1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "seccomon.h"
#include "secerr.h"
#include "blapi.h"
#include "pkcs11i.h"
#include "softoken.h"
#include "hmacct.h"
/* sftk_HMACMechanismToHash converts a PKCS#11 MAC mechanism into a freebl hash
* type. */
HASH_HashType
sftk_HMACMechanismToHash(CK_MECHANISM_TYPE mech)
{
switch (mech) {
case CKM_MD2_HMAC:
return HASH_AlgMD2;
case CKM_MD5_HMAC:
case CKM_SSL3_MD5_MAC:
return HASH_AlgMD5;
case CKM_SHA_1_HMAC:
case CKM_SSL3_SHA1_MAC:
return HASH_AlgSHA1;
case CKM_SHA224_HMAC:
return HASH_AlgSHA224;
case CKM_SHA256_HMAC:
return HASH_AlgSHA256;
case CKM_SHA384_HMAC:
return HASH_AlgSHA384;
case CKM_SHA512_HMAC:
return HASH_AlgSHA512;
case CKM_SHA3_224_HMAC:
return HASH_AlgSHA3_224;
case CKM_SHA3_256_HMAC:
return HASH_AlgSHA3_256;
case CKM_SHA3_384_HMAC:
return HASH_AlgSHA3_384;
case CKM_SHA3_512_HMAC:
return HASH_AlgSHA3_512;
}
return HASH_AlgNULL;
}
static sftk_MACConstantTimeCtx *
SetupMAC(CK_MECHANISM_PTR mech, SFTKObject *key)
{
CK_NSS_MAC_CONSTANT_TIME_PARAMS *params =
(CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter;
sftk_MACConstantTimeCtx *ctx;
HASH_HashType alg;
SFTKAttribute *keyval;
unsigned char secret[sizeof(ctx->secret)];
unsigned int secretLength;
if (mech->ulParameterLen != sizeof(CK_NSS_MAC_CONSTANT_TIME_PARAMS)) {
return NULL;
}
alg = sftk_HMACMechanismToHash(params->macAlg);
if (alg == HASH_AlgNULL) {
return NULL;
}
keyval = sftk_FindAttribute(key, CKA_VALUE);
if (keyval == NULL) {
return NULL;
}
secretLength = keyval->attrib.ulValueLen;
if (secretLength > sizeof(secret)) {
sftk_FreeAttribute(keyval);
return NULL;
}
memcpy(secret, keyval->attrib.pValue, secretLength);
sftk_FreeAttribute(keyval);
ctx = PORT_Alloc(sizeof(sftk_MACConstantTimeCtx));
if (!ctx) {
PORT_Memset(secret, 0, secretLength);
return NULL;
}
memcpy(ctx->secret, secret, secretLength);
ctx->secretLength = secretLength;
ctx->hash = HASH_GetRawHashObject(alg);
ctx->totalLength = params->ulBodyTotalLen;
PORT_Memset(secret, 0, secretLength);
return ctx;
}
sftk_MACConstantTimeCtx *
sftk_HMACConstantTime_New(CK_MECHANISM_PTR mech, SFTKObject *key)
{
CK_NSS_MAC_CONSTANT_TIME_PARAMS *params =
(CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter;
sftk_MACConstantTimeCtx *ctx;
if (params->ulHeaderLen > sizeof(ctx->header)) {
return NULL;
}
ctx = SetupMAC(mech, key);
if (!ctx) {
return NULL;
}
ctx->headerLength = params->ulHeaderLen;
memcpy(ctx->header, params->pHeader, params->ulHeaderLen);
return ctx;
}
sftk_MACConstantTimeCtx *
sftk_SSLv3MACConstantTime_New(CK_MECHANISM_PTR mech, SFTKObject *key)
{
CK_NSS_MAC_CONSTANT_TIME_PARAMS *params =
(CK_NSS_MAC_CONSTANT_TIME_PARAMS *)mech->pParameter;
unsigned int padLength = 40, j;
sftk_MACConstantTimeCtx *ctx;
if (params->macAlg != CKM_SSL3_MD5_MAC &&
params->macAlg != CKM_SSL3_SHA1_MAC) {
return NULL;
}
ctx = SetupMAC(mech, key);
if (!ctx) {
return NULL;
}
