summaryrefslogtreecommitdiffstats
path: root/other-licenses/snappy/src/snappy-stubs-internal.h
blob: 526c38b700b3fa1f3f2708480b5a7a883c461b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the open-source version of Snappy.

#ifndef THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_
#define THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_

#if HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdint.h>

#include <cassert>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <string>

#if HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#if HAVE_UNISTD_H
#include <unistd.h>
#endif

#if defined(_MSC_VER)
#include <intrin.h>
#endif  // defined(_MSC_VER)

#ifndef __has_feature
#define __has_feature(x) 0
#endif

#if __has_feature(memory_sanitizer)
#include <sanitizer/msan_interface.h>
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) \
    __msan_unpoison((address), (size))
#else
#define SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(address, size) /* empty */
#endif  // __has_feature(memory_sanitizer)

#include "snappy-stubs-public.h"

// Used to enable 64-bit optimized versions of some routines.
#if defined(__PPC64__) || defined(__powerpc64__)
#define ARCH_PPC 1
#elif defined(__aarch64__) || defined(_M_ARM64)
#define ARCH_ARM 1
#endif

// Needed by OS X, among others.
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif

// The size of an array, if known at compile-time.
// Will give unexpected results if used on a pointer.
// We undefine it first, since some compilers already have a definition.
#ifdef ARRAYSIZE
#undef ARRAYSIZE
#endif
#define ARRAYSIZE(a) int{sizeof(a) / sizeof(*(a))}

// Static prediction hints.
#if HAVE_BUILTIN_EXPECT
#define SNAPPY_PREDICT_FALSE(x) (__builtin_expect(x, 0))
#define SNAPPY_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1))
#else
#define SNAPPY_PREDICT_FALSE(x) x
#define SNAPPY_PREDICT_TRUE(x) x
#endif  // HAVE_BUILTIN_EXPECT

// Inlining hints.
#if HAVE_ATTRIBUTE_ALWAYS_INLINE
#define SNAPPY_ATTRIBUTE_ALWAYS_INLINE __attribute__((always_inline))
#else
#define SNAPPY_ATTRIBUTE_ALWAYS_INLINE
#endif  // HAVE_ATTRIBUTE_ALWAYS_INLINE

#if HAVE_BUILTIN_PREFETCH
#define SNAPPY_PREFETCH(ptr) __builtin_prefetch(ptr, 0, 3)
#else
#define SNAPPY_PREFETCH(ptr) (void)(ptr)
#endif

// Stubbed version of ABSL_FLAG.
//
// In the open source version, flags can only be changed at compile time.
#define SNAPPY_FLAG(flag_type, flag_name, default_value, help) \
  flag_type FLAGS_ ## flag_name = default_value

namespace snappy {

// Stubbed version of absl::GetFlag().
template <typename T>
inline T GetFlag(T flag) { return flag; }

static const uint32_t kuint32max = std::numeric_limits<uint32_t>::max();
static const int64_t kint64max = std::numeric_limits<int64_t>::max();

// Potentially unaligned loads and stores.

inline uint16_t UNALIGNED_LOAD16(const void *p) {
  // Compiles to a single movzx/ldrh on clang/gcc/msvc.
  uint16_t v;
  std::memcpy(&v, p, sizeof(v));
  return v;
}

inline uint32_t UNALIGNED_LOAD32(const void *p) {
  // Compiles to a single mov/ldr on clang/gcc/msvc.
  uint32_t v;
  std::memcpy(&v, p, sizeof(v));
  return v;
}

inline uint64_t UNALIGNED_LOAD64(const void *p) {
  // Compiles to a single mov/ldr on clang/gcc/msvc.
  uint64_t v;
  std::memcpy(&v, p, sizeof(v));
  return v;
}

inline void UNALIGNED_STORE16(void *p, uint16_t v) {
  // Compiles to a single mov/strh on clang/gcc/msvc.
  std::memcpy(p, &v, sizeof(v));
}

inline void UNALIGNED_STORE32(void *p, uint32_t v) {
  // Compiles to a single mov/str on clang/gcc/msvc.
  std::memcpy(p, &v, sizeof(v));
}

inline void UNALIGNED_STORE64(void *p, uint64_t v) {
  // Compiles to a single mov/str on clang/gcc/msvc.
  std::memcpy(p, &v, sizeof(v));
}

