1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
|
/*!
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* The following bundle is from an external repository at github.com/mozilla/fxa-pairing-channel,
* it implements a shared library for two javascript environments to create an encrypted and authenticated
* communication channel by sharing a secret key and by relaying messages through a websocket server.
*
* It is used by the Firefox Accounts pairing flow, with one side of the channel being web
* content from https://accounts.firefox.com and the other side of the channel being chrome native code.
*
* This uses the event-target-shim node library published under the MIT license:
* https://github.com/mysticatea/event-target-shim/blob/master/LICENSE
*
* Bundle generated from https://github.com/mozilla/fxa-pairing-channel.git. Hash:c8ec3119920b4ffa833b, Chunkhash:378a5f51445e7aa7630e.
*
*/
// This header provides a little bit of plumbing to use `FxAccountsPairingChannel`
// from Firefox browser code, hence the presence of these privileged browser APIs.
// If you're trying to use this from ordinary web content you're in for a bad time.
import { setTimeout } from "resource://gre/modules/Timer.sys.mjs";
// We cannot use WebSocket from chrome code without a window,
// see https://bugzilla.mozilla.org/show_bug.cgi?id=784686
const browser = Services.appShell.createWindowlessBrowser(true);
const {WebSocket} = browser.document.ownerGlobal;
export var FxAccountsPairingChannel =
/******/ (function(modules) { // webpackBootstrap
/******/ // The module cache
/******/ var installedModules = {};
/******/
/******/ // The require function
/******/ function __webpack_require__(moduleId) {
/******/
/******/ // Check if module is in cache
/******/ if(installedModules[moduleId]) {
/******/ return installedModules[moduleId].exports;
/******/ }
/******/ // Create a new module (and put it into the cache)
/******/ var module = installedModules[moduleId] = {
/******/ i: moduleId,
/******/ l: false,
/******/ exports: {}
/******/ };
/******/
/******/ // Execute the module function
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
/******/
/******/ // Flag the module as loaded
/******/ module.l = true;
/******/
/******/ // Return the exports of the module
/******/ return module.exports;
/******/ }
/******/
/******/
/******/ // expose the modules object (__webpack_modules__)
/******/ __webpack_require__.m = modules;
/******/
/******/ // expose the module cache
/******/ __webpack_require__.c = installedModules;
/******/
/******/ // define getter function for harmony exports
/******/ __webpack_require__.d = function(exports, name, getter) {
/******/ if(!__webpack_require__.o(exports, name)) {
/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter });
/******/ }
/******/ };
/******/
/******/ // define __esModule on exports
/******/ __webpack_require__.r = function(exports) {
/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) {
/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });
/******/ }
/******/ Object.defineProperty(exports, '__esModule', { value: true });
/******/ };
/******/
/******/ // create a fake namespace object
/******/ // mode & 1: value is a module id, require it
/******/ // mode & 2: merge all properties of value into the ns
/******/ // mode & 4: return value when already ns object
/******/ // mode & 8|1: behave like require
/******/ __webpack_require__.t = function(value, mode) {
/******/ if(mode & 1) value = __webpack_require__(value);
/******/ if(mode & 8) return value;
/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;
/******/ var ns = Object.create(null);
/******/ __webpack_require__.r(ns);
/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value });
/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));
/******/ return ns;
/******/ };
/******/
/******/ // getDefaultExport function for compatibility with non-harmony modules
/******/ __webpack_require__.n = function(module) {
/******/ var getter = module && module.__esModule ?
/******/ function getDefault() { return module['default']; } :
/******/ function getModuleExports() { return module; };
/******/ __webpack_require__.d(getter, 'a', getter);
/******/ return getter;
/******/ };
/******/
/******/ // Object.prototype.hasOwnProperty.call
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
/******/
/******/ // __webpack_public_path__
/******/ __webpack_require__.p = "";
/******/
/******/
/******/ // Load entry module and return exports
/******/ return __webpack_require__(__webpack_require__.s = 0);
/******/ })
/************************************************************************/
/******/ ([
/* 0 */
/***/ (function(module, __webpack_exports__, __webpack_require__) {
"use strict";
// ESM COMPAT FLAG
__webpack_require__.r(__webpack_exports__);
// EXPORTS
__webpack_require__.d(__webpack_exports__, "PairingChannel", function() { return /* binding */ src_PairingChannel; });
__webpack_require__.d(__webpack_exports__, "base64urlToBytes", function() { return /* reexport */ base64urlToBytes; });
__webpack_require__.d(__webpack_exports__, "bytesToBase64url", function() { return /* reexport */ bytesToBase64url; });
__webpack_require__.d(__webpack_exports__, "bytesToHex", function() { return /* reexport */ bytesToHex; });
__webpack_require__.d(__webpack_exports__, "bytesToUtf8", function() { return /* reexport */ bytesToUtf8; });
__webpack_require__.d(__webpack_exports__, "hexToBytes", function() { return /* reexport */ hexToBytes; });
__webpack_require__.d(__webpack_exports__, "TLSCloseNotify", function() { return /* reexport */ TLSCloseNotify; });
__webpack_require__.d(__webpack_exports__, "TLSError", function() { return /* reexport */ TLSError; });
__webpack_require__.d(__webpack_exports__, "utf8ToBytes", function() { return /* reexport */ utf8ToBytes; });
__webpack_require__.d(__webpack_exports__, "_internals", function() { return /* binding */ _internals; });
// CONCATENATED MODULE: ./src/alerts.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* eslint-disable sorting/sort-object-props */
const ALERT_LEVEL = {
WARNING: 1,
FATAL: 2
};
const ALERT_DESCRIPTION = {
CLOSE_NOTIFY: 0,
UNEXPECTED_MESSAGE: 10,
BAD_RECORD_MAC: 20,
RECORD_OVERFLOW: 22,
HANDSHAKE_FAILURE: 40,
ILLEGAL_PARAMETER: 47,
DECODE_ERROR: 50,
DECRYPT_ERROR: 51,
PROTOCOL_VERSION: 70,
INTERNAL_ERROR: 80,
MISSING_EXTENSION: 109,
UNSUPPORTED_EXTENSION: 110,
UNKNOWN_PSK_IDENTITY: 115,
NO_APPLICATION_PROTOCOL: 120,
};
/* eslint-enable sorting/sort-object-props */
function alertTypeToName(type) {
for (const name in ALERT_DESCRIPTION) {
if (ALERT_DESCRIPTION[name] === type) {
return `${name} (${type})`;
}
}
return `UNKNOWN (${type})`;
}
class TLSAlert extends Error {
constructor(description, level) {
super(`TLS Alert: ${alertTypeToName(description)}`);
this.description = description;
this.level = level;
}
static fromBytes(bytes) {
if (bytes.byteLength !== 2) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
switch (bytes[1]) {
case ALERT_DESCRIPTION.CLOSE_NOTIFY:
if (bytes[0] !== ALERT_LEVEL.WARNING) {
// Close notifications should be fatal.
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
return new TLSCloseNotify();
default:
return new TLSError(bytes[1]);
}
}
toBytes() {
return new Uint8Array([this.level, this.description]);
}
}
class TLSCloseNotify extends TLSAlert {
constructor() {
super(ALERT_DESCRIPTION.CLOSE_NOTIFY, ALERT_LEVEL.WARNING);
}
}
class TLSError extends TLSAlert {
constructor(description = ALERT_DESCRIPTION.INTERNAL_ERROR) {
super(description, ALERT_LEVEL.FATAL);
}
}
// CONCATENATED MODULE: ./src/utils.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Various low-level utility functions.
//
// These are mostly conveniences for working with Uint8Arrays as
// the primitive "bytes" type.
//
const UTF8_ENCODER = new TextEncoder();
const UTF8_DECODER = new TextDecoder();
function noop() {}
function assert(cond, msg) {
if (! cond) {
throw new Error('assert failed: ' + msg);
}
}
function assertIsBytes(value, msg = 'value must be a Uint8Array') {
// Using `value instanceof Uint8Array` seems to fail in Firefox chrome code
// for inscrutable reasons, so we do a less direct check.
assert(ArrayBuffer.isView(value), msg);
assert(value.BYTES_PER_ELEMENT === 1, msg);
return value;
}
const EMPTY = new Uint8Array(0);
function zeros(n) {
return new Uint8Array(n);
}
function arrayToBytes(value) {
return new Uint8Array(value);
}
function bytesToHex(bytes) {
return Array.prototype.map.call(bytes, byte => {
let s = byte.toString(16);
if (s.length === 1) {
s = '0' + s;
}
return s;
}).join('');
}
function hexToBytes(hexstr) {
assert(hexstr.length % 2 === 0, 'hexstr.length must be even');
return new Uint8Array(Array.prototype.map.call(hexstr, (c, n) => {
if (n % 2 === 1) {
return hexstr[n - 1] + c;
} else {
return '';
}
}).filter(s => {
return !! s;
}).map(s => {
return parseInt(s, 16);
}));
}
function bytesToUtf8(bytes) {
return UTF8_DECODER.decode(bytes);
}
function utf8ToBytes(str) {
return UTF8_ENCODER.encode(str);
}
function bytesToBase64url(bytes) {
// XXX TODO: try to use something constant-time, in case calling code
// uses it to encode secrets?
const charCodes = String.fromCharCode.apply(String, bytes);
return btoa(charCodes).replace(/\+/g, '-').replace(/\//g, '_');
}
function base64urlToBytes(str) {
// XXX TODO: try to use something constant-time, in case calling code
// uses it to decode secrets?
str = atob(str.replace(/-/g, '+').replace(/_/g, '/'));
const bytes = new Uint8Array(str.length);
for (let i = 0; i < str.length; i++) {
bytes[i] = str.charCodeAt(i);
}
return bytes;
}
function bytesAreEqual(v1, v2) {
assertIsBytes(v1);
assertIsBytes(v2);
if (v1.length !== v2.length) {
return false;
}
for (let i = 0; i < v1.length; i++) {
if (v1[i] !== v2[i]) {
return false;
}
}
return true;
}
// The `BufferReader` and `BufferWriter` classes are helpers for dealing with the
// binary struct format that's used for various TLS message. Think of them as a
// buffer with a pointer to the "current position" and a bunch of helper methods
// to read/write structured data and advance said pointer.
class utils_BufferWithPointer {
constructor(buf) {
this._buffer = buf;
this._dataview = new DataView(buf.buffer, buf.byteOffset, buf.byteLength);
this._pos = 0;
}
length() {
return this._buffer.byteLength;
}
tell() {
return this._pos;
}
seek(pos) {
if (pos < 0) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
if (pos > this.length()) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
this._pos = pos;
}
incr(offset) {
this.seek(this._pos + offset);
}
}
// The `BufferReader` class helps you read structured data from a byte array.
// It offers methods for reading both primitive values, and the variable-length
// vector structures defined in https://tools.ietf.org/html/rfc8446#section-3.4.
//
// Such vectors are represented as a length followed by the concatenated
// bytes of each item, and the size of the length field is determined by
// the maximum allowed number of bytes in the vector. For example
// to read a vector that may contain up to 65535 bytes, use `readVector16`.
//
// To read a variable-length vector of between 1 and 100 uint16 values,
// defined in the RFC like this:
//
// uint16 items<2..200>;
//
// You would do something like this:
//
// const items = []
// buf.readVector8(buf => {
// items.push(buf.readUint16())
// })
//
// The various `read` will throw `DECODE_ERROR` if you attempt to read path
// the end of the buffer, or past the end of a variable-length list.