if (params->macAlg == CKM_SSL3_MD5_MAC) {
padLength = 48;
}
ctx->headerLength =
ctx->secretLength +
padLength +
params->ulHeaderLen;
if (ctx->headerLength > sizeof(ctx->header)) {
goto loser;
}
j = 0;
memcpy(&ctx->header[j], ctx->secret, ctx->secretLength);
j += ctx->secretLength;
memset(&ctx->header[j], 0x36, padLength);
j += padLength;
memcpy(&ctx->header[j], params->pHeader, params->ulHeaderLen);
return ctx;
loser:
PORT_Free(ctx);
return NULL;
}
void
sftk_HMACConstantTime_Update(void *pctx, const void *data, unsigned int len)
{
sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx;
PORT_CheckSuccess(HMAC_ConstantTime(
ctx->mac, NULL, sizeof(ctx->mac),
ctx->hash,
ctx->secret, ctx->secretLength,
ctx->header, ctx->headerLength,
data, len,
ctx->totalLength));
}
void
sftk_SSLv3MACConstantTime_Update(void *pctx, const void *data, unsigned int len)
{
sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx;
PORT_CheckSuccess(SSLv3_MAC_ConstantTime(
ctx->mac, NULL, sizeof(ctx->mac),
ctx->hash,
ctx->secret, ctx->secretLength,
ctx->header, ctx->headerLength,
data, len,
ctx->totalLength));
}
void
sftk_MACConstantTime_EndHash(void *pctx, void *out, unsigned int *outLength,
unsigned int maxLength)
{
const sftk_MACConstantTimeCtx *ctx = (sftk_MACConstantTimeCtx *)pctx;
unsigned int toCopy = ctx->hash->length;
if (toCopy > maxLength) {
toCopy = maxLength;
}
memcpy(out, ctx->mac, toCopy);
if (outLength) {
*outLength = toCopy;
}
}
void
sftk_MACConstantTime_DestroyContext(void *pctx, PRBool free)
{
PORT_ZFree(pctx, sizeof(sftk_MACConstantTimeCtx));
}
CK_RV
sftk_MAC_Create(CK_MECHANISM_TYPE mech, SFTKObject *key, sftk_MACCtx **ret_ctx)
{
CK_RV ret;
if (ret_ctx == NULL || key == NULL) {
return CKR_HOST_MEMORY;
}
*ret_ctx = PORT_New(sftk_MACCtx);
if (*ret_ctx == NULL) {
return CKR_HOST_MEMORY;
}
ret = sftk_MAC_Init(*ret_ctx, mech, key);
if (ret != CKR_OK) {
sftk_MAC_Destroy(*ret_ctx, PR_TRUE);
}
return ret;
}
CK_RV
sftk_MAC_Init(sftk_MACCtx *ctx, CK_MECHANISM_TYPE mech, SFTKObject *key)
{
SFTKAttribute *keyval = NULL;
PRBool isFIPS = sftk_isFIPS(key->slot->slotID);
CK_RV ret = CKR_OK;
/* Find the actual value of the key. */
keyval = sftk_FindAttribute(key, CKA_VALUE);
if (keyval == NULL) {
ret = CKR_KEY_SIZE_RANGE;
goto done;
}
ret = sftk_MAC_InitRaw(ctx, mech,
(const unsigned char *)keyval->attrib.pValue,
keyval->attrib.ulValueLen, isFIPS);
done:
if (keyval) {
sftk_FreeAttribute(keyval);
}
return ret;
}
CK_RV
sftk_MAC_InitRaw(sftk_MACCtx *ctx, CK_MECHANISM_TYPE mech, const unsigned char *key, unsigned int key_len, PRBool isFIPS)
{
const SECHashObject *hashObj = NULL;
CK_RV ret = CKR_OK;
if (ctx == NULL) {
return CKR_HOST_MEMORY;
}
/* Clear the context before use. */
PORT_Memset(ctx, 0, sizeof(*ctx));
/* Save the mech. */
ctx->mech = mech;
/* Initialize the correct MAC context. */
switch (mech) {
case CKM_MD2_HMAC:
case CKM_MD5_HMAC:
case CKM_SHA_1_HMAC:
case CKM_SHA224_HMAC:
