1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
//! Helper module to build up a selector safely and efficiently.
//!
//! Our selector representation is designed to optimize matching, and has
//! several requirements:
//! * All simple selectors and combinators are stored inline in the same buffer as Component
//! instances.
//! * We store the top-level compound selectors from right to left, i.e. in matching order.
//! * We store the simple selectors for each combinator from left to right, so that we match the
//! cheaper simple selectors first.
//!
//! For example, the selector:
//!
//! .bar:hover > .baz:nth-child(2) + .qux
//!
//! Gets stored as:
//!
//! [.qux, + , .baz, :nth-child(2), > , .bar, :hover]
//!
//! Meeting all these constraints without extra memmove traffic during parsing is non-trivial. This
//! module encapsulates those details and presents an easy-to-use API for the parser.
use crate::parser::{Combinator, Component, RelativeSelector, Selector, SelectorImpl, ParseRelative};
use crate::sink::Push;
use servo_arc::{Arc, ThinArc};
use smallvec::SmallVec;
use std::cmp;
use std::slice;
/// Top-level SelectorBuilder struct. This should be stack-allocated by the consumer and never
/// moved (because it contains a lot of inline data that would be slow to memmove).
///
/// After instantiation, callers may call the push_simple_selector() and push_combinator() methods
/// to append selector data as it is encountered (from left to right). Once the process is
/// complete, callers should invoke build(), which transforms the contents of the SelectorBuilder
/// into a heap- allocated Selector and leaves the builder in a drained state.
#[derive(Debug)]
pub struct SelectorBuilder<Impl: SelectorImpl> {
/// The entire sequence of components. We make this large because the result of parsing a
/// selector is fed into a new Arc-ed allocation, so any spilled vec would be a wasted
/// allocation. Also, Components are large enough that we don't have much cache locality
/// benefit from reserving stack space for fewer of them.
components: SmallVec<[Component<Impl>; 32]>,
last_compound_start: Option<usize>,
}
impl<Impl: SelectorImpl> Push<Component<Impl>> for SelectorBuilder<Impl> {
fn push(&mut self, value: Component<Impl>) {
self.push_simple_selector(value);
}
}
impl<Impl: SelectorImpl> SelectorBuilder<Impl> {
/// Pushes a simple selector onto the current compound selector.
#[inline(always)]
pub fn push_simple_selector(&mut self, ss: Component<Impl>) {
debug_assert!(!ss.is_combinator());
self.components.push(ss);
}
/// Completes the current compound selector and starts a new one, delimited by the given
/// combinator.
#[inline(always)]
pub fn push_combinator(&mut self, c: Combinator) {
self.reverse_last_compound();
self.components.push(Component::Combinator(c));
self.last_compound_start = Some(self.components.len());
}
fn reverse_last_compound(&mut self) {
let start = self.last_compound_start.unwrap_or(0);
self.components[start..].reverse();
}
/// Returns true if combinators have ever been pushed to this builder.
#[inline(always)]
pub fn has_combinators(&self) -> bool {
self.last_compound_start.is_some()
}
/// Consumes the builder, producing a Selector.
#[inline(always)]
pub fn build(&mut self, parse_relative: ParseRelative) -> ThinArc<SpecificityAndFlags, Component<Impl>> {
// Compute the specificity and flags.
let sf = specificity_and_flags(self.components.iter());
self.build_with_specificity_and_flags(sf, parse_relative)
}
/// Builds with an explicit SpecificityAndFlags. This is separated from build() so that unit
/// tests can pass an explicit specificity.
#[inline(always)]
pub(crate) fn build_with_specificity_and_flags(
&mut self,
mut spec: SpecificityAndFlags,
parse_relative: ParseRelative,
) -> ThinArc<SpecificityAndFlags, Component<Impl>> {
let implicit_parent = parse_relative.needs_implicit_parent_selector() &&
!spec.flags.contains(SelectorFlags::HAS_PARENT);
let parent_selector_and_combinator;
let implicit_parent = if implicit_parent {
spec.flags.insert(SelectorFlags::HAS_PARENT);
parent_selector_and_combinator = [
Component::Combinator(Combinator::Descendant),
Component::ParentSelector,
];
&parent_selector_and_combinator[..]