//
class utils_BufferReader extends utils_BufferWithPointer {
hasMoreBytes() {
return this.tell() < this.length();
}
readBytes(length) {
// This avoids copies by returning a view onto the existing buffer.
const start = this._buffer.byteOffset + this.tell();
this.incr(length);
return new Uint8Array(this._buffer.buffer, start, length);
}
_rangeErrorToAlert(cb) {
try {
return cb(this);
} catch (err) {
if (err instanceof RangeError) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
throw err;
}
}
readUint8() {
return this._rangeErrorToAlert(() => {
const n = this._dataview.getUint8(this._pos);
this.incr(1);
return n;
});
}
readUint16() {
return this._rangeErrorToAlert(() => {
const n = this._dataview.getUint16(this._pos);
this.incr(2);
return n;
});
}
readUint24() {
return this._rangeErrorToAlert(() => {
let n = this._dataview.getUint16(this._pos);
n = (n << 8) | this._dataview.getUint8(this._pos + 2);
this.incr(3);
return n;
});
}
readUint32() {
return this._rangeErrorToAlert(() => {
const n = this._dataview.getUint32(this._pos);
this.incr(4);
return n;
});
}
_readVector(length, cb) {
const contentsBuf = new utils_BufferReader(this.readBytes(length));
const expectedEnd = this.tell();
// Keep calling the callback until we've consumed the expected number of bytes.
let n = 0;
while (contentsBuf.hasMoreBytes()) {
const prevPos = contentsBuf.tell();
cb(contentsBuf, n);
// Check that the callback made forward progress, otherwise we'll infinite loop.
if (contentsBuf.tell() <= prevPos) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
n += 1;
}
// Check that the callback correctly consumed the vector's entire contents.
if (this.tell() !== expectedEnd) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
}
readVector8(cb) {
const length = this.readUint8();
return this._readVector(length, cb);
}
readVector16(cb) {
const length = this.readUint16();
return this._readVector(length, cb);
}
readVector24(cb) {
const length = this.readUint24();
return this._readVector(length, cb);
}
readVectorBytes8() {
return this.readBytes(this.readUint8());
}
readVectorBytes16() {
return this.readBytes(this.readUint16());
}
readVectorBytes24() {
return this.readBytes(this.readUint24());
}
}
class utils_BufferWriter extends utils_BufferWithPointer {
constructor(size = 1024) {
super(new Uint8Array(size));
}
_maybeGrow(n) {
const curSize = this._buffer.byteLength;
const newPos = this._pos + n;
const shortfall = newPos - curSize;
if (shortfall > 0) {
// Classic grow-by-doubling, up to 4kB max increment.
// This formula was not arrived at by any particular science.
const incr = Math.min(curSize, 4 * 1024);
const newbuf = new Uint8Array(curSize + Math.ceil(shortfall / incr) * incr);
newbuf.set(this._buffer, 0);
this._buffer = newbuf;
this._dataview = new DataView(newbuf.buffer, newbuf.byteOffset, newbuf.byteLength);
}
}
slice(start = 0, end = this.tell()) {
if (end < 0) {
end = this.tell() + end;
}
if (start < 0) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
if (end < 0) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
if (end > this.length()) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
return this._buffer.slice(start, end);
}
flush() {
const slice = this.slice();
this.seek(0);
return slice;
}
writeBytes(data) {
this._maybeGrow(data.byteLength);
this._buffer.set(data, this.tell());
this.incr(data.byteLength);
}
writeUint8(n) {
this._maybeGrow(1);
this._dataview.setUint8(this._pos, n);
this.incr(1);
}
writeUint16(n) {
this._maybeGrow(2);
this._dataview.setUint16(this._pos, n);
this.incr(2);
}
writeUint24(n) {
this._maybeGrow(3);
this._dataview.setUint16(this._pos, n >> 8);
this._dataview.setUint8(this._pos + 2, n & 0xFF);
this.incr(3);
}
writeUint32(n) {
this._maybeGrow(4);
this._dataview.setUint32(this._pos, n);
this.incr(4);
}
// These are helpers for writing the variable-length vector structure
// defined in https://tools.ietf.org/html/rfc8446#section-3.4.
//
// Such vectors are represented as a length followed by the concatenated
// bytes of each item, and the size of the length field is determined by
// the maximum allowed size of the vector. For example to write a vector
// that may contain up to 65535 bytes, use `writeVector16`.
//
// To write a variable-length vector of between 1 and 100 uint16 values,
// defined in the RFC like this:
//
// uint16 items<2..200>;
//
// You would do something like this:
//
// buf.writeVector8(buf => {
// for (let item of items) {
// buf.writeUint16(item)
// }
// })
//
// The helper will automatically take care of writing the appropriate
// length field once the callback completes.
_writeVector(maxLength, writeLength, cb) {
// Initially, write the length field as zero.
const lengthPos = this.tell();
writeLength(0);
// Call the callback to write the vector items.
const bodyPos = this.tell();
cb(this);
const length = this.tell() - bodyPos;
if (length >= maxLength) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
// Backfill the actual length field.
this.seek(lengthPos);
writeLength(length);
this.incr(length);
return length;
}
writeVector8(cb) {
return this._writeVector(Math.pow(2, 8), len => this.writeUint8(len), cb);
}
writeVector16(cb) {
return this._writeVector(Math.pow(2, 16), len => this.writeUint16(len), cb);
}
writeVector24(cb) {
return this._writeVector(Math.pow(2, 24), len => this.writeUint24(len), cb);
}
writeVectorBytes8(bytes) {
return this.writeVector8(buf => {
buf.writeBytes(bytes);
});
}
writeVectorBytes16(bytes) {
return this.writeVector16(buf => {
buf.writeBytes(bytes);
});
}
writeVectorBytes24(bytes) {
return this.writeVector24(buf => {
buf.writeBytes(bytes);
});
}
}
// CONCATENATED MODULE: ./src/crypto.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Low-level crypto primitives.
//
// This file implements the AEAD encrypt/decrypt and hashing routines
// for the TLS_AES_128_GCM_SHA256 ciphersuite. They are (thankfully)
// fairly light-weight wrappers around what's available via the WebCrypto
// API.
//
const AEAD_SIZE_INFLATION = 16;
const KEY_LENGTH = 16;
const IV_LENGTH = 12;
const HASH_LENGTH = 32;
async function prepareKey(key, mode) {
return crypto.subtle.importKey('raw', key, { name: 'AES-GCM' }, false, [mode]);
}
async function encrypt(key, iv, plaintext, additionalData) {
const ciphertext = await crypto.subtle.encrypt({
additionalData,
iv,
name: 'AES-GCM',
tagLength: AEAD_SIZE_INFLATION * 8
}, key, plaintext);
return new Uint8Array(ciphertext);
}
async function decrypt(key, iv, ciphertext, additionalData) {
try {
const plaintext = await crypto.subtle.decrypt({
additionalData,
iv,
name: 'AES-GCM',
tagLength: AEAD_SIZE_INFLATION * 8
}, key, ciphertext);
return new Uint8Array(plaintext);
} catch (err) {
// Yes, we really do throw 'decrypt_error' when failing to verify a HMAC,
// and a 'bad_record_mac' error when failing to decrypt.
throw new TLSError(ALERT_DESCRIPTION.BAD_RECORD_MAC);
}
}
async function hash(message) {
return new Uint8Array(await crypto.subtle.digest({ name: 'SHA-256' }, message));
}
async function hmac(keyBytes, message) {
const key = await crypto.subtle.importKey('raw', keyBytes, {
hash: { name: 'SHA-256' },
name: 'HMAC',
}, false, ['sign']);
const sig = await crypto.subtle.sign({ name: 'HMAC' }, key, message);
return new Uint8Array(sig);
}
async function verifyHmac(keyBytes, signature, message) {
const key = await crypto.subtle.importKey('raw', keyBytes, {
hash: { name: 'SHA-256' },
name: 'HMAC',
}, false, ['verify']);
if (! (await crypto.subtle.verify({ name: 'HMAC' }, key, signature, message))) {
// Yes, we really do throw 'decrypt_error' when failing to verify a HMAC,
// and a 'bad_record_mac' error when failing to decrypt.
throw new TLSError(ALERT_DESCRIPTION.DECRYPT_ERROR);
}
}
async function hkdfExtract(salt, ikm) {
// Ref https://tools.ietf.org/html/rfc5869#section-2.2
return await hmac(salt, ikm);
}
async function hkdfExpand(prk, info, length) {
// Ref https://tools.ietf.org/html/rfc5869#section-2.3
const N = Math.ceil(length / HASH_LENGTH);
if (N <= 0) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
if (N >= 255) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
const input = new utils_BufferWriter();
const output = new utils_BufferWriter();
let T = new Uint8Array(0);
for (let i = 1; i <= N; i++) {
input.writeBytes(T);
input.writeBytes(info);
input.writeUint8(i);
T = await hmac(prk, input.flush());
output.writeBytes(T);
}
return output.slice(0, length);
}
async function hkdfExpandLabel(secret, label, context, length) {
// struct {
// uint16 length = Length;
// opaque label < 7..255 > = "tls13 " + Label;
// opaque context < 0..255 > = Context;
// } HkdfLabel;
const hkdfLabel = new utils_BufferWriter();
hkdfLabel.writeUint16(length);
hkdfLabel.writeVectorBytes8(utf8ToBytes('tls13 ' + label));
hkdfLabel.writeVectorBytes8(context);
return hkdfExpand(secret, hkdfLabel.flush(), length);
}
async function getRandomBytes(size) {
const bytes = new Uint8Array(size);
crypto.getRandomValues(bytes);
return bytes;
}
// CONCATENATED MODULE: ./src/extensions.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Extension parsing.
//
// This file contains some helpers for reading/writing the various kinds
// of Extension that might appear in a HandshakeMessage.
//
// "Extensions" are how TLS signals the presence of particular bits of optional
// functionality in the protocol. Lots of parts of TLS1.3 that don't seem like
// they're optional are implemented in terms of an extension, IIUC because that's
// what was needed for a clean deployment in amongst earlier versions of the protocol.
//
/* eslint-disable sorting/sort-object-props */
const EXTENSION_TYPE = {
PRE_SHARED_KEY: 41,
SUPPORTED_VERSIONS: 43,
PSK_KEY_EXCHANGE_MODES: 45,
};
/* eslint-enable sorting/sort-object-props */
// Base class for generic reading/writing of extensions,
// which are all uniformly formatted as:
//
// struct {
// ExtensionType extension_type;
// opaque extension_data<0..2^16-1>;
// } Extension;
//
// Extensions always appear inside of a handshake message,
// and their internal structure may differ based on the
// type of that message.
class extensions_Extension {
get TYPE_TAG() {
throw new Error('not implemented');
}
static read(messageType, buf) {
const type = buf.readUint16();
let ext = {
TYPE_TAG: type,
};
buf.readVector16(buf => {
switch (type) {
case EXTENSION_TYPE.PRE_SHARED_KEY:
ext = extensions_PreSharedKeyExtension._read(messageType, buf);
break;
case EXTENSION_TYPE.SUPPORTED_VERSIONS:
ext = extensions_SupportedVersionsExtension._read(messageType, buf);
break;
case EXTENSION_TYPE.PSK_KEY_EXCHANGE_MODES:
ext = extensions_PskKeyExchangeModesExtension._read(messageType, buf);
break;
default:
// Skip over unrecognised extensions.
buf.incr(buf.length());
}
if (buf.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
});
return ext;
}
write(messageType, buf) {
buf.writeUint16(this.TYPE_TAG);
buf.writeVector16(buf => {
this._write(messageType, buf);
});
}
static _read(messageType, buf) {
throw new Error('not implemented');
}
static _write(messageType, buf) {
throw new Error('not implemented');
}
}
// The PreSharedKey extension:
//
// struct {
// opaque identity<1..2^16-1>;
// uint32 obfuscated_ticket_age;
// } PskIdentity;
// opaque PskBinderEntry<32..255>;
// struct {
// PskIdentity identities<7..2^16-1>;
// PskBinderEntry binders<33..2^16-1>;
// } OfferedPsks;
// struct {
// select(Handshake.msg_type) {
// case client_hello: OfferedPsks;
// case server_hello: uint16 selected_identity;
// };
// } PreSharedKeyExtension;
class extensions_PreSharedKeyExtension extends extensions_Extension {
constructor(identities, binders, selectedIdentity) {
super();
this.identities = identities;
this.binders = binders;
this.selectedIdentity = selectedIdentity;
}
get TYPE_TAG() {
return EXTENSION_TYPE.PRE_SHARED_KEY;
}
static _read(messageType, buf) {
let identities = null, binders = null, selectedIdentity = null;
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
identities = []; binders = [];
buf.readVector16(buf => {
const identity = buf.readVectorBytes16();
buf.readBytes(4); // Skip over the ticket age.
identities.push(identity);
});
buf.readVector16(buf => {
const binder = buf.readVectorBytes8();
if (binder.byteLength < HASH_LENGTH) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
binders.push(binder);
});
if (identities.length !== binders.length) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
break;
case HANDSHAKE_TYPE.SERVER_HELLO:
selectedIdentity = buf.readUint16();
break;
default:
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
return new this(identities, binders, selectedIdentity);
}
_write(messageType, buf) {
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
buf.writeVector16(buf => {
this.identities.forEach(pskId => {
buf.writeVectorBytes16(pskId);
buf.writeUint32(0); // Zero for "tag age" field.
