = aNode->mRight;
if (aNode->mRight) {
aNode->mRight->mParent = parent;
}
aNode->mRight = parent;
} else {
MOZ_ASSERT(parent->mRight == aNode);
// x y
// a y ==> x c
// b c a b
parent->mRight = aNode->mLeft;
if (aNode->mLeft) {
aNode->mLeft->mParent = parent;
}
aNode->mLeft = parent;
}
aNode->mParent = parent->mParent;
parent->mParent = aNode;
if (T* grandparent = aNode->mParent) {
if (grandparent->mLeft == parent) {
grandparent->mLeft = aNode;
} else {
grandparent->mRight = aNode;
}
} else {
mRoot = aNode;
}
}
T* checkCoherency(T* aNode, T* aMinimum) {
if (mRoot) {
MOZ_RELEASE_ASSERT(!mRoot->mParent);
}
if (!aNode) {
MOZ_RELEASE_ASSERT(!mRoot);
return nullptr;
}
if (!aNode->mParent) {
MOZ_RELEASE_ASSERT(aNode == mRoot);
}
if (aMinimum) {
MOZ_RELEASE_ASSERT(Comparator::compare(*aMinimum, *aNode) < 0);
}
if (aNode->mLeft) {
MOZ_RELEASE_ASSERT(aNode->mLeft->mParent == aNode);
T* leftMaximum = checkCoherency(aNode->mLeft, aMinimum);
MOZ_RELEASE_ASSERT(Comparator::compare(*leftMaximum, *aNode) < 0);
}
if (aNode->mRight) {
MOZ_RELEASE_ASSERT(aNode->mRight->mParent == aNode);
return checkCoherency(aNode->mRight, aNode);
}
return aNode;
}
SplayTree(const SplayTree&) = delete;
void operator=(const SplayTree&) = delete;
};
template <typename T, class Comparator>
T* SplayTree<T, Comparator>::findOrInsert(const T& aValue) {
if (!mRoot) {
mRoot = new T(aValue);
return mRoot;
}
T* last = lookup(aValue);
int cmp = Comparator::compare(aValue, *last);
if (!cmp) {
return last;
}
T* t = new T(aValue);
finishInsertion(last, cmp, t);
return t;
}
} /* namespace mozilla */
#endif /* mozilla_SplayTree_h */
|