} else {
&[]
};
// As an optimization, for a selector without combinators, we can just keep the order
// as-is.
if self.last_compound_start.is_none() {
return Arc::from_header_and_iter(spec, ExactChain(self.components.drain(..), implicit_parent.iter().cloned()));
}
self.reverse_last_compound();
Arc::from_header_and_iter(spec, ExactChain(self.components.drain(..).rev(), implicit_parent.iter().cloned()))
}
}
impl<Impl: SelectorImpl> Default for SelectorBuilder<Impl> {
#[inline(always)]
fn default() -> Self {
SelectorBuilder {
components: SmallVec::new(),
last_compound_start: None,
}
}
}
// This is effectively a Chain<>, but Chain isn't an ExactSizeIterator, see
// https://github.com/rust-lang/rust/issues/34433
struct ExactChain<A, B>(A, B);
impl<A, B, Item> ExactSizeIterator for ExactChain<A, B>
where
A: ExactSizeIterator<Item = Item>,
B: ExactSizeIterator<Item = Item>,
{
fn len(&self) -> usize {
self.0.len() + self.1.len()
}
}
impl<A, B, Item> Iterator for ExactChain<A, B>
where
A: ExactSizeIterator<Item = Item>,
B: ExactSizeIterator<Item = Item>,
{
type Item = Item;
#[inline(always)]
fn next(&mut self) -> Option<Self::Item> {
self.0.next().or_else(|| self.1.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
/// Flags that indicate at which point of parsing a selector are we.
#[derive(Clone, Copy, Default, Eq, PartialEq, ToShmem)]
pub(crate) struct SelectorFlags(u8);
bitflags! {
impl SelectorFlags: u8 {
const HAS_PSEUDO = 1 << 0;
const HAS_SLOTTED = 1 << 1;
const HAS_PART = 1 << 2;
const HAS_PARENT = 1 << 3;
const HAS_NON_FEATURELESS_COMPONENT = 1 << 4;
const HAS_HOST = 1 << 5;
}
}
impl core::fmt::Debug for SelectorFlags {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
if self.is_empty() {
write!(f, "{:#x}", Self::empty().bits())
} else {
bitflags::parser::to_writer(self, f)
}
}
}
impl SelectorFlags {
/// When you nest a pseudo-element with something like:
///
/// ::before { & { .. } }
///
/// It is not supposed to work, because :is(::before) is invalid. We can't propagate the
/// pseudo-flags from inner to outer selectors, to avoid breaking our invariants.
pub(crate) fn for_nesting() -> Self {
Self::all() - (Self::HAS_PSEUDO | Self::HAS_SLOTTED | Self::HAS_PART)
}
}
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, ToShmem)]
pub struct SpecificityAndFlags {
/// There are two free bits here, since we use ten bits for each specificity
/// kind (id, class, element).
pub(crate) specificity: u32,
/// There's padding after this field due to the size of the flags.
pub(crate) flags: SelectorFlags,
}
const MAX_10BIT: u32 = (1u32 << 10) - 1;
#[derive(Add, AddAssign, Clone, Copy, Default, Eq, Ord, PartialEq, PartialOrd)]
pub(crate) struct Specificity {
id_selectors: u32,
class_like_selectors: u32,
element_selectors: u32,
}
impl From<u32> for Specificity {
#[inline]
fn from(value: u32) -> Specificity {
assert!(value <= MAX_10BIT << 20 | MAX_10BIT << 10 | MAX_10BIT);
Specificity {
id_selectors: value >> 20,
class_like_selectors: (value >> 10) & MAX_10BIT,
element_selectors: value & MAX_10BIT,
}
}
}
impl From<Specificity> for u32 {
#[inline]
fn from(specificity: Specificity) -> u32 {
cmp::min(specificity.id_selectors, MAX_10BIT) << 20 |
cmp::min(specificity.class_like_selectors, MAX_10BIT) << 10 |
cmp::min(specificity.element_selectors, MAX_10BIT)
}
}
pub(crate) fn specificity_and_flags<Impl>(iter: slice::Iter<Component<Impl>>) -> SpecificityAndFlags
where
Impl: SelectorImpl,
{
complex_selector_specificity_and_flags(iter).into()
}
fn complex_selector_specificity_and_flags<Impl>(
iter: slice::Iter<Component<Impl>>,
) -> SpecificityAndFlags
where
Impl: SelectorImpl,
{
fn component_specificity<Impl>(
simple_selector: &Component<Impl>,
specificity: &mut Specificity,
flags: &mut SelectorFlags,
) where
Impl: SelectorImpl,
{
match *simple_selector {
Component::Combinator(..) => {},
Component::ParentSelector => flags.insert(SelectorFlags::HAS_PARENT),
Component::Part(..) => {
flags.insert(SelectorFlags::HAS_PART);
specificity.element_selectors += 1
},
Component::PseudoElement(..) => {
flags.insert(SelectorFlags::HAS_PSEUDO);
specificity.element_selectors += 1
},
Component::LocalName(..) => {
flags.insert(SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
specificity.element_selectors += 1
},
Component::Slotted(ref selector) => {
flags.insert(
SelectorFlags::HAS_SLOTTED | SelectorFlags::HAS_NON_FEATURELESS_COMPONENT,
);
specificity.element_selectors += 1;
// Note that due to the way ::slotted works we only compete with
// other ::slotted rules, so the above rule doesn't really
// matter, but we do it still for consistency with other
// pseudo-elements.