});
});
buf.writeVector16(buf => {
this.binders.forEach(pskBinder => {
buf.writeVectorBytes8(pskBinder);
});
});
break;
case HANDSHAKE_TYPE.SERVER_HELLO:
buf.writeUint16(this.selectedIdentity);
break;
default:
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
}
}
// The SupportedVersions extension:
//
// struct {
// select(Handshake.msg_type) {
// case client_hello:
// ProtocolVersion versions < 2..254 >;
// case server_hello:
// ProtocolVersion selected_version;
// };
// } SupportedVersions;
class extensions_SupportedVersionsExtension extends extensions_Extension {
constructor(versions, selectedVersion) {
super();
this.versions = versions;
this.selectedVersion = selectedVersion;
}
get TYPE_TAG() {
return EXTENSION_TYPE.SUPPORTED_VERSIONS;
}
static _read(messageType, buf) {
let versions = null, selectedVersion = null;
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
versions = [];
buf.readVector8(buf => {
versions.push(buf.readUint16());
});
break;
case HANDSHAKE_TYPE.SERVER_HELLO:
selectedVersion = buf.readUint16();
break;
default:
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
return new this(versions, selectedVersion);
}
_write(messageType, buf) {
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
buf.writeVector8(buf => {
this.versions.forEach(version => {
buf.writeUint16(version);
});
});
break;
case HANDSHAKE_TYPE.SERVER_HELLO:
buf.writeUint16(this.selectedVersion);
break;
default:
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
}
}
class extensions_PskKeyExchangeModesExtension extends extensions_Extension {
constructor(modes) {
super();
this.modes = modes;
}
get TYPE_TAG() {
return EXTENSION_TYPE.PSK_KEY_EXCHANGE_MODES;
}
static _read(messageType, buf) {
const modes = [];
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
buf.readVector8(buf => {
modes.push(buf.readUint8());
});
break;
default:
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
return new this(modes);
}
_write(messageType, buf) {
switch (messageType) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
buf.writeVector8(buf => {
this.modes.forEach(mode => {
buf.writeUint8(mode);
});
});
break;
default:
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
}
}
// CONCATENATED MODULE: ./src/constants.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
const VERSION_TLS_1_0 = 0x0301;
const VERSION_TLS_1_2 = 0x0303;
const VERSION_TLS_1_3 = 0x0304;
const TLS_AES_128_GCM_SHA256 = 0x1301;
const PSK_MODE_KE = 0;
// CONCATENATED MODULE: ./src/messages.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// Message parsing.
//
// Herein we have code for reading and writing the various Handshake
// messages involved in the TLS protocol.
//
/* eslint-disable sorting/sort-object-props */
const HANDSHAKE_TYPE = {
CLIENT_HELLO: 1,
SERVER_HELLO: 2,
NEW_SESSION_TICKET: 4,
ENCRYPTED_EXTENSIONS: 8,
FINISHED: 20,
};
/* eslint-enable sorting/sort-object-props */
// Base class for generic reading/writing of handshake messages,
// which are all uniformly formatted as:
//
// struct {
// HandshakeType msg_type; /* handshake type */
// uint24 length; /* bytes in message */
// select(Handshake.msg_type) {
// ... type specific cases here ...
// };
// } Handshake;
class messages_HandshakeMessage {
get TYPE_TAG() {
throw new Error('not implemented');
}
static fromBytes(bytes) {
// Each handshake message has a type and length prefix, per
// https://tools.ietf.org/html/rfc8446#appendix-B.3
const buf = new utils_BufferReader(bytes);
const msg = this.read(buf);
if (buf.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
return msg;
}
toBytes() {
const buf = new utils_BufferWriter();
this.write(buf);
return buf.flush();
}
static read(buf) {
const type = buf.readUint8();
let msg = null;
buf.readVector24(buf => {
switch (type) {
case HANDSHAKE_TYPE.CLIENT_HELLO:
msg = messages_ClientHello._read(buf);
break;
case HANDSHAKE_TYPE.SERVER_HELLO:
msg = messages_ServerHello._read(buf);
break;
case HANDSHAKE_TYPE.NEW_SESSION_TICKET:
msg = messages_NewSessionTicket._read(buf);
break;
case HANDSHAKE_TYPE.ENCRYPTED_EXTENSIONS:
msg = EncryptedExtensions._read(buf);
break;
case HANDSHAKE_TYPE.FINISHED:
msg = messages_Finished._read(buf);
break;
}
if (buf.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
});
if (msg === null) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
return msg;
}
write(buf) {
buf.writeUint8(this.TYPE_TAG);
buf.writeVector24(buf => {
this._write(buf);
});
}
static _read(buf) {
throw new Error('not implemented');
}
_write(buf) {
throw new Error('not implemented');
}
// Some little helpers for reading a list of extensions,
// which is uniformly represented as:
//
// Extension extensions<8..2^16-1>;
//
// Recognized extensions are returned as a Map from extension type
// to extension data object, with a special `lastSeenExtension`
// property to make it easy to check which one came last.
static _readExtensions(messageType, buf) {
const extensions = new Map();
buf.readVector16(buf => {
const ext = extensions_Extension.read(messageType, buf);
if (extensions.has(ext.TYPE_TAG)) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
extensions.set(ext.TYPE_TAG, ext);
extensions.lastSeenExtension = ext.TYPE_TAG;
});
return extensions;
}
_writeExtensions(buf, extensions) {
buf.writeVector16(buf => {
extensions.forEach(ext => {
ext.write(this.TYPE_TAG, buf);
});
});
}
}
// The ClientHello message:
//
// struct {
// ProtocolVersion legacy_version = 0x0303;
// Random random;
// opaque legacy_session_id<0..32>;
// CipherSuite cipher_suites<2..2^16-2>;
// opaque legacy_compression_methods<1..2^8-1>;
// Extension extensions<8..2^16-1>;
// } ClientHello;
class messages_ClientHello extends messages_HandshakeMessage {
constructor(random, sessionId, extensions) {
super();
this.random = random;
this.sessionId = sessionId;
this.extensions = extensions;
}
get TYPE_TAG() {
return HANDSHAKE_TYPE.CLIENT_HELLO;
}
static _read(buf) {
// The legacy_version field may indicate an earlier version of TLS
// for backwards compatibility, but must not predate TLS 1.0!
if (buf.readUint16() < VERSION_TLS_1_0) {
throw new TLSError(ALERT_DESCRIPTION.PROTOCOL_VERSION);
}
// The random bytes provided by the peer.
const random = buf.readBytes(32);
// Read legacy_session_id, so the server can echo it.
const sessionId = buf.readVectorBytes8();
// We only support a single ciphersuite, but the peer may offer several.
// Scan the list to confirm that the one we want is present.
let found = false;
buf.readVector16(buf => {
const cipherSuite = buf.readUint16();
if (cipherSuite === TLS_AES_128_GCM_SHA256) {
found = true;
}
});
if (! found) {
throw new TLSError(ALERT_DESCRIPTION.HANDSHAKE_FAILURE);
}
// legacy_compression_methods must be a single zero byte for TLS1.3 ClientHellos.
// It can be non-zero in previous versions of TLS, but we're not going to
// make a successful handshake with such versions, so better to just bail out now.
const legacyCompressionMethods = buf.readVectorBytes8();
if (legacyCompressionMethods.byteLength !== 1) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
if (legacyCompressionMethods[0] !== 0x00) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
// Read and check the extensions.
const extensions = this._readExtensions(HANDSHAKE_TYPE.CLIENT_HELLO, buf);
if (! extensions.has(EXTENSION_TYPE.SUPPORTED_VERSIONS)) {
throw new TLSError(ALERT_DESCRIPTION.MISSING_EXTENSION);
}
if (extensions.get(EXTENSION_TYPE.SUPPORTED_VERSIONS).versions.indexOf(VERSION_TLS_1_3) === -1) {
throw new TLSError(ALERT_DESCRIPTION.PROTOCOL_VERSION);
}
// Was the PreSharedKey extension the last one?
if (extensions.has(EXTENSION_TYPE.PRE_SHARED_KEY)) {
if (extensions.lastSeenExtension !== EXTENSION_TYPE.PRE_SHARED_KEY) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
}
return new this(random, sessionId, extensions);
}
_write(buf) {
buf.writeUint16(VERSION_TLS_1_2);
buf.writeBytes(this.random);
buf.writeVectorBytes8(this.sessionId);
// Our single supported ciphersuite
buf.writeVector16(buf => {
buf.writeUint16(TLS_AES_128_GCM_SHA256);
});
// A single zero byte for legacy_compression_methods
buf.writeVectorBytes8(new Uint8Array(1));
this._writeExtensions(buf, this.extensions);
}
}
// The ServerHello message:
//
// struct {
// ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
// Random random;
// opaque legacy_session_id_echo<0..32>;
// CipherSuite cipher_suite;
// uint8 legacy_compression_method = 0;
// Extension extensions < 6..2 ^ 16 - 1 >;
// } ServerHello;
class messages_ServerHello extends messages_HandshakeMessage {
constructor(random, sessionId, extensions) {
super();
this.random = random;
this.sessionId = sessionId;
this.extensions = extensions;
}
get TYPE_TAG() {
return HANDSHAKE_TYPE.SERVER_HELLO;
}
static _read(buf) {
// Fixed value for legacy_version.
if (buf.readUint16() !== VERSION_TLS_1_2) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
// Random bytes from the server.
const random = buf.readBytes(32);
// It should have echoed our vector for legacy_session_id.
const sessionId = buf.readVectorBytes8();
// It should have selected our single offered ciphersuite.
if (buf.readUint16() !== TLS_AES_128_GCM_SHA256) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
// legacy_compression_method must be zero.
if (buf.readUint8() !== 0) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
const extensions = this._readExtensions(HANDSHAKE_TYPE.SERVER_HELLO, buf);
if (! extensions.has(EXTENSION_TYPE.SUPPORTED_VERSIONS)) {
throw new TLSError(ALERT_DESCRIPTION.MISSING_EXTENSION);
}
if (extensions.get(EXTENSION_TYPE.SUPPORTED_VERSIONS).selectedVersion !== VERSION_TLS_1_3) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
return new this(random, sessionId, extensions);
}
_write(buf) {
buf.writeUint16(VERSION_TLS_1_2);
buf.writeBytes(this.random);
buf.writeVectorBytes8(this.sessionId);
// Our single supported ciphersuite
buf.writeUint16(TLS_AES_128_GCM_SHA256);
// A single zero byte for legacy_compression_method
buf.writeUint8(0);
this._writeExtensions(buf, this.extensions);
}
}
// The EncryptedExtensions message:
//
// struct {
// Extension extensions < 0..2 ^ 16 - 1 >;
// } EncryptedExtensions;
//
// We don't actually send any EncryptedExtensions,
// but still have to send an empty message.
class EncryptedExtensions extends messages_HandshakeMessage {
constructor(extensions) {
super();
this.extensions = extensions;
}
get TYPE_TAG() {
return HANDSHAKE_TYPE.ENCRYPTED_EXTENSIONS;
}
static _read(buf) {
const extensions = this._readExtensions(HANDSHAKE_TYPE.ENCRYPTED_EXTENSIONS, buf);
return new this(extensions);
}
_write(buf) {
this._writeExtensions(buf, this.extensions);
}
}
// The Finished message:
//
// struct {
// opaque verify_data[Hash.length];
// } Finished;
class messages_Finished extends messages_HandshakeMessage {
constructor(verifyData) {
super();
this.verifyData = verifyData;
}
get TYPE_TAG() {
return HANDSHAKE_TYPE.FINISHED;
}
static _read(buf) {
const verifyData = buf.readBytes(HASH_LENGTH);
return new this(verifyData);
}
_write(buf) {
buf.writeBytes(this.verifyData);
}
}
// The NewSessionTicket message:
//
// struct {
// uint32 ticket_lifetime;
// uint32 ticket_age_add;
// opaque ticket_nonce < 0..255 >;
// opaque ticket < 1..2 ^ 16 - 1 >;
// Extension extensions < 0..2 ^ 16 - 2 >;
// } NewSessionTicket;
//
// We don't actually make use of these, but we need to be able
// to accept them and do basic validation.
class messages_NewSessionTicket extends messages_HandshakeMessage {
constructor(ticketLifetime, ticketAgeAdd, ticketNonce, ticket, extensions) {
super();
this.ticketLifetime = ticketLifetime;
this.ticketAgeAdd = ticketAgeAdd;
this.ticketNonce = ticketNonce;
this.ticket = ticket;
this.extensions = extensions;
}
get TYPE_TAG() {
return HANDSHAKE_TYPE.NEW_SESSION_TICKET;
}
static _read(buf) {
const ticketLifetime = buf.readUint32();
const ticketAgeAdd = buf.readUint32();
const ticketNonce = buf.readVectorBytes8();
const ticket = buf.readVectorBytes16();
if (ticket.byteLength < 1) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
const extensions = this._readExtensions(HANDSHAKE_TYPE.NEW_SESSION_TICKET, buf);
return new this(ticketLifetime, ticketAgeAdd, ticketNonce, ticket, extensions);
}
_write(buf) {
buf.writeUint32(this.ticketLifetime);
buf.writeUint32(this.ticketAgeAdd);
buf.writeVectorBytes8(this.ticketNonce);
buf.writeVectorBytes16(this.ticket);
this._writeExtensions(buf, this.extensions);
}
}
// CONCATENATED MODULE: ./src/states.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// State-machine for TLS Handshake Management.