case CKM_SHA256_HMAC:
case CKM_SHA384_HMAC:
case CKM_SHA512_HMAC:
case CKM_SHA3_224_HMAC:
case CKM_SHA3_256_HMAC:
case CKM_SHA3_384_HMAC:
case CKM_SHA3_512_HMAC:
hashObj = HASH_GetRawHashObject(sftk_HMACMechanismToHash(mech));
/* Because we condition above only on hashes we know to be valid,
* hashObj should never be NULL. This assert is only useful when
* adding a new hash function (for which only partial support has
* been added); thus there is no need to turn it into an if and
* avoid the NULL dereference on the following line. */
PR_ASSERT(hashObj != NULL);
ctx->mac_size = hashObj->length;
goto hmac;
case CKM_AES_CMAC:
ctx->mac.cmac = CMAC_Create(CMAC_AES, key, key_len);
ctx->destroy_func = (void (*)(void *, PRBool))(&CMAC_Destroy);
/* Copy the behavior of sftk_doCMACInit here. */
if (ctx->mac.cmac == NULL) {
if (PORT_GetError() == SEC_ERROR_INVALID_ARGS) {
ret = CKR_KEY_SIZE_RANGE;
goto done;
}
ret = CKR_HOST_MEMORY;
goto done;
}
ctx->mac_size = AES_BLOCK_SIZE;
goto done;
default:
ret = CKR_MECHANISM_PARAM_INVALID;
goto done;
}
hmac:
ctx->mac.hmac = HMAC_Create(hashObj, key, key_len, isFIPS);
ctx->destroy_func = (void (*)(void *, PRBool))(&HMAC_Destroy);
/* Copy the behavior of sftk_doHMACInit here. */
if (ctx->mac.hmac == NULL) {
if (PORT_GetError() == SEC_ERROR_INVALID_ARGS) {
ret = CKR_KEY_SIZE_RANGE;
goto done;
}
ret = CKR_HOST_MEMORY;
goto done;
}
/* Semantics: HMAC and CMAC should behave the same. Begin HMAC now. */
HMAC_Begin(ctx->mac.hmac);
done:
/* Handle a failure: ctx->mac.raw should be NULL, but make sure
* destroy_func isn't set. */
if (ret != CKR_OK) {
ctx->destroy_func = NULL;
}
return ret;
}
CK_RV
sftk_MAC_Reset(sftk_MACCtx *ctx)
{
/* Useful for resetting the state of MAC prior to calling update again
*
* This lets the caller keep a single MAC instance and re-use it as long
* as the key stays the same. */
switch (ctx->mech) {
case CKM_MD2_HMAC:
case CKM_MD5_HMAC:
case CKM_SHA_1_HMAC:
case CKM_SHA224_HMAC:
case CKM_SHA256_HMAC:
case CKM_SHA384_HMAC:
case CKM_SHA512_HMAC:
case CKM_SHA3_224_HMAC:
case CKM_SHA3_256_HMAC:
case CKM_SHA3_384_HMAC:
case CKM_SHA3_512_HMAC:
HMAC_Begin(ctx->mac.hmac);
break;
case CKM_AES_CMAC:
if (CMAC_Begin(ctx->mac.cmac) != SECSuccess) {
return CKR_FUNCTION_FAILED;
}
break;
default:
/* This shouldn't happen -- asserting indicates partial support
* for a new MAC type. */
PR_ASSERT(PR_FALSE);
return CKR_FUNCTION_FAILED;
}
return CKR_OK;
}
CK_RV
sftk_MAC_Update(sftk_MACCtx *ctx, const CK_BYTE *data, unsigned int data_len)
{
switch (ctx->mech) {
case CKM_MD2_HMAC:
case CKM_MD5_HMAC:
case CKM_SHA_1_HMAC:
case CKM_SHA224_HMAC:
case CKM_SHA256_HMAC:
case CKM_SHA384_HMAC:
case CKM_SHA512_HMAC:
case CKM_SHA3_224_HMAC:
case CKM_SHA3_256_HMAC:
case CKM_SHA3_384_HMAC:
case CKM_SHA3_512_HMAC:
/* HMAC doesn't indicate failure in the return code. */
HMAC_Update(ctx->mac.hmac, data, data_len);
break;
case CKM_AES_CMAC:
