1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <assert.h>
#include <string.h>
#include <random>
#include <tuple>
#include "asn1_mutators.h"
using namespace std;
static tuple<uint8_t *, size_t> ParseItem(uint8_t *Data, size_t MaxLength) {
// Short form. Bit 8 has value "0" and bits 7-1 give the length.
if ((Data[1] & 0x80) == 0) {
size_t length = min(static_cast<size_t>(Data[1]), MaxLength - 2);
return make_tuple(&Data[2], length);
}
// Constructed, indefinite length. Read until {0x00, 0x00}.
if (Data[1] == 0x80) {
void *offset = memmem(&Data[2], MaxLength - 2, "\0", 2);
size_t length = offset ? (static_cast<uint8_t *>(offset) - &Data[2]) + 2
: MaxLength - 2;
return make_tuple(&Data[2], length);
}
// Long form. Two to 127 octets. Bit 8 of first octet has value "1"
// and bits 7-1 give the number of additional length octets.
size_t octets = min(static_cast<size_t>(Data[1] & 0x7f), MaxLength - 2);
// Handle lengths bigger than 32 bits.
if (octets > 4) {
// Ignore any further children, assign remaining length.
return make_tuple(&Data[2] + octets, MaxLength - 2 - octets);
}
// Parse the length.
size_t length = 0;
for (size_t j = 0; j < octets; j++) {
length = (length << 8) | Data[2 + j];
}
length = min(length, MaxLength - 2 - octets);
return make_tuple(&Data[2] + octets, length);
}
static vector<uint8_t *> ParseItems(uint8_t *Data, size_t Size) {
vector<uint8_t *> items;
vector<size_t> lengths;
// The first item is always the whole corpus.
items.push_back(Data);
lengths.push_back(Size);
// Can't use iterators here because the `items` vector is modified inside the
// loop. That's safe as long as we always check `items.size()` before every
// iteration, and only call `.push_back()` to append new items we found.
// Items are accessed through `items.at()`, we hold no references.
for (size_t i = 0; i < items.size(); i++) {
uint8_t *item = items.at(i);
size_t remaining = lengths.at(i);
// Empty or primitive items have no children.
if (remaining == 0 || (0x20 & item[0]) == 0) {
continue;
}
while (remaining > 2) {
uint8_t *content;
size_t length;
tie(content, length) = ParseItem(item, remaining);
if (length > 0) {
// Record the item.
items.push_back(content);
// Record the length for further parsing.
lengths.push_back(length);
}
// Reduce number of bytes left in current item.
remaining -= length + (content - item);
// Skip the item we just parsed.
item = content + length;
}
}
return items;
}
size_t ASN1MutatorFlipConstructed(uint8_t *Data, size_t Size, size_t MaxSize,
unsigned int Seed) {
auto items = ParseItems(Data, Size);
std::mt19937 rng(Seed);
std::uniform_int_distribution<size_t> dist(0, items.size() - 1);
uint8_t *item = items.at(dist(rng));
// Flip "constructed" type bit.
item[0] ^= 0x20;
return Size;
}
size_t ASN1MutatorChangeType(uint8_t *Data, size_t Size, size_t MaxSize,
unsigned int Seed) {
auto items = ParseItems(Data, Size);
std::mt19937 rng(Seed);
std::uniform_int_distribution<size_t> dist(0, items.size() - 1);
uint8_t *item = items.at(dist(rng));
// Change type to a random int [0, 30].
static std::uniform_int_distribution<size_t> tdist(0, 30);
item[0] = tdist(rng);
return Size;
}
|