//
// Internally, we manage the TLS connection by explicitly modelling the
// client and server state-machines from RFC8446. You can think of
// these `State` objects as little plugins for the `Connection` class
// that provide different behaviours of `send` and `receive` depending
// on the state of the connection.
//
class states_State {
constructor(conn) {
this.conn = conn;
}
async initialize() {
// By default, nothing to do when entering the state.
}
async sendApplicationData(bytes) {
// By default, assume we're not ready to send yet and the caller
// should be blocking on the connection promise before reaching here.
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
async recvApplicationData(bytes) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
async recvHandshakeMessage(msg) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
async recvAlertMessage(alert) {
switch (alert.description) {
case ALERT_DESCRIPTION.CLOSE_NOTIFY:
this.conn._closeForRecv(alert);
throw alert;
default:
return await this.handleErrorAndRethrow(alert);
}
}
async recvChangeCipherSpec(bytes) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
async handleErrorAndRethrow(err) {
let alert = err;
if (! (alert instanceof TLSAlert)) {
alert = new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
// Try to send error alert to the peer, but we may not
// be able to if the outgoing connection was already closed.
try {
await this.conn._sendAlertMessage(alert);
} catch (_) { }
await this.conn._transition(ERROR, err);
throw err;
}
async close() {
const alert = new TLSCloseNotify();
await this.conn._sendAlertMessage(alert);
this.conn._closeForSend(alert);
}
}
// A special "guard" state to prevent us from using
// an improperly-initialized Connection.
class UNINITIALIZED extends states_State {
async initialize() {
throw new Error('uninitialized state');
}
async sendApplicationData(bytes) {
throw new Error('uninitialized state');
}
async recvApplicationData(bytes) {
throw new Error('uninitialized state');
}
async recvHandshakeMessage(msg) {
throw new Error('uninitialized state');
}
async recvChangeCipherSpec(bytes) {
throw new Error('uninitialized state');
}
async handleErrorAndRethrow(err) {
throw err;
}
async close() {
throw new Error('uninitialized state');
}
}
// A special "error" state for when something goes wrong.
// This state never transitions to another state, effectively
// terminating the connection.
class ERROR extends states_State {
async initialize(err) {
this.error = err;
this.conn._setConnectionFailure(err);
// Unceremoniously shut down the record layer on error.
this.conn._recordlayer.setSendError(err);
this.conn._recordlayer.setRecvError(err);
}
async sendApplicationData(bytes) {
throw this.error;
}
async recvApplicationData(bytes) {
throw this.error;
}
async recvHandshakeMessage(msg) {
throw this.error;
}
async recvAlertMessage(err) {
throw this.error;
}
async recvChangeCipherSpec(bytes) {
throw this.error;
}
async handleErrorAndRethrow(err) {
throw err;
}
async close() {
throw this.error;
}
}
// The "connected" state, for when the handshake is complete
// and we're ready to send application-level data.
// The logic for this is largely symmetric between client and server.
class states_CONNECTED extends states_State {
async initialize() {
this.conn._setConnectionSuccess();
}
async sendApplicationData(bytes) {
await this.conn._sendApplicationData(bytes);
}
async recvApplicationData(bytes) {
return bytes;
}
async recvChangeCipherSpec(bytes) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
}
// A base class for states that occur in the middle of the handshake
// (that is, between ClientHello and Finished). These states may receive
// CHANGE_CIPHER_SPEC records for b/w compat reasons, which must contain
// exactly a single 0x01 byte and must otherwise be ignored.
class states_MidHandshakeState extends states_State {
async recvChangeCipherSpec(bytes) {
if (this.conn._hasSeenChangeCipherSpec) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
if (bytes.byteLength !== 1 || bytes[0] !== 1) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
this.conn._hasSeenChangeCipherSpec = true;
}
}
// These states implement (part of) the client state-machine from
// https://tools.ietf.org/html/rfc8446#appendix-A.1
//
// Since we're only implementing a small subset of TLS1.3,
// we only need a small subset of the handshake. It basically goes:
//
// * send ClientHello
// * receive ServerHello
// * receive EncryptedExtensions
// * receive server Finished
// * send client Finished
//
// We include some unused states for completeness, so that it's easier
// to check the implementation against the diagrams in the RFC.
class states_CLIENT_START extends states_State {
async initialize() {
const keyschedule = this.conn._keyschedule;
await keyschedule.addPSK(this.conn.psk);
// Construct a ClientHello message with our single PSK.
// We can't know the PSK binder value yet, so we initially write zeros.
const clientHello = new messages_ClientHello(
// Client random salt.
await getRandomBytes(32),
// Random legacy_session_id; we *could* send an empty string here,
// but sending a random one makes it easier to be compatible with
// the data emitted by tlslite-ng for test-case generation.
await getRandomBytes(32),
[
new extensions_SupportedVersionsExtension([VERSION_TLS_1_3]),
new extensions_PskKeyExchangeModesExtension([PSK_MODE_KE]),
new extensions_PreSharedKeyExtension([this.conn.pskId], [zeros(HASH_LENGTH)]),
],
);
const buf = new utils_BufferWriter();
clientHello.write(buf);
// Now that we know what the ClientHello looks like,
// go back and calculate the appropriate PSK binder value.
// We only support a single PSK, so the length of the binders field is the
// length of the hash plus one for rendering it as a variable-length byte array,
// plus two for rendering the variable-length list of PSK binders.
const PSK_BINDERS_SIZE = HASH_LENGTH + 1 + 2;
const truncatedTranscript = buf.slice(0, buf.tell() - PSK_BINDERS_SIZE);
const pskBinder = await keyschedule.calculateFinishedMAC(keyschedule.extBinderKey, truncatedTranscript);
buf.incr(-HASH_LENGTH);
buf.writeBytes(pskBinder);
await this.conn._sendHandshakeMessageBytes(buf.flush());
await this.conn._transition(states_CLIENT_WAIT_SH, clientHello.sessionId);
}
}
class states_CLIENT_WAIT_SH extends states_State {
async initialize(sessionId) {
this._sessionId = sessionId;
}
async recvHandshakeMessage(msg) {
if (! (msg instanceof messages_ServerHello)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
if (! bytesAreEqual(msg.sessionId, this._sessionId)) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
const pskExt = msg.extensions.get(EXTENSION_TYPE.PRE_SHARED_KEY);
if (! pskExt) {
throw new TLSError(ALERT_DESCRIPTION.MISSING_EXTENSION);
}
// We expect only the SUPPORTED_VERSIONS and PRE_SHARED_KEY extensions.
if (msg.extensions.size !== 2) {
throw new TLSError(ALERT_DESCRIPTION.UNSUPPORTED_EXTENSION);
}
if (pskExt.selectedIdentity !== 0) {
throw new TLSError(ALERT_DESCRIPTION.ILLEGAL_PARAMETER);
}
await this.conn._keyschedule.addECDHE(null);
await this.conn._setSendKey(this.conn._keyschedule.clientHandshakeTrafficSecret);
await this.conn._setRecvKey(this.conn._keyschedule.serverHandshakeTrafficSecret);
await this.conn._transition(states_CLIENT_WAIT_EE);
}
}
class states_CLIENT_WAIT_EE extends states_MidHandshakeState {
async recvHandshakeMessage(msg) {
// We don't make use of any encrypted extensions, but we still
// have to wait for the server to send the (empty) list of them.
if (! (msg instanceof EncryptedExtensions)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
// We do not support any EncryptedExtensions.
if (msg.extensions.size !== 0) {
throw new TLSError(ALERT_DESCRIPTION.UNSUPPORTED_EXTENSION);
}
const keyschedule = this.conn._keyschedule;
const serverFinishedTranscript = keyschedule.getTranscript();
await this.conn._transition(states_CLIENT_WAIT_FINISHED, serverFinishedTranscript);
}
}
class states_CLIENT_WAIT_FINISHED extends states_State {
async initialize(serverFinishedTranscript) {
this._serverFinishedTranscript = serverFinishedTranscript;
}
async recvHandshakeMessage(msg) {
if (! (msg instanceof messages_Finished)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
// Verify server Finished MAC.
const keyschedule = this.conn._keyschedule;
await keyschedule.verifyFinishedMAC(keyschedule.serverHandshakeTrafficSecret, msg.verifyData, this._serverFinishedTranscript);
// Send our own Finished message in return.
// This must be encrypted with the handshake traffic key,
// but must not appear in the transcript used to calculate the application keys.
const clientFinishedMAC = await keyschedule.calculateFinishedMAC(keyschedule.clientHandshakeTrafficSecret);
await keyschedule.finalize();
await this.conn._sendHandshakeMessage(new messages_Finished(clientFinishedMAC));
await this.conn._setSendKey(keyschedule.clientApplicationTrafficSecret);
await this.conn._setRecvKey(keyschedule.serverApplicationTrafficSecret);
await this.conn._transition(states_CLIENT_CONNECTED);
}
}
class states_CLIENT_CONNECTED extends states_CONNECTED {
async recvHandshakeMessage(msg) {
// A connected client must be prepared to accept NewSessionTicket
// messages. We never use them, but other server implementations
// might send them.
if (! (msg instanceof messages_NewSessionTicket)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
}
}
// These states implement (part of) the server state-machine from
// https://tools.ietf.org/html/rfc8446#appendix-A.2
//
// Since we're only implementing a small subset of TLS1.3,
// we only need a small subset of the handshake. It basically goes:
//
// * receive ClientHello
// * send ServerHello
// * send empty EncryptedExtensions
// * send server Finished
// * receive client Finished
//
// We include some unused states for completeness, so that it's easier
// to check the implementation against the diagrams in the RFC.
class states_SERVER_START extends states_State {
async recvHandshakeMessage(msg) {
if (! (msg instanceof messages_ClientHello)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
// In the spec, this is where we select connection parameters, and maybe
// tell the client to try again if we can't find a compatible set.
// Since we only support a fixed cipherset, the only thing to "negotiate"
// is whether they provided an acceptable PSK.
const pskExt = msg.extensions.get(EXTENSION_TYPE.PRE_SHARED_KEY);
const pskModesExt = msg.extensions.get(EXTENSION_TYPE.PSK_KEY_EXCHANGE_MODES);
if (! pskExt || ! pskModesExt) {
throw new TLSError(ALERT_DESCRIPTION.MISSING_EXTENSION);
}
if (pskModesExt.modes.indexOf(PSK_MODE_KE) === -1) {
throw new TLSError(ALERT_DESCRIPTION.HANDSHAKE_FAILURE);
}
const pskIndex = pskExt.identities.findIndex(pskId => bytesAreEqual(pskId, this.conn.pskId));
if (pskIndex === -1) {
throw new TLSError(ALERT_DESCRIPTION.UNKNOWN_PSK_IDENTITY);
}
await this.conn._keyschedule.addPSK(this.conn.psk);
// Validate the PSK binder.
const keyschedule = this.conn._keyschedule;
const transcript = keyschedule.getTranscript();
// Calculate size occupied by the PSK binders.
let pskBindersSize = 2; // Vector16 representation overhead.
for (const binder of pskExt.binders) {
pskBindersSize += binder.byteLength + 1; // Vector8 representation overhead.
}
await keyschedule.verifyFinishedMAC(keyschedule.extBinderKey, pskExt.binders[pskIndex], transcript.slice(0, -pskBindersSize));
await this.conn._transition(states_SERVER_NEGOTIATED, msg.sessionId, pskIndex);
}
}
class states_SERVER_NEGOTIATED extends states_MidHandshakeState {
async initialize(sessionId, pskIndex) {
await this.conn._sendHandshakeMessage(new messages_ServerHello(
// Server random
await getRandomBytes(32),
sessionId,
[
new extensions_SupportedVersionsExtension(null, VERSION_TLS_1_3),
new extensions_PreSharedKeyExtension(null, null, pskIndex),
]
));
// If the client sent a non-empty sessionId, the server *must* send a change-cipher-spec for b/w compat.
if (sessionId.byteLength > 0) {
await this.conn._sendChangeCipherSpec();
}
// We can now transition to the encrypted part of the handshake.
const keyschedule = this.conn._keyschedule;
await keyschedule.addECDHE(null);
await this.conn._setSendKey(keyschedule.serverHandshakeTrafficSecret);
await this.conn._setRecvKey(keyschedule.clientHandshakeTrafficSecret);
// Send an empty EncryptedExtensions message.
await this.conn._sendHandshakeMessage(new EncryptedExtensions([]));
// Send the Finished message.
const serverFinishedMAC = await keyschedule.calculateFinishedMAC(keyschedule.serverHandshakeTrafficSecret);
await this.conn._sendHandshakeMessage(new messages_Finished(serverFinishedMAC));
// We can now *send* using the application traffic key,
// but have to wait to receive the client Finished before receiving under that key.