/* CMAC indicates failure in the return code, however this is
* unlikely to occur. */
if (CMAC_Update(ctx->mac.cmac, data, data_len) != SECSuccess) {
return CKR_FUNCTION_FAILED;
}
break;
default:
/* This shouldn't happen -- asserting indicates partial support
* for a new MAC type. */
PR_ASSERT(PR_FALSE);
return CKR_FUNCTION_FAILED;
}
return CKR_OK;
}
CK_RV
sftk_MAC_Finish(sftk_MACCtx *ctx, CK_BYTE_PTR result, unsigned int *result_len, unsigned int max_result_len)
{
unsigned int actual_result_len;
switch (ctx->mech) {
case CKM_MD2_HMAC:
case CKM_MD5_HMAC:
case CKM_SHA_1_HMAC:
case CKM_SHA224_HMAC:
case CKM_SHA256_HMAC:
case CKM_SHA384_HMAC:
case CKM_SHA512_HMAC:
case CKM_SHA3_224_HMAC:
case CKM_SHA3_256_HMAC:
case CKM_SHA3_384_HMAC:
case CKM_SHA3_512_HMAC:
/* HMAC doesn't indicate failure in the return code. Additionally,
* unlike CMAC, it doesn't support partial results. This means that we
* need to allocate a buffer if max_result_len < ctx->mac_size. */
if (max_result_len >= ctx->mac_size) {
/* Split this into two calls to avoid an unnecessary stack
* allocation and memcpy when possible. */
HMAC_Finish(ctx->mac.hmac, result, &actual_result_len, max_result_len);
} else {
uint8_t tmp_buffer[SFTK_MAX_MAC_LENGTH];
/* Assumption: buffer is large enough to hold this HMAC's
* output. */
PR_ASSERT(SFTK_MAX_MAC_LENGTH >= ctx->mac_size);
HMAC_Finish(ctx->mac.hmac, tmp_buffer, &actual_result_len, SFTK_MAX_MAC_LENGTH);
if (actual_result_len > max_result_len) {
/* This should always be true since:
*
* (SFTK_MAX_MAC_LENGTH >= ctx->mac_size =
* actual_result_len) > max_result_len,
*
* but guard this truncation just in case. */
actual_result_len = max_result_len;
}
PORT_Memcpy(result, tmp_buffer, actual_result_len);
}
break;
case CKM_AES_CMAC:
/* CMAC indicates failure in the return code, however this is
* unlikely to occur. */
if (CMAC_Finish(ctx->mac.cmac, result, &actual_result_len, max_result_len) != SECSuccess) {
return CKR_FUNCTION_FAILED;
}
break;
default:
/* This shouldn't happen -- asserting indicates partial support
* for a new MAC type. */
PR_ASSERT(PR_FALSE);
return CKR_FUNCTION_FAILED;
}
if (result_len) {
/* When result length is passed, inform the caller of its value. */
*result_len = actual_result_len;
} else if (max_result_len == ctx->mac_size) {
/* Validate that the amount requested was what was actually given; the
* caller assumes that what they passed was the output size of the
* underlying MAC and that they got all the bytes the asked for. */
PR_ASSERT(actual_result_len == max_result_len);
}
return CKR_OK;
}
void
sftk_MAC_Destroy(sftk_MACCtx *ctx, PRBool free_it)
{
if (ctx == NULL) {
return;
}
if (ctx->mac.raw != NULL && ctx->destroy_func != NULL) {
ctx->destroy_func(ctx->mac.raw, PR_TRUE);
}
/* Clean up the struct so we don't double free accidentally. */
PORT_Memset(ctx, 0, sizeof(sftk_MACCtx));
if (free_it == PR_TRUE) {
PORT_Free(ctx);
}
}
|