// Convert to little-endian storage, opposite of network format.
// Convert x from host to little endian: x = LittleEndian.FromHost(x);
// convert x from little endian to host: x = LittleEndian.ToHost(x);
//
//  Store values into unaligned memory converting to little endian order:
//    LittleEndian.Store16(p, x);
//
//  Load unaligned values stored in little endian converting to host order:
//    x = LittleEndian.Load16(p);
class LittleEndian {
 public:
  // Functions to do unaligned loads and stores in little-endian order.
  static inline uint16_t Load16(const void *ptr) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
    return (static_cast<uint16_t>(buffer[0])) |
            (static_cast<uint16_t>(buffer[1]) << 8);
#else
    // memcpy() turns into a single instruction early in the optimization
    // pipeline (relatively to a series of byte accesses). So, using memcpy
    // instead of byte accesses may lead to better decisions in more stages of
    // the optimization pipeline.
    uint16_t value;
    std::memcpy(&value, ptr, 2);
    return value;
#endif
  }

  static inline uint32_t Load32(const void *ptr) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
    return (static_cast<uint32_t>(buffer[0])) |
            (static_cast<uint32_t>(buffer[1]) << 8) |
            (static_cast<uint32_t>(buffer[2]) << 16) |
            (static_cast<uint32_t>(buffer[3]) << 24);
#else
    // See Load16() for the rationale of using memcpy().
    uint32_t value;
    std::memcpy(&value, ptr, 4);
    return value;
#endif
  }

  static inline uint64_t Load64(const void *ptr) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    const uint8_t* const buffer = reinterpret_cast<const uint8_t*>(ptr);
    return (static_cast<uint64_t>(buffer[0])) |
            (static_cast<uint64_t>(buffer[1]) << 8) |
            (static_cast<uint64_t>(buffer[2]) << 16) |
            (static_cast<uint64_t>(buffer[3]) << 24) |
            (static_cast<uint64_t>(buffer[4]) << 32) |
            (static_cast<uint64_t>(buffer[5]) << 40) |
            (static_cast<uint64_t>(buffer[6]) << 48) |
            (static_cast<uint64_t>(buffer[7]) << 56);
#else
    // See Load16() for the rationale of using memcpy().
    uint64_t value;
    std::memcpy(&value, ptr, 8);
    return value;
#endif
  }

  static inline void Store16(void *dst, uint16_t value) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
    buffer[0] = static_cast<uint8_t>(value);
    buffer[1] = static_cast<uint8_t>(value >> 8);
#else
    // See Load16() for the rationale of using memcpy().
    std::memcpy(dst, &value, 2);
#endif
  }

  static void Store32(void *dst, uint32_t value) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
    buffer[0] = static_cast<uint8_t>(value);
    buffer[1] = static_cast<uint8_t>(value >> 8);
    buffer[2] = static_cast<uint8_t>(value >> 16);
    buffer[3] = static_cast<uint8_t>(value >> 24);
#else
    // See Load16() for the rationale of using memcpy().
    std::memcpy(dst, &value, 4);
#endif
  }

  static void Store64(void* dst, uint64_t value) {
    // Compiles to a single mov/str on recent clang and gcc.
#if SNAPPY_IS_BIG_ENDIAN
    uint8_t* const buffer = reinterpret_cast<uint8_t*>(dst);
    buffer[0] = static_cast<uint8_t>(value);
    buffer[1] = static_cast<uint8_t>(value >> 8);
    buffer[2] = static_cast<uint8_t>(value >> 16);
    buffer[3] = static_cast<uint8_t>(value >> 24);
    buffer[4] = static_cast<uint8_t>(value >> 32);
    buffer[5] = static_cast<uint8_t>(value >> 40);
    buffer[6] = static_cast<uint8_t>(value >> 48);
    buffer[7] = static_cast<uint8_t>(value >> 56);
#else
    // See Load16() for the rationale of using memcpy().
    std::memcpy(dst, &value, 8);
#endif
  }

  static inline constexpr bool IsLittleEndian() {
#if SNAPPY_IS_BIG_ENDIAN
    return false;
#else
    return true;
#endif  // SNAPPY_IS_BIG_ENDIAN
  }
};