// We need to remember the handshake state from before the client Finished
// in order to successfully verify the client Finished.
const clientFinishedTranscript = await keyschedule.getTranscript();
const clientHandshakeTrafficSecret = keyschedule.clientHandshakeTrafficSecret;
await keyschedule.finalize();
await this.conn._setSendKey(keyschedule.serverApplicationTrafficSecret);
await this.conn._transition(states_SERVER_WAIT_FINISHED, clientHandshakeTrafficSecret, clientFinishedTranscript);
}
}
class states_SERVER_WAIT_FINISHED extends states_MidHandshakeState {
async initialize(clientHandshakeTrafficSecret, clientFinishedTranscript) {
this._clientHandshakeTrafficSecret = clientHandshakeTrafficSecret;
this._clientFinishedTranscript = clientFinishedTranscript;
}
async recvHandshakeMessage(msg) {
if (! (msg instanceof messages_Finished)) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
const keyschedule = this.conn._keyschedule;
await keyschedule.verifyFinishedMAC(this._clientHandshakeTrafficSecret, msg.verifyData, this._clientFinishedTranscript);
this._clientHandshakeTrafficSecret = this._clientFinishedTranscript = null;
await this.conn._setRecvKey(keyschedule.clientApplicationTrafficSecret);
await this.conn._transition(states_CONNECTED);
}
}
// CONCATENATED MODULE: ./src/keyschedule.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// TLS1.3 Key Schedule.
//
// In this file we implement the "key schedule" from
// https://tools.ietf.org/html/rfc8446#section-7.1, which
// defines how to calculate various keys as the handshake
// state progresses.
// The `KeySchedule` class progresses through three stages corresponding
// to the three phases of the TLS1.3 key schedule:
//
// UNINITIALIZED
// |
// | addPSK()
// v
// EARLY_SECRET
// |
// | addECDHE()
// v
// HANDSHAKE_SECRET
// |
// | finalize()
// v
// MASTER_SECRET
//
// It will error out if the calling code attempts to add key material
// in the wrong order.
const STAGE_UNINITIALIZED = 0;
const STAGE_EARLY_SECRET = 1;
const STAGE_HANDSHAKE_SECRET = 2;
const STAGE_MASTER_SECRET = 3;
class keyschedule_KeySchedule {
constructor() {
this.stage = STAGE_UNINITIALIZED;
// WebCrypto doesn't support a rolling hash construct, so we have to
// keep the entire message transcript in memory.
this.transcript = new utils_BufferWriter();
// This tracks the main secret from with other keys are derived at each stage.
this.secret = null;
// And these are all the various keys we'll derive as the handshake progresses.
this.extBinderKey = null;
this.clientHandshakeTrafficSecret = null;
this.serverHandshakeTrafficSecret = null;
this.clientApplicationTrafficSecret = null;
this.serverApplicationTrafficSecret = null;
}
async addPSK(psk) {
// Use the selected PSK (if any) to calculate the "early secret".
if (psk === null) {
psk = zeros(HASH_LENGTH);
}
if (this.stage !== STAGE_UNINITIALIZED) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
this.stage = STAGE_EARLY_SECRET;
this.secret = await hkdfExtract(zeros(HASH_LENGTH), psk);
this.extBinderKey = await this.deriveSecret('ext binder', EMPTY);
this.secret = await this.deriveSecret('derived', EMPTY);
}
async addECDHE(ecdhe) {
// Mix in the ECDHE output (if any) to calculate the "handshake secret".
if (ecdhe === null) {
ecdhe = zeros(HASH_LENGTH);
}
if (this.stage !== STAGE_EARLY_SECRET) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
this.stage = STAGE_HANDSHAKE_SECRET;
this.extBinderKey = null;
this.secret = await hkdfExtract(this.secret, ecdhe);
this.clientHandshakeTrafficSecret = await this.deriveSecret('c hs traffic');
this.serverHandshakeTrafficSecret = await this.deriveSecret('s hs traffic');
this.secret = await this.deriveSecret('derived', EMPTY);
}
async finalize() {
if (this.stage !== STAGE_HANDSHAKE_SECRET) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
this.stage = STAGE_MASTER_SECRET;
this.clientHandshakeTrafficSecret = null;
this.serverHandshakeTrafficSecret = null;
this.secret = await hkdfExtract(this.secret, zeros(HASH_LENGTH));
this.clientApplicationTrafficSecret = await this.deriveSecret('c ap traffic');
this.serverApplicationTrafficSecret = await this.deriveSecret('s ap traffic');
this.secret = null;
}
addToTranscript(bytes) {
this.transcript.writeBytes(bytes);
}
getTranscript() {
return this.transcript.slice();
}
async deriveSecret(label, transcript = undefined) {
transcript = transcript || this.getTranscript();
return await hkdfExpandLabel(this.secret, label, await hash(transcript), HASH_LENGTH);
}
async calculateFinishedMAC(baseKey, transcript = undefined) {
transcript = transcript || this.getTranscript();
const finishedKey = await hkdfExpandLabel(baseKey, 'finished', EMPTY, HASH_LENGTH);
return await hmac(finishedKey, await hash(transcript));
}
async verifyFinishedMAC(baseKey, mac, transcript = undefined) {
transcript = transcript || this.getTranscript();
const finishedKey = await hkdfExpandLabel(baseKey, 'finished', EMPTY, HASH_LENGTH);
await verifyHmac(finishedKey, mac, await hash(transcript));
}
}
// CONCATENATED MODULE: ./src/recordlayer.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//
// This file implements the "record layer" for TLS1.3, as defined in
// https://tools.ietf.org/html/rfc8446#section-5.
//
// The record layer is responsible for encrypting/decrypting bytes to be
// sent over the wire, including stateful management of sequence numbers
// for the incoming and outgoing stream.
//
// The main interface is the RecordLayer class, which takes a callback function
// sending data and can be used like so:
//
// rl = new RecordLayer(async function send_encrypted_data(data) {
// // application-specific sending logic here.
// });
//
// // Records are sent and received in plaintext by default,
// // until you specify the key to use.
// await rl.setSendKey(key)
//
// // Send some data by specifying the record type and the bytes.
// // Where allowed by the record type, it will be buffered until
// // explicitly flushed, and then sent by calling the callback.
// await rl.send(RECORD_TYPE.HANDSHAKE, <bytes for a handshake message>)
// await rl.send(RECORD_TYPE.HANDSHAKE, <bytes for another handshake message>)
// await rl.flush()
//
// // Separate keys are used for sending and receiving.
// rl.setRecvKey(key);
//
// // When data is received, push it into the RecordLayer
// // and pass a callback that will be called with a [type, bytes]
// // pair for each message parsed from the data.
// rl.recv(dataReceivedFromPeer, async (type, bytes) => {
// switch (type) {
// case RECORD_TYPE.APPLICATION_DATA:
// // do something with application data
// case RECORD_TYPE.HANDSHAKE:
// // do something with a handshake message
// default:
// // etc...
// }
// });
//
/* eslint-disable sorting/sort-object-props */
const RECORD_TYPE = {
CHANGE_CIPHER_SPEC: 20,
ALERT: 21,
HANDSHAKE: 22,
APPLICATION_DATA: 23,
};
/* eslint-enable sorting/sort-object-props */
// Encrypting at most 2^24 records will force us to stay
// below data limits on AES-GCM encryption key use, and also
// means we can accurately represent the sequence number as
// a javascript double.
const MAX_SEQUENCE_NUMBER = Math.pow(2, 24);
const MAX_RECORD_SIZE = Math.pow(2, 14);
const MAX_ENCRYPTED_RECORD_SIZE = MAX_RECORD_SIZE + 256;
const RECORD_HEADER_SIZE = 5;
// These are some helper classes to manage the encryption/decryption state
// for a particular key.
class recordlayer_CipherState {
constructor(key, iv) {
this.key = key;
this.iv = iv;
this.seqnum = 0;
}
static async create(baseKey, mode) {
// Derive key and iv per https://tools.ietf.org/html/rfc8446#section-7.3
const key = await prepareKey(await hkdfExpandLabel(baseKey, 'key', EMPTY, KEY_LENGTH), mode);
const iv = await hkdfExpandLabel(baseKey, 'iv', EMPTY, IV_LENGTH);
return new this(key, iv);
}
nonce() {
// Ref https://tools.ietf.org/html/rfc8446#section-5.3:
// * left-pad the sequence number with zeros to IV_LENGTH
// * xor with the provided iv
// Our sequence numbers are always less than 2^24, so fit in a Uint32
// in the last 4 bytes of the nonce.
const nonce = this.iv.slice();
const dv = new DataView(nonce.buffer, nonce.byteLength - 4, 4);
dv.setUint32(0, dv.getUint32(0) ^ this.seqnum);
this.seqnum += 1;
if (this.seqnum > MAX_SEQUENCE_NUMBER) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
return nonce;
}
}
class recordlayer_EncryptionState extends recordlayer_CipherState {
static async create(key) {
return super.create(key, 'encrypt');
}
async encrypt(plaintext, additionalData) {
return await encrypt(this.key, this.nonce(), plaintext, additionalData);
}
}
class recordlayer_DecryptionState extends recordlayer_CipherState {
static async create(key) {
return super.create(key, 'decrypt');
}
async decrypt(ciphertext, additionalData) {
return await decrypt(this.key, this.nonce(), ciphertext, additionalData);
}
}
// The main RecordLayer class.
class recordlayer_RecordLayer {
constructor(sendCallback) {
this.sendCallback = sendCallback;
this._sendEncryptState = null;
this._sendError = null;
this._recvDecryptState = null;
this._recvError = null;
this._pendingRecordType = 0;
this._pendingRecordBuf = null;
}
async setSendKey(key) {
await this.flush();
this._sendEncryptState = await recordlayer_EncryptionState.create(key);
}
async setRecvKey(key) {
this._recvDecryptState = await recordlayer_DecryptionState.create(key);
}
async setSendError(err) {
this._sendError = err;
}
async setRecvError(err) {
this._recvError = err;
}
async send(type, data) {
if (this._sendError !== null) {
throw this._sendError;
}
// Forbid sending data that doesn't fit into a single record.
// We do not support fragmentation over multiple records.
if (data.byteLength > MAX_RECORD_SIZE) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
// Flush if we're switching to a different record type.
if (this._pendingRecordType && this._pendingRecordType !== type) {
await this.flush();
}
// Flush if we would overflow the max size of a record.
if (this._pendingRecordBuf !== null) {
if (this._pendingRecordBuf.tell() + data.byteLength > MAX_RECORD_SIZE) {
await this.flush();
}
}
// Start a new pending record if necessary.
// We reserve space at the start of the buffer for the record header,
// which is conveniently always a fixed size.
if (this._pendingRecordBuf === null) {
this._pendingRecordType = type;
this._pendingRecordBuf = new utils_BufferWriter();
this._pendingRecordBuf.incr(RECORD_HEADER_SIZE);
}
this._pendingRecordBuf.writeBytes(data);
}
async flush() {
// If there's nothing to flush, bail out early.
// Don't throw `_sendError` if we're not sending anything, because `flush()`
// can be called when we're trying to transition into an error state.
const buf = this._pendingRecordBuf;
let type = this._pendingRecordType;
if (! type) {
if (buf !== null) {
throw new TLSError(ALERT_DESCRIPTION.INTERNAL_ERROR);
}
return;
}
if (this._sendError !== null) {
throw this._sendError;
}
// If we're encrypting, turn the existing buffer contents into a `TLSInnerPlaintext` by
// appending the type. We don't do any zero-padding, although the spec allows it.
let inflation = 0, innerPlaintext = null;
if (this._sendEncryptState !== null) {
buf.writeUint8(type);
innerPlaintext = buf.slice(RECORD_HEADER_SIZE);
inflation = AEAD_SIZE_INFLATION;
type = RECORD_TYPE.APPLICATION_DATA;
}
// Write the common header for either `TLSPlaintext` or `TLSCiphertext` record.
const length = buf.tell() - RECORD_HEADER_SIZE + inflation;
buf.seek(0);
buf.writeUint8(type);
buf.writeUint16(VERSION_TLS_1_2);
buf.writeUint16(length);
// Followed by different payload depending on encryption status.
if (this._sendEncryptState !== null) {
const additionalData = buf.slice(0, RECORD_HEADER_SIZE);
const ciphertext = await this._sendEncryptState.encrypt(innerPlaintext, additionalData);
buf.writeBytes(ciphertext);
} else {
buf.incr(length);
}
this._pendingRecordBuf = null;
this._pendingRecordType = 0;
await this.sendCallback(buf.flush());
}
async recv(data) {
if (this._recvError !== null) {
throw this._recvError;
}
// For simplicity, we assume that the given data contains exactly one record.
