summaryrefslogtreecommitdiffstats
path: root/testing/web-platform/tests/webnn/idlharness.https.any.js
blob: 93e88294ef1ed0347db722a9c1305aac47fc4129 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
// META: global=window,dedicatedworker
// META: script=/resources/WebIDLParser.js
// META: script=/resources/idlharness.js
// META: script=./resources/utils.js
// META: timeout=long

// https://webmachinelearning.github.io/webnn/

'use strict';

idl_test(
  ['webnn'],
  ['html', 'webidl', 'webgpu'],
  async (idl_array) => {
    if (self.GLOBAL.isWindow()) {
      idl_array.add_objects({ Navigator: ['navigator'] });
    } else if (self.GLOBAL.isWorker()) {
      idl_array.add_objects({ WorkerNavigator: ['navigator'] });
    }

    idl_array.add_objects({
      NavigatorML: ['navigator'],
      ML: ['navigator.ml'],
      MLContext: ['context'],
      MLOperand: ['input', 'filter', 'output'],
      MLActivation: ['relu'],
      MLGraphBuilder: ['builder'],
      MLGraph: ['graph']
    });

    self.context = await navigator.ml.createContext();

    self.builder = new MLGraphBuilder(self.context);
    self.input =
        builder.input('input', {dataType: 'float32', dimensions: [1, 1, 5, 5]});
    self.filter = builder.constant(
        {dataType: 'float32', dimensions: [1, 1, 3, 3]},
        new Float32Array(9).fill(1));
    self.relu = builder.relu();
    self.output =
        builder.conv2d(input, filter, {activation: relu, inputLayout: "nchw"});

    self.graph = await builder.build({output});
  }
);