// Some bit-manipulation functions.
class Bits {
 public:
  // Return floor(log2(n)) for positive integer n.
  static int Log2FloorNonZero(uint32_t n);

  // Return floor(log2(n)) for positive integer n.  Returns -1 iff n == 0.
  static int Log2Floor(uint32_t n);

  // Return the first set least / most significant bit, 0-indexed.  Returns an
  // undefined value if n == 0.  FindLSBSetNonZero() is similar to ffs() except
  // that it's 0-indexed.
  static int FindLSBSetNonZero(uint32_t n);

  static int FindLSBSetNonZero64(uint64_t n);

 private:
  // No copying
  Bits(const Bits&);
  void operator=(const Bits&);
};

#if HAVE_BUILTIN_CTZ

inline int Bits::Log2FloorNonZero(uint32_t n) {
  assert(n != 0);
  // (31 ^ x) is equivalent to (31 - x) for x in [0, 31]. An easy proof
  // represents subtraction in base 2 and observes that there's no carry.
  //
  // GCC and Clang represent __builtin_clz on x86 as 31 ^ _bit_scan_reverse(x).
  // Using "31 ^" here instead of "31 -" allows the optimizer to strip the
  // function body down to _bit_scan_reverse(x).
  return 31 ^ __builtin_clz(n);
}

inline int Bits::Log2Floor(uint32_t n) {
  return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
}

inline int Bits::FindLSBSetNonZero(uint32_t n) {
  assert(n != 0);
  return __builtin_ctz(n);
}

#elif defined(_MSC_VER)

inline int Bits::Log2FloorNonZero(uint32_t n) {
  assert(n != 0);
  // NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
  unsigned long where;
  _BitScanReverse(&where, n);
  return static_cast<int>(where);
}

inline int Bits::Log2Floor(uint32_t n) {
  // NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
  unsigned long where;
  if (_BitScanReverse(&where, n))
    return static_cast<int>(where);
  return -1;
}

inline int Bits::FindLSBSetNonZero(uint32_t n) {
  assert(n != 0);
  // NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
  unsigned long where;
  if (_BitScanForward(&where, n))
    return static_cast<int>(where);
  return 32;
}

#else  // Portable versions.

inline int Bits::Log2FloorNonZero(uint32_t n) {
  assert(n != 0);

  int log = 0;
  uint32_t value = n;
  for (int i = 4; i >= 0; --i) {
    int shift = (1 << i);
    uint32_t x = value >> shift;
    if (x != 0) {
      value = x;
      log += shift;
    }
  }
  assert(value == 1);
  return log;
}

inline int Bits::Log2Floor(uint32_t n) {
  return (n == 0) ? -1 : Bits::Log2FloorNonZero(n);
}

inline int Bits::FindLSBSetNonZero(uint32_t n) {
  assert(n != 0);

  int rc = 31;
  for (int i = 4, shift = 1 << 4; i >= 0; --i) {
    const uint32_t x = n << shift;
    if (x != 0) {
      n = x;
      rc -= shift;
    }
    shift >>= 1;
  }
  return rc;
}

#endif  // End portable versions.

#if HAVE_BUILTIN_CTZ

inline int Bits::FindLSBSetNonZero64(uint64_t n) {
  assert(n != 0);
  return __builtin_ctzll(n);
}

#elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64))
// _BitScanForward64() is only available on x64 and ARM64.

inline int Bits::FindLSBSetNonZero64(uint64_t n) {
  assert(n != 0);
  // NOLINTNEXTLINE(runtime/int): The MSVC intrinsic demands unsigned long.
  unsigned long where;
  if (_BitScanForward64(&where, n))
    return static_cast<int>(where);
  return 64;
}

#else  // Portable version.