// Peers using this library will send one record at a time over the websocket
// connection, and we can assume that the server-side websocket bridge will split
// up any traffic into individual records if we ever start interoperating with
// peers using a different TLS implementation.
// Similarly, we assume that handshake messages will not be fragmented across
// multiple records. This should be trivially true for the PSK-only mode used
// by this library, but we may want to relax it in future for interoperability
// with e.g. large ClientHello messages that contain lots of different options.
const buf = new utils_BufferReader(data);
// The data to read is either a TLSPlaintext or TLSCiphertext struct,
// depending on whether record protection has been enabled yet:
//
// struct {
// ContentType type;
// ProtocolVersion legacy_record_version;
// uint16 length;
// opaque fragment[TLSPlaintext.length];
// } TLSPlaintext;
//
// struct {
// ContentType opaque_type = application_data; /* 23 */
// ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */
// uint16 length;
// opaque encrypted_record[TLSCiphertext.length];
// } TLSCiphertext;
//
let type = buf.readUint8();
// The spec says legacy_record_version "MUST be ignored for all purposes",
// but we know TLS1.3 implementations will only ever emit two possible values,
// so it seems useful to bail out early if we receive anything else.
const version = buf.readUint16();
if (version !== VERSION_TLS_1_2) {
// TLS1.0 is only acceptable on initial plaintext records.
if (this._recvDecryptState !== null || version !== VERSION_TLS_1_0) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
}
const length = buf.readUint16();
let plaintext;
if (this._recvDecryptState === null || type === RECORD_TYPE.CHANGE_CIPHER_SPEC) {
[type, plaintext] = await this._readPlaintextRecord(type, length, buf);
} else {
[type, plaintext] = await this._readEncryptedRecord(type, length, buf);
}
// Sanity-check that we received exactly one record.
if (buf.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
return [type, plaintext];
}
// Helper to read an unencrypted `TLSPlaintext` struct
async _readPlaintextRecord(type, length, buf) {
if (length > MAX_RECORD_SIZE) {
throw new TLSError(ALERT_DESCRIPTION.RECORD_OVERFLOW);
}
return [type, buf.readBytes(length)];
}
// Helper to read an encrypted `TLSCiphertext` struct,
// decrypting it into plaintext.
async _readEncryptedRecord(type, length, buf) {
if (length > MAX_ENCRYPTED_RECORD_SIZE) {
throw new TLSError(ALERT_DESCRIPTION.RECORD_OVERFLOW);
}
// The outer type for encrypted records is always APPLICATION_DATA.
if (type !== RECORD_TYPE.APPLICATION_DATA) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
// Decrypt and decode the contained `TLSInnerPlaintext` struct:
//
// struct {
// opaque content[TLSPlaintext.length];
// ContentType type;
// uint8 zeros[length_of_padding];
// } TLSInnerPlaintext;
//
// The additional data for the decryption is the `TLSCiphertext` record
// header, which is a fixed size and immediately prior to current buffer position.
buf.incr(-RECORD_HEADER_SIZE);
const additionalData = buf.readBytes(RECORD_HEADER_SIZE);
const ciphertext = buf.readBytes(length);
const paddedPlaintext = await this._recvDecryptState.decrypt(ciphertext, additionalData);
// We have to scan backwards over the zero padding at the end of the struct
// in order to find the non-zero `type` byte.
let i;
for (i = paddedPlaintext.byteLength - 1; i >= 0; i--) {
if (paddedPlaintext[i] !== 0) {
break;
}
}
if (i < 0) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
type = paddedPlaintext[i];
// `change_cipher_spec` records must always be plaintext.
if (type === RECORD_TYPE.CHANGE_CIPHER_SPEC) {
throw new TLSError(ALERT_DESCRIPTION.DECODE_ERROR);
}
return [type, paddedPlaintext.slice(0, i)];
}
}
// CONCATENATED MODULE: ./src/tlsconnection.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// The top-level APIs offered by this module are `ClientConnection` and
// `ServerConnection` classes, which provide authenticated and encrypted
// communication via the "externally-provisioned PSK" mode of TLS1.3.
// They each take a callback to be used for sending data to the remote peer,
// and operate like this:
//
// conn = await ClientConnection.create(psk, pskId, async function send_data_to_server(data) {
// // application-specific sending logic here.
// })
//
// // Send data to the server by calling `send`,
// // which will use the callback provided in the constructor.
// // A single `send()` by the application may result in multiple
// // invokations of the callback.
//
// await conn.send('application-level data')
//
// // When data is received from the server, push it into
// // the connection and let it return any decrypted app-level data.
// // There might not be any app-level data if it was a protocol control
// // message, and the receipt of the data might trigger additional calls
// // to the send callback for protocol control purposes.
//
// serverSocket.on('data', async encrypted_data => {
// const plaintext = await conn.recv(data)
// if (plaintext !== null) {
// do_something_with_app_level_data(plaintext)
// }
// })
//
// // It's good practice to explicitly close the connection
// // when finished. This will send a "closed" notification
// // to the server.
//
// await conn.close()
//
// // When the peer sends a "closed" notification it will show up
// // as a `TLSCloseNotify` exception from recv:
//
// try {
// data = await conn.recv(data);
// } catch (err) {
// if (! (err instanceof TLSCloseNotify) { throw err }
// do_something_to_cleanly_close_data_connection();
// }
//
// The `ServerConnection` API operates similarly; the distinction is mainly
// in which side is expected to send vs receieve during the protocol handshake.
class tlsconnection_Connection {
constructor(psk, pskId, sendCallback) {
this.psk = assertIsBytes(psk);
this.pskId = assertIsBytes(pskId);
this.connected = new Promise((resolve, reject) => {
this._onConnectionSuccess = resolve;
this._onConnectionFailure = reject;
});
this._state = new UNINITIALIZED(this);
this._handshakeRecvBuffer = null;
this._hasSeenChangeCipherSpec = false;
this._recordlayer = new recordlayer_RecordLayer(sendCallback);
this._keyschedule = new keyschedule_KeySchedule();
this._lastPromise = Promise.resolve();
}
// Subclasses will override this with some async initialization logic.
static async create(psk, pskId, sendCallback) {
return new this(psk, pskId, sendCallback);
}
// These are the three public API methods that consumers can use
// to send and receive data encrypted with TLS1.3.
async send(data) {
assertIsBytes(data);
await this.connected;
await this._synchronized(async () => {
await this._state.sendApplicationData(data);
});
}
async recv(data) {
assertIsBytes(data);
return await this._synchronized(async () => {
// Decrypt the data using the record layer.
// We expect to receive precisely one record at a time.
const [type, bytes] = await this._recordlayer.recv(data);
// Dispatch based on the type of the record.
switch (type) {
case RECORD_TYPE.CHANGE_CIPHER_SPEC:
await this._state.recvChangeCipherSpec(bytes);
return null;
case RECORD_TYPE.ALERT:
await this._state.recvAlertMessage(TLSAlert.fromBytes(bytes));
return null;
case RECORD_TYPE.APPLICATION_DATA:
return await this._state.recvApplicationData(bytes);
case RECORD_TYPE.HANDSHAKE:
// Multiple handshake messages may be coalesced into a single record.
// Store the in-progress record buffer on `this` so that we can guard
// against handshake messages that span a change in keys.
this._handshakeRecvBuffer = new utils_BufferReader(bytes);
if (! this._handshakeRecvBuffer.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
do {
// Each handshake messages has a type and length prefix, per
// https://tools.ietf.org/html/rfc8446#appendix-B.3
this._handshakeRecvBuffer.incr(1);
const mlength = this._handshakeRecvBuffer.readUint24();
this._handshakeRecvBuffer.incr(-4);
const messageBytes = this._handshakeRecvBuffer.readBytes(mlength + 4);
this._keyschedule.addToTranscript(messageBytes);
await this._state.recvHandshakeMessage(messages_HandshakeMessage.fromBytes(messageBytes));
} while (this._handshakeRecvBuffer.hasMoreBytes());
this._handshakeRecvBuffer = null;
return null;
default:
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
});
}
async close() {
await this._synchronized(async () => {
await this._state.close();
});
}
// Ensure that async functions execute one at a time,
// by waiting for the previous call to `_synchronized()` to complete
// before starting a new one. This helps ensure that we complete
// one state-machine transition before starting to do the next.
// It's also a convenient place to catch and alert on errors.
_synchronized(cb) {
const nextPromise = this._lastPromise.then(() => {
return cb();
}).catch(async err => {
if (err instanceof TLSCloseNotify) {
throw err;
}
await this._state.handleErrorAndRethrow(err);
});
// We don't want to hold on to the return value or error,
// just synchronize on the fact that it completed.
this._lastPromise = nextPromise.then(noop, noop);
return nextPromise;
}
// This drives internal transition of the state-machine,
// ensuring that the new state is properly initialized.
async _transition(State, ...args) {
this._state = new State(this);
await this._state.initialize(...args);
await this._recordlayer.flush();
}
// These are helpers to allow the State to manipulate the recordlayer
// and send out various types of data.
async _sendApplicationData(bytes) {
await this._recordlayer.send(RECORD_TYPE.APPLICATION_DATA, bytes);
await this._recordlayer.flush();
}
async _sendHandshakeMessage(msg) {
await this._sendHandshakeMessageBytes(msg.toBytes());
}
async _sendHandshakeMessageBytes(bytes) {
this._keyschedule.addToTranscript(bytes);
await this._recordlayer.send(RECORD_TYPE.HANDSHAKE, bytes);
// Don't flush after each handshake message, since we can probably
// coalesce multiple messages into a single record.
}
async _sendAlertMessage(err) {
await this._recordlayer.send(RECORD_TYPE.ALERT, err.toBytes());
await this._recordlayer.flush();
}
async _sendChangeCipherSpec() {
await this._recordlayer.send(RECORD_TYPE.CHANGE_CIPHER_SPEC, new Uint8Array([0x01]));
await this._recordlayer.flush();
}
async _setSendKey(key) {
return await this._recordlayer.setSendKey(key);
}
async _setRecvKey(key) {
// Handshake messages that change keys must be on a record boundary.
if (this._handshakeRecvBuffer && this._handshakeRecvBuffer.hasMoreBytes()) {
throw new TLSError(ALERT_DESCRIPTION.UNEXPECTED_MESSAGE);
}
return await this._recordlayer.setRecvKey(key);
}
_setConnectionSuccess() {
if (this._onConnectionSuccess !== null) {
this._onConnectionSuccess();
this._onConnectionSuccess = null;
this._onConnectionFailure = null;
}
}
_setConnectionFailure(err) {
if (this._onConnectionFailure !== null) {
this._onConnectionFailure(err);
this._onConnectionSuccess = null;
this._onConnectionFailure = null;
}
}
_closeForSend(alert) {
this._recordlayer.setSendError(alert);
}
_closeForRecv(alert) {
this._recordlayer.setRecvError(alert);
}
}
class tlsconnection_ClientConnection extends tlsconnection_Connection {
static async create(psk, pskId, sendCallback) {
const instance = await super.create(psk, pskId, sendCallback);
await instance._transition(states_CLIENT_START);
return instance;
}
}
class tlsconnection_ServerConnection extends tlsconnection_Connection {
static async create(psk, pskId, sendCallback) {
const instance = await super.create(psk, pskId, sendCallback);
await instance._transition(states_SERVER_START);
return instance;
}
}
// CONCATENATED MODULE: ./node_modules/event-target-shim/dist/event-target-shim.mjs
/**
* @author Toru Nagashima <https://github.com/mysticatea>
* @copyright 2015 Toru Nagashima. All rights reserved.
* See LICENSE file in root directory for full license.
*/
/**
* @typedef {object} PrivateData
* @property {EventTarget} eventTarget The event target.
* @property {{type:string}} event The original event object.
* @property {number} eventPhase The current event phase.
* @property {EventTarget|null} currentTarget The current event target.
* @property {boolean} canceled The flag to prevent default.
* @property {boolean} stopped The flag to stop propagation.
* @property {boolean} immediateStopped The flag to stop propagation immediately.