//
// See: https://github.com/w3c/csswg-drafts/issues/1915
*specificity += Specificity::from(selector.specificity());
flags.insert(selector.flags());
},
Component::Host(ref selector) => {
flags.insert(SelectorFlags::HAS_HOST);
specificity.class_like_selectors += 1;
if let Some(ref selector) = *selector {
// See: https://github.com/w3c/csswg-drafts/issues/1915
*specificity += Specificity::from(selector.specificity());
flags.insert(selector.flags() - SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
}
},
Component::ID(..) => {
flags.insert(SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
specificity.id_selectors += 1;
},
Component::Class(..) |
Component::AttributeInNoNamespace { .. } |
Component::AttributeInNoNamespaceExists { .. } |
Component::AttributeOther(..) |
Component::Root |
Component::Empty |
Component::Scope |
Component::Nth(..) |
Component::NonTSPseudoClass(..) => {
flags.insert(SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
specificity.class_like_selectors += 1;
},
Component::NthOf(ref nth_of_data) => {
// https://drafts.csswg.org/selectors/#specificity-rules:
//
// The specificity of the :nth-last-child() pseudo-class,
// like the :nth-child() pseudo-class, combines the
// specificity of a regular pseudo-class with that of its
// selector argument S.
specificity.class_like_selectors += 1;
let sf = selector_list_specificity_and_flags(nth_of_data.selectors().iter());
*specificity += Specificity::from(sf.specificity);
flags.insert(sf.flags | SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
},
// https://drafts.csswg.org/selectors/#specificity-rules:
//
// The specificity of an :is(), :not(), or :has() pseudo-class
// is replaced by the specificity of the most specific complex
// selector in its selector list argument.
Component::Where(ref list) |
Component::Negation(ref list) |
Component::Is(ref list) => {
let sf = selector_list_specificity_and_flags(list.slice().iter());
if !matches!(*simple_selector, Component::Where(..)) {
*specificity += Specificity::from(sf.specificity);
}
flags.insert(sf.flags);
},
Component::Has(ref relative_selectors) => {
let sf = relative_selector_list_specificity_and_flags(relative_selectors);
*specificity += Specificity::from(sf.specificity);
flags.insert(sf.flags | SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
},
Component::ExplicitUniversalType |
Component::ExplicitAnyNamespace |
Component::ExplicitNoNamespace |
Component::DefaultNamespace(..) |
Component::Namespace(..) |
Component::RelativeSelectorAnchor |
Component::Invalid(..) => {
// Does not affect specificity
flags.insert(SelectorFlags::HAS_NON_FEATURELESS_COMPONENT);
},
}
}
let mut specificity = Default::default();
let mut flags = Default::default();
for simple_selector in iter {
component_specificity(&simple_selector, &mut specificity, &mut flags);
}
SpecificityAndFlags {
specificity: specificity.into(),
flags,
}
}
/// Finds the maximum specificity of elements in the list and returns it.
pub(crate) fn selector_list_specificity_and_flags<'a, Impl: SelectorImpl>(
itr: impl Iterator<Item = &'a Selector<Impl>>,
) -> SpecificityAndFlags {
let mut specificity = 0;
let mut flags = SelectorFlags::empty();
for selector in itr {
specificity = std::cmp::max(specificity, selector.specificity());
flags.insert(selector.flags());
}
SpecificityAndFlags { specificity, flags }
}
pub(crate) fn relative_selector_list_specificity_and_flags<Impl: SelectorImpl>(
list: &[RelativeSelector<Impl>],
) -> SpecificityAndFlags {
selector_list_specificity_and_flags(list.iter().map(|rel| &rel.selector))
}
|