// FindLSBSetNonZero64() is defined in terms of FindLSBSetNonZero().
inline int Bits::FindLSBSetNonZero64(uint64_t n) {
  assert(n != 0);

  const uint32_t bottombits = static_cast<uint32_t>(n);
  if (bottombits == 0) {
    // Bottom bits are zero, so scan the top bits.
    return 32 + FindLSBSetNonZero(static_cast<uint32_t>(n >> 32));
  } else {
    return FindLSBSetNonZero(bottombits);
  }
}

#endif  // HAVE_BUILTIN_CTZ

// Variable-length integer encoding.
class Varint {
 public:
  // Maximum lengths of varint encoding of uint32_t.
  static const int kMax32 = 5;

  // Attempts to parse a varint32 from a prefix of the bytes in [ptr,limit-1].
  // Never reads a character at or beyond limit.  If a valid/terminated varint32
  // was found in the range, stores it in *OUTPUT and returns a pointer just
  // past the last byte of the varint32. Else returns NULL.  On success,
  // "result <= limit".
  static const char* Parse32WithLimit(const char* ptr, const char* limit,
                                      uint32_t* OUTPUT);

  // REQUIRES   "ptr" points to a buffer of length sufficient to hold "v".
  // EFFECTS    Encodes "v" into "ptr" and returns a pointer to the
  //            byte just past the last encoded byte.
  static char* Encode32(char* ptr, uint32_t v);

  // EFFECTS    Appends the varint representation of "value" to "*s".
  static void Append32(std::string* s, uint32_t value);
};

inline const char* Varint::Parse32WithLimit(const char* p,
                                            const char* l,
                                            uint32_t* OUTPUT) {
  const unsigned char* ptr = reinterpret_cast<const unsigned char*>(p);
  const unsigned char* limit = reinterpret_cast<const unsigned char*>(l);
  uint32_t b, result;
  if (ptr >= limit) return NULL;
  b = *(ptr++); result = b & 127;          if (b < 128) goto done;
  if (ptr >= limit) return NULL;
  b = *(ptr++); result |= (b & 127) <<  7; if (b < 128) goto done;
  if (ptr >= limit) return NULL;
  b = *(ptr++); result |= (b & 127) << 14; if (b < 128) goto done;
  if (ptr >= limit) return NULL;
  b = *(ptr++); result |= (b & 127) << 21; if (b < 128) goto done;
  if (ptr >= limit) return NULL;
  b = *(ptr++); result |= (b & 127) << 28; if (b < 16) goto done;
  return NULL;       // Value is too long to be a varint32
 done:
  *OUTPUT = result;
  return reinterpret_cast<const char*>(ptr);
}

inline char* Varint::Encode32(char* sptr, uint32_t v) {
  // Operate on characters as unsigneds
  uint8_t* ptr = reinterpret_cast<uint8_t*>(sptr);
  static const uint8_t B = 128;
  if (v < (1 << 7)) {
    *(ptr++) = static_cast<uint8_t>(v);
  } else if (v < (1 << 14)) {
    *(ptr++) = static_cast<uint8_t>(v | B);
    *(ptr++) = static_cast<uint8_t>(v >> 7);
  } else if (v < (1 << 21)) {
    *(ptr++) = static_cast<uint8_t>(v | B);
    *(ptr++) = static_cast<uint8_t>((v >> 7) | B);
    *(ptr++) = static_cast<uint8_t>(v >> 14);
  } else if (v < (1 << 28)) {
    *(ptr++) = static_cast<uint8_t>(v | B);
    *(ptr++) = static_cast<uint8_t>((v >> 7) | B);
    *(ptr++) = static_cast<uint8_t>((v >> 14) | B);
    *(ptr++) = static_cast<uint8_t>(v >> 21);
  } else {
    *(ptr++) = static_cast<uint8_t>(v | B);
    *(ptr++) = static_cast<uint8_t>((v>>7) | B);
    *(ptr++) = static_cast<uint8_t>((v>>14) | B);
    *(ptr++) = static_cast<uint8_t>((v>>21) | B);
    *(ptr++) = static_cast<uint8_t>(v >> 28);
  }
  return reinterpret_cast<char*>(ptr);
}

// If you know the internal layout of the std::string in use, you can
// replace this function with one that resizes the string without
// filling the new space with zeros (if applicable) --
// it will be non-portable but faster.
inline void STLStringResizeUninitialized(std::string* s, size_t new_size) {
  s->resize(new_size);
}

// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-defects.html#530)
// proposes this as the method. It will officially be part of the standard
// for C++0x. This should already work on all current implementations.
inline char* string_as_array(std::string* str) {
  return str->empty() ? NULL : &*str->begin();
}

}  // namespace snappy

#endif  // THIRD_PARTY_SNAPPY_OPENSOURCE_SNAPPY_STUBS_INTERNAL_H_