* @property {Function|null} passiveListener The listener if the current listener is passive. Otherwise this is null.
* @property {number} timeStamp The unix time.
* @private
*/
/**
* Private data for event wrappers.
* @type {WeakMap<Event, PrivateData>}
* @private
*/
const privateData = new WeakMap();
/**
* Cache for wrapper classes.
* @type {WeakMap<Object, Function>}
* @private
*/
const wrappers = new WeakMap();
/**
* Get private data.
* @param {Event} event The event object to get private data.
* @returns {PrivateData} The private data of the event.
* @private
*/
function pd(event) {
const retv = privateData.get(event);
console.assert(
retv != null,
"'this' is expected an Event object, but got",
event
);
return retv
}
/**
* https://dom.spec.whatwg.org/#set-the-canceled-flag
* @param data {PrivateData} private data.
*/
function setCancelFlag(data) {
if (data.passiveListener != null) {
if (
typeof console !== "undefined" &&
typeof console.error === "function"
) {
console.error(
"Unable to preventDefault inside passive event listener invocation.",
data.passiveListener
);
}
return
}
if (!data.event.cancelable) {
return
}
data.canceled = true;
if (typeof data.event.preventDefault === "function") {
data.event.preventDefault();
}
}
/**
* @see https://dom.spec.whatwg.org/#interface-event
* @private
*/
/**
* The event wrapper.
* @constructor
* @param {EventTarget} eventTarget The event target of this dispatching.
* @param {Event|{type:string}} event The original event to wrap.
*/
function Event(eventTarget, event) {
privateData.set(this, {
eventTarget,
event,
eventPhase: 2,
currentTarget: eventTarget,
canceled: false,
stopped: false,
immediateStopped: false,
passiveListener: null,
timeStamp: event.timeStamp || Date.now(),
});
// https://heycam.github.io/webidl/#Unforgeable
Object.defineProperty(this, "isTrusted", { value: false, enumerable: true });
// Define accessors
const keys = Object.keys(event);
for (let i = 0; i < keys.length; ++i) {
const key = keys[i];
if (!(key in this)) {
Object.defineProperty(this, key, defineRedirectDescriptor(key));
}
}
}
// Should be enumerable, but class methods are not enumerable.
Event.prototype = {
/**
* The type of this event.
* @type {string}
*/
get type() {
return pd(this).event.type
},
/**
* The target of this event.
* @type {EventTarget}
*/
get target() {
return pd(this).eventTarget
},
/**
* The target of this event.
* @type {EventTarget}
*/
get currentTarget() {
return pd(this).currentTarget
},
/**
* @returns {EventTarget[]} The composed path of this event.
*/
composedPath() {
const currentTarget = pd(this).currentTarget;
if (currentTarget == null) {
return []
}
return [currentTarget]
},
/**
* Constant of NONE.
* @type {number}
*/
get NONE() {
return 0
},
/**
* Constant of CAPTURING_PHASE.
* @type {number}
*/
get CAPTURING_PHASE() {
return 1
},
/**
* Constant of AT_TARGET.
* @type {number}
*/
get AT_TARGET() {
return 2
},
/**
* Constant of BUBBLING_PHASE.
* @type {number}
*/
get BUBBLING_PHASE() {
return 3
},
/**
* The target of this event.
* @type {number}
*/
get eventPhase() {
return pd(this).eventPhase
},
/**
* Stop event bubbling.
* @returns {void}
*/
stopPropagation() {
const data = pd(this);
data.stopped = true;
if (typeof data.event.stopPropagation === "function") {
data.event.stopPropagation();
}
},
/**
* Stop event bubbling.
* @returns {void}
*/
stopImmediatePropagation() {
const data = pd(this);
data.stopped = true;
data.immediateStopped = true;
if (typeof data.event.stopImmediatePropagation === "function") {
data.event.stopImmediatePropagation();
}
},
/**
* The flag to be bubbling.
* @type {boolean}
*/
get bubbles() {
return Boolean(pd(this).event.bubbles)
},
/**
* The flag to be cancelable.
* @type {boolean}
*/
get cancelable() {
return Boolean(pd(this).event.cancelable)
},
/**
* Cancel this event.
* @returns {void}
*/
preventDefault() {
setCancelFlag(pd(this));
},
/**
* The flag to indicate cancellation state.
* @type {boolean}
*/
get defaultPrevented() {
return pd(this).canceled
},
/**
* The flag to be composed.
* @type {boolean}
*/
get composed() {
return Boolean(pd(this).event.composed)
},
/**
* The unix time of this event.
* @type {number}
*/
get timeStamp() {
return pd(this).timeStamp
},
/**
* The target of this event.
* @type {EventTarget}
* @deprecated
*/
get srcElement() {
return pd(this).eventTarget
},
/**
* The flag to stop event bubbling.
* @type {boolean}
* @deprecated
*/
get cancelBubble() {
return pd(this).stopped
},
set cancelBubble(value) {
if (!value) {
return
}
const data = pd(this);
data.stopped = true;
if (typeof data.event.cancelBubble === "boolean") {
data.event.cancelBubble = true;
}
},
/**
* The flag to indicate cancellation state.
* @type {boolean}
* @deprecated
*/
get returnValue() {
return !pd(this).canceled
},
set returnValue(value) {
if (!value) {
setCancelFlag(pd(this));
}
},
/**
* Initialize this event object. But do nothing under event dispatching.
* @param {string} type The event type.
* @param {boolean} [bubbles=false] The flag to be possible to bubble up.
* @param {boolean} [cancelable=false] The flag to be possible to cancel.
* @deprecated
*/
initEvent() {
// Do nothing.
},
};
// `constructor` is not enumerable.
Object.defineProperty(Event.prototype, "constructor", {
value: Event,
configurable: true,
writable: true,
});
// Ensure `event instanceof window.Event` is `true`.
if (typeof window !== "undefined" && typeof window.Event !== "undefined") {
Object.setPrototypeOf(Event.prototype, window.Event.prototype);
// Make association for wrappers.
wrappers.set(window.Event.prototype, Event);
}
/**
* Get the property descriptor to redirect a given property.
* @param {string} key Property name to define property descriptor.
* @returns {PropertyDescriptor} The property descriptor to redirect the property.
* @private
*/
function defineRedirectDescriptor(key) {
return {
get() {
return pd(this).event[key]
},
set(value) {
pd(this).event[key] = value;
},
configurable: true,
enumerable: true,
}
}
/**
* Get the property descriptor to call a given method property.
* @param {string} key Property name to define property descriptor.
* @returns {PropertyDescriptor} The property descriptor to call the method property.
* @private
*/
function defineCallDescriptor(key) {
return {
value() {
const event = pd(this).event;
return event[key].apply(event, arguments)
},
configurable: true,
enumerable: true,
}
}
/**
* Define new wrapper class.
* @param {Function} BaseEvent The base wrapper class.
* @param {Object} proto The prototype of the original event.
* @returns {Function} The defined wrapper class.
* @private
*/
function defineWrapper(BaseEvent, proto) {
const keys = Object.keys(proto);
if (keys.length === 0) {
return BaseEvent
}
/** CustomEvent */
function CustomEvent(eventTarget, event) {
BaseEvent.call(this, eventTarget, event);
}
CustomEvent.prototype = Object.create(BaseEvent.prototype, {
constructor: { value: CustomEvent, configurable: true, writable: true },
});
// Define accessors.
for (let i = 0; i < keys.length; ++i) {
const key = keys[i];
if (!(key in BaseEvent.prototype)) {
const descriptor = Object.getOwnPropertyDescriptor(proto, key);
const isFunc = typeof descriptor.value === "function";
Object.defineProperty(
CustomEvent.prototype,
key,
isFunc
? defineCallDescriptor(key)
: defineRedirectDescriptor(key)
);
}
}
return CustomEvent
}
/**
* Get the wrapper class of a given prototype.
* @param {Object} proto The prototype of the original event to get its wrapper.
* @returns {Function} The wrapper class.
* @private
*/
function getWrapper(proto) {
if (proto == null || proto === Object.prototype) {
return Event
}
let wrapper = wrappers.get(proto);
if (wrapper == null) {
wrapper = defineWrapper(getWrapper(Object.getPrototypeOf(proto)), proto);
wrappers.set(proto, wrapper);
}
return wrapper
}
/**
* Wrap a given event to management a dispatching.
* @param {EventTarget} eventTarget The event target of this dispatching.
* @param {Object} event The event to wrap.
* @returns {Event} The wrapper instance.
* @private
*/
function wrapEvent(eventTarget, event) {
const Wrapper = getWrapper(Object.getPrototypeOf(event));
return new Wrapper(eventTarget, event)
}
/**
* Get the immediateStopped flag of a given event.
* @param {Event} event The event to get.
* @returns {boolean} The flag to stop propagation immediately.
* @private
*/
function isStopped(event) {
return pd(event).immediateStopped
}
/**
* Set the current event phase of a given event.
* @param {Event} event The event to set current target.
* @param {number} eventPhase New event phase.
* @returns {void}
* @private
*/
function setEventPhase(event, eventPhase) {
pd(event).eventPhase = eventPhase;
}
/**
* Set the current target of a given event.
* @param {Event} event The event to set current target.
* @param {EventTarget|null} currentTarget New current target.
* @returns {void}
* @private
*/
function setCurrentTarget(event, currentTarget) {
pd(event).currentTarget = currentTarget;
}
/**
* Set a passive listener of a given event.
* @param {Event} event The event to set current target.
* @param {Function|null} passiveListener New passive listener.
* @returns {void}
* @private
*/
function setPassiveListener(event, passiveListener) {
pd(event).passiveListener = passiveListener;
}
/**
* @typedef {object} ListenerNode
* @property {Function} listener
* @property {1|2|3} listenerType
* @property {boolean} passive
* @property {boolean} once
* @property {ListenerNode|null} next
* @private
*/
/**
* @type {WeakMap<object, Map<string, ListenerNode>>}
* @private
*/
const listenersMap = new WeakMap();
// Listener types
const CAPTURE = 1;
const BUBBLE = 2;
const ATTRIBUTE = 3;
/**
* Check whether a given value is an object or not.
* @param {any} x The value to check.
* @returns {boolean} `true` if the value is an object.
*/
function isObject(x) {
return x !== null && typeof x === "object" //eslint-disable-line no-restricted-syntax
}
/**
* Get listeners.
* @param {EventTarget} eventTarget The event target to get.
* @returns {Map<string, ListenerNode>} The listeners.
* @private
*/
function getListeners(eventTarget) {
const listeners = listenersMap.get(eventTarget);
if (listeners == null) {
throw new TypeError(
"'this' is expected an EventTarget object, but got another value."
)
}
return listeners
}
/**
* Get the property descriptor for the event attribute of a given event.
* @param {string} eventName The event name to get property descriptor.
* @returns {PropertyDescriptor} The property descriptor.
* @private
*/
function defineEventAttributeDescriptor(eventName) {
return {
get() {
const listeners = getListeners(this);
let node = listeners.get(eventName);
while (node != null) {
if (node.listenerType === ATTRIBUTE) {
return node.listener
}
node = node.next;
}
return null
},
set(listener) {
if (typeof listener !== "function" && !isObject(listener)) {
listener = null; // eslint-disable-line no-param-reassign
}
const listeners = getListeners(this);
// Traverse to the tail while removing old value.
let prev = null;
let node = listeners.get(eventName);
while (node != null) {
if (node.listenerType === ATTRIBUTE) {
// Remove old value.
if (prev !== null) {
prev.next = node.next;
} else if (node.next !== null) {
listeners.set(eventName, node.next);
} else {
listeners.delete(eventName);
}
} else {
prev = node;
}
node = node.next;
}
// Add new value.
if (listener !== null) {
const newNode = {
listener,
listenerType: ATTRIBUTE,
passive: false,
once: false,
next: null,
};
if (prev === null) {
listeners.set(eventName, newNode);
} else {
prev.next = newNode;
}
}
},
configurable: true,
enumerable: true,
}
}
/**
* Define an event attribute (e.g. `eventTarget.onclick`).
* @param {Object} eventTargetPrototype The event target prototype to define an event attrbite.
* @param {string} eventName The event name to define.
* @returns {void}
*/
function defineEventAttribute(eventTargetPrototype, eventName) {
Object.defineProperty(
eventTargetPrototype,
`on${eventName}`,
defineEventAttributeDescriptor(eventName)
);
}
/**
* Define a custom EventTarget with event attributes.
* @param {string[]} eventNames Event names for event attributes.
* @returns {EventTarget} The custom EventTarget.
* @private
*/
function defineCustomEventTarget(eventNames) {
/** CustomEventTarget */
function CustomEventTarget() {
EventTarget.call(this);
}
CustomEventTarget.prototype = Object.create(EventTarget.prototype, {
constructor: {
value: CustomEventTarget,
configurable: true,
writable: true,
},
});
for (let i = 0; i < eventNames.length; ++i) {
defineEventAttribute(CustomEventTarget.prototype, eventNames[i]);
}
return CustomEventTarget
}
/**
* EventTarget.
*
* - This is constructor if no arguments.
* - This is a function which returns a CustomEventTarget constructor if there are arguments.
*
* For example:
*
* class A extends EventTarget {}
* class B extends EventTarget("message") {}
* class C extends EventTarget("message", "error") {}
* class D extends EventTarget(["message", "error"]) {}
*/
function EventTarget() {
/*eslint-disable consistent-return */
if (this instanceof EventTarget) {
listenersMap.set(this, new Map());
return
}
if (arguments.length === 1 && Array.isArray(arguments[0])) {
return defineCustomEventTarget(arguments[0])
}
if (arguments.length > 0) {
const types = new Array(arguments.length);
for (let i = 0; i < arguments.length; ++i) {
types[i] = arguments[i];
}
return defineCustomEventTarget(types)
}
throw new TypeError("Cannot call a class as a function")
/*eslint-enable consistent-return */
}
// Should be enumerable, but class methods are not enumerable.
EventTarget.prototype = {
/**
* Add a given listener to this event target.
* @param {string} eventName The event name to add.
* @param {Function} listener The listener to add.
* @param {boolean|{capture?:boolean,passive?:boolean,once?:boolean}} [options] The options for this listener.
* @returns {void}
*/
addEventListener(eventName, listener, options) {
if (listener == null) {
return
}
if (typeof listener !== "function" && !isObject(listener)) {
throw new TypeError("'listener' should be a function or an object.")
}
const listeners = getListeners(this);
const optionsIsObj = isObject(options);
const capture = optionsIsObj
? Boolean(options.capture)
: Boolean(options);
const listenerType = capture ? CAPTURE : BUBBLE;
const newNode = {
listener,
listenerType,
passive: optionsIsObj && Boolean(options.passive),
once: optionsIsObj && Boolean(options.once),
next: null,
};
// Set it as the first node if the first node is null.
let node = listeners.get(eventName);
if (node === undefined) {
listeners.set(eventName, newNode);
return
}
// Traverse to the tail while checking duplication..
let prev = null;
while (node != null) {
if (
node.listener === listener &&
node.listenerType === listenerType
) {
// Should ignore duplication.
return
}
prev = node;
node = node.next;
}
// Add it.
prev.next = newNode;
},
/**
* Remove a given listener from this event target.
* @param {string} eventName The event name to remove.
* @param {Function} listener The listener to remove.
* @param {boolean|{capture?:boolean,passive?:boolean,once?:boolean}} [options] The options for this listener.
* @returns {void}
*/
removeEventListener(eventName, listener, options) {
if (listener == null) {
return
}
const listeners = getListeners(this);
const capture = isObject(options)
? Boolean(options.capture)
: Boolean(options);
const listenerType = capture ? CAPTURE : BUBBLE;
let prev = null;
let node = listeners.get(eventName);
while (node != null) {
if (
node.listener === listener &&
node.listenerType === listenerType
) {
if (prev !== null) {
prev.next = node.next;
} else if (node.next !== null) {
listeners.set(eventName, node.next);
} else {
listeners.delete(eventName);
}
return
}
prev = node;
node = node.next;
}
},
/**
* Dispatch a given event.
* @param {Event|{type:string}} event The event to dispatch.
* @returns {boolean} `false` if canceled.
*/
dispatchEvent(event) {
if (event == null || typeof event.type !== "string") {
throw new TypeError('"event.type" should be a string.')
}
// If listeners aren't registered, terminate.
const listeners = getListeners(this);
const eventName = event.type;
let node = listeners.get(eventName);
if (node == null) {
return true
}
// Since we cannot rewrite several properties, so wrap object.
const wrappedEvent = wrapEvent(this, event);
// This doesn't process capturing phase and bubbling phase.
// This isn't participating in a tree.
let prev = null;
while (node != null) {
// Remove this listener if it's once
if (node.once) {
if (prev !== null) {
prev.next = node.next;
} else if (node.next !== null) {
listeners.set(eventName, node.next);
} else {
listeners.delete(eventName);
}
} else {
prev = node;
}
// Call this listener
setPassiveListener(
wrappedEvent,
node.passive ? node.listener : null
);
if (typeof node.listener === "function") {
try {
node.listener.call(this, wrappedEvent);
} catch (err) {
if (
typeof console !== "undefined" &&
typeof console.error === "function"
) {
console.error(err);
}
}
} else if (
node.listenerType !== ATTRIBUTE &&
typeof node.listener.handleEvent === "function"
) {
node.listener.handleEvent(wrappedEvent);
}
// Break if `event.stopImmediatePropagation` was called.
if (isStopped(wrappedEvent)) {
break
}
node = node.next;
}
setPassiveListener(wrappedEvent, null);
setEventPhase(wrappedEvent, 0);
setCurrentTarget(wrappedEvent, null);
return !wrappedEvent.defaultPrevented
},
};
// `constructor` is not enumerable.
Object.defineProperty(EventTarget.prototype, "constructor", {
value: EventTarget,
configurable: true,
writable: true,
});
// Ensure `eventTarget instanceof window.EventTarget` is `true`.
if (
typeof window !== "undefined" &&
typeof window.EventTarget !== "undefined"
) {
Object.setPrototypeOf(EventTarget.prototype, window.EventTarget.prototype);
}
/* harmony default export */ var event_target_shim = (EventTarget);
// CONCATENATED MODULE: ./src/index.js
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// A wrapper that combines a WebSocket to the channelserver
// with some client-side encryption for securing the channel.
//
// This code is responsible for the event handling and the consumer API.
// All the details of encrypting the messages are delegated to`./tlsconnection.js`.
const CLOSE_FLUSH_BUFFER_INTERVAL_MS = 200;
const CLOSE_FLUSH_BUFFER_MAX_TRIES = 5;
class src_PairingChannel extends EventTarget {
constructor(channelId, channelKey, socket, connection) {
super();
this._channelId = channelId;
this._channelKey = channelKey;
this._socket = socket;
this._connection = connection;
this._selfClosed = false;
this._peerClosed = false;
this._setupListeners();
}
/**
* Create a new pairing channel.
*
* This will open a channel on the channelserver, and generate a random client-side
* encryption key. When the promise resolves, `this.channelId` and `this.channelKey`
* can be transferred to another client to allow it to securely connect to the channel.
*
* @returns Promise<PairingChannel>
*/
static create(channelServerURI) {
const wsURI = new URL('/v1/ws/', channelServerURI).href;
const channelKey = crypto.getRandomValues(new Uint8Array(32));
// The one who creates the channel plays the role of 'server' in the underlying TLS exchange.
return this._makePairingChannel(wsURI, tlsconnection_ServerConnection, channelKey);
}
/**
* Connect to an existing pairing channel.
*
* This will connect to a channel on the channelserver previously established by
* another client calling `create`. The `channelId` and `channelKey` must have been
* obtained via some out-of-band mechanism (such as by scanning from a QR code).
*
* @returns Promise<PairingChannel>
*/
static connect(channelServerURI, channelId, channelKey) {
const wsURI = new URL(`/v1/ws/${channelId}`, channelServerURI).href;
// The one who connects to an existing channel plays the role of 'client'
// in the underlying TLS exchange.
return this._makePairingChannel(wsURI, tlsconnection_ClientConnection, channelKey);
}
static _makePairingChannel(wsUri, ConnectionClass, psk) {
const socket = new WebSocket(wsUri);
return new Promise((resolve, reject) => {
// eslint-disable-next-line prefer-const
let stopListening;
const onConnectionError = async () => {
stopListening();
reject(new Error('Error while creating the pairing channel'));
};
const onFirstMessage = async event => {
stopListening();
try {
// The channelserver echos back the channel id, and we use it as an
// additional input to the TLS handshake via the "psk id" field.
const {channelid: channelId} = JSON.parse(event.data);
const pskId = utf8ToBytes(channelId);
const connection = await ConnectionClass.create(psk, pskId, data => {
// Send data by forwarding it via the channelserver websocket.
// The TLS connection gives us `data` as raw bytes, but channelserver
// expects b64urlsafe strings, because it wraps them in a JSON object envelope.
socket.send(bytesToBase64url(data));
});
const instance = new this(channelId, psk, socket, connection);
resolve(instance);
} catch (err) {
reject(err);
}
};
stopListening = () => {
socket.removeEventListener('close', onConnectionError);
socket.removeEventListener('error', onConnectionError);
socket.removeEventListener('message', onFirstMessage);
};
socket.addEventListener('close', onConnectionError);
socket.addEventListener('error', onConnectionError);
socket.addEventListener('message', onFirstMessage);
});
}
_setupListeners() {
this._socket.addEventListener('message', async event => {
try {
// When we receive data from the channelserver, pump it through the TLS connection
// to decrypt it, then echo it back out to consumers as an event.
const channelServerEnvelope = JSON.parse(event.data);
const payload = await this._connection.recv(base64urlToBytes(channelServerEnvelope.message));
if (payload !== null) {
const data = JSON.parse(bytesToUtf8(payload));
this.dispatchEvent(new CustomEvent('message', {
detail: {
data,
sender: channelServerEnvelope.sender,
},
}));
}
} catch (error) {
let event;
// The underlying TLS connection will signal a clean shutdown of the channel
// by throwing a special error, because it doesn't really have a better
// signally mechanism available.
if (error instanceof TLSCloseNotify) {
this._peerClosed = true;
if (this._selfClosed) {
this._shutdown();
}
event = new CustomEvent('close');
} else {
event = new CustomEvent('error', {
detail: {
error,
}
});
}
this.dispatchEvent(event);
}
});
// Relay the WebSocket events.
this._socket.addEventListener('error', () => {
this._shutdown();
// The dispatched event that we receive has no useful information.
this.dispatchEvent(new CustomEvent('error', {
detail: {
error: new Error('WebSocket error.'),
},
}));
});
// In TLS, the peer has to explicitly send a close notification,
// which we dispatch above. Unexpected socket close is an error.
this._socket.addEventListener('close', () => {
this._shutdown();
if (! this._peerClosed) {
this.dispatchEvent(new CustomEvent('error', {
detail: {
error: new Error('WebSocket unexpectedly closed'),
}
}));
}
});
}
/**
* @param {Object} data
*/
async send(data) {
const payload = utf8ToBytes(JSON.stringify(data));
await this._connection.send(payload);
}
async close() {
this._selfClosed = true;
await this._connection.close();
try {
// Ensure all queued bytes have been sent before closing the connection.
let tries = 0;
while (this._socket.bufferedAmount > 0) {
if (++tries > CLOSE_FLUSH_BUFFER_MAX_TRIES) {
throw new Error('Could not flush the outgoing buffer in time.');
}
await new Promise(res => setTimeout(res, CLOSE_FLUSH_BUFFER_INTERVAL_MS));
}
} finally {
// If the peer hasn't closed, we might still receive some data.
if (this._peerClosed) {
this._shutdown();
}
}
}
_shutdown() {
if (this._socket) {
this._socket.close();
this._socket = null;
this._connection = null;
}
}
get closed() {
return (! this._socket) || (this._socket.readyState === 3);
}
get channelId() {
return this._channelId;
}
get channelKey() {
return this._channelKey;
}
}
// Re-export helpful utilities for calling code to use.
// For running tests using the built bundle,
// expose a bunch of implementation details.
const _internals = {
arrayToBytes: arrayToBytes,
BufferReader: utils_BufferReader,
BufferWriter: utils_BufferWriter,
bytesAreEqual: bytesAreEqual,
bytesToHex: bytesToHex,
bytesToUtf8: bytesToUtf8,
ClientConnection: tlsconnection_ClientConnection,
Connection: tlsconnection_Connection,
DecryptionState: recordlayer_DecryptionState,
EncryptedExtensions: EncryptedExtensions,
EncryptionState: recordlayer_EncryptionState,
Finished: messages_Finished,
HASH_LENGTH: HASH_LENGTH,
hexToBytes: hexToBytes,
hkdfExpand: hkdfExpand,
KeySchedule: keyschedule_KeySchedule,
NewSessionTicket: messages_NewSessionTicket,
RecordLayer: recordlayer_RecordLayer,
ServerConnection: tlsconnection_ServerConnection,
utf8ToBytes: utf8ToBytes,
zeros: zeros,
};
/***/ })
/******/ ])["PairingChannel"];
|