summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/blend_a64_mask.c
blob: 35017fd737bc0358751183c0a37115831122f89f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>

#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/aom_dsp_common.h"

#include "config/aom_dsp_rtcd.h"

// Blending with alpha mask. Mask values come from the range [0, 64],
// as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can
// be the same as dst, or dst can be different from both sources.

// NOTE(rachelbarker): The input and output of aom_blend_a64_d16_mask_c() are
// in a higher intermediate precision, and will later be rounded down to pixel
// precision.
// Thus, in order to avoid double-rounding, we want to use normal right shifts
// within this function, not ROUND_POWER_OF_TWO.
// This works because of the identity:
// ROUND_POWER_OF_TWO(x >> y, z) == ROUND_POWER_OF_TWO(x, y+z)
//
// In contrast, the output of the non-d16 functions will not be further rounded,
// so we *should* use ROUND_POWER_OF_TWO there.

void aom_lowbd_blend_a64_d16_mask_c(
    uint8_t *dst, uint32_t dst_stride, const CONV_BUF_TYPE *src0,
    uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride,
    const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh,
    ConvolveParams *conv_params) {
  int i, j;
  const int bd = 8;
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
  const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
                           (1 << (offset_bits - conv_params->round_1 - 1));
  const int round_bits =
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;

  assert(IMPLIES((void *)src0 == dst, src0_stride == dst_stride));
  assert(IMPLIES((void *)src1 == dst, src1_stride == dst_stride));

  assert(h >= 4);
  assert(w >= 4);
  assert(IS_POWER_OF_TWO(h));
  assert(IS_POWER_OF_TWO(w));

  if (subw == 0 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        int32_t res;
        const int m = mask[i * mask_stride + j];
        res = ((m * (int32_t)src0[i * src0_stride + j] +
                (AOM_BLEND_A64_MAX_ALPHA - m) *
                    (int32_t)src1[i * src1_stride + j]) >>
               AOM_BLEND_A64_ROUND_BITS);
        res -= round_offset;
        dst[i * dst_stride + j] =
            clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
      }
    }
  } else if (subw == 1 && subh == 1) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        int32_t res;
        const int m = ROUND_POWER_OF_TWO(
            mask[(2 * i) * mask_stride + (2 * j)] +
                mask[(2 * i + 1) * mask_stride + (2 * j)] +
                mask[(2 * i) * mask_stride + (2 * j + 1)] +
                mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
            2);
        res = ((m * (int32_t)src0[i * src0_stride + j] +
                (AOM_BLEND_A64_MAX_ALPHA - m) *
                    (int32_t)src1[i * src1_stride + j]) >>
               AOM_BLEND_A64_ROUND_BITS);
        res -= round_offset;
        dst[i * dst_stride + j] =
            clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
      }
    }
  } else if (subw == 1 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        int32_t res;
        const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
                                    mask[i * mask_stride + (2 * j + 1)]);
        res = ((m * (int32_t)src0[i * src0_stride + j] +
                (AOM_BLEND_A64_MAX_ALPHA - m) *
                    (int32_t)src1[i * src1_stride + j]) >>
               AOM_BLEND_A64_ROUND_BITS);
        res -= round_offset;
        dst[i * dst_stride + j] =
            clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
      }
    }
  } else {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        int32_t res;
        const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
                                    mask[(2 * i + 1) * mask_stride + j]);
        res = ((int32_t)(m * (int32_t)src0[i * src0_stride + j] +
                         (AOM_BLEND_A64_MAX_ALPHA - m) *
                             (int32_t)src1[i * src1_stride + j]) >>
               AOM_BLEND_A64_ROUND_BITS);
        res -= round_offset;
        dst[i * dst_stride + j] =
            clip_pixel(ROUND_POWER_OF_TWO(res, round_bits));
      }
    }
  }
}

#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_blend_a64_d16_mask_c(
    uint8_t *dst_8, uint32_t dst_stride, const CONV_BUF_TYPE *src0,
    uint32_t src0_stride, const CONV_BUF_TYPE *src1, uint32_t src1_stride,
    const uint8_t *mask, uint32_t mask_stride, int w, int h, int subw, int subh,
    ConvolveParams *conv_params, const int bd) {
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
  const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
                           (1 << (offset_bits - conv_params->round_1 - 1));
  const int round_bits =
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);

  assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
  assert(IMPLIES(src1 == dst, src1_stride == dst_stride));

  assert(h >= 1);
  assert(w >= 1);
  assert(IS_POWER_OF_TWO(h));
  assert(IS_POWER_OF_TWO(w));

  // excerpt from clip_pixel_highbd()
  // set saturation_value to (1 << bd) - 1
  unsigned int saturation_value;
  switch (bd) {
    case 8:
    default: saturation_value = 255; break;
    case 10: saturation_value = 1023; break;
    case 12: saturation_value = 4095; break;
  }

  if (subw == 0 && subh == 0) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int32_t res;
        const int m = mask[j];
        res = ((m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
               AOM_BLEND_A64_ROUND_BITS);
        res -= round_offset;
        unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
        dst[j] = AOMMIN(v, saturation_value);
      }
      mask += mask_stride;
      src0 += src0_stride;
      src1 += src1_stride;
      dst += dst_stride;
    }
  } else if (subw == 1 && subh == 1) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int32_t res;
        const int m = ROUND_POWER_OF_TWO(
            mask[2 * j] + mask[mask_stride + 2 * j] + mask[2 * j + 1] +
                mask[mask_stride + 2 * j + 1],
            2);
        res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
              AOM_BLEND_A64_ROUND_BITS;
        res -= round_offset;
        unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
        dst[j] = AOMMIN(v, saturation_value);
      }
      mask += 2 * mask_stride;
      src0 += src0_stride;
      src1 += src1_stride;
      dst += dst_stride;
    }
  } else if (subw == 1 && subh == 0) {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int32_t res;
        const int m = AOM_BLEND_AVG(mask[2 * j], mask[2 * j + 1]);
        res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
              AOM_BLEND_A64_ROUND_BITS;
        res -= round_offset;
        unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
        dst[j] = AOMMIN(v, saturation_value);
      }
      mask += mask_stride;
      src0 += src0_stride;
      src1 += src1_stride;
      dst += dst_stride;
    }
  } else {
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        int32_t res;
        const int m = AOM_BLEND_AVG(mask[j], mask[mask_stride + j]);
        res = (m * src0[j] + (AOM_BLEND_A64_MAX_ALPHA - m) * src1[j]) >>
              AOM_BLEND_A64_ROUND_BITS;
        res -= round_offset;
        unsigned int v = negative_to_zero(ROUND_POWER_OF_TWO(res, round_bits));
        dst[j] = AOMMIN(v, saturation_value);
      }
      mask += 2 * mask_stride;
      src0 += src0_stride;
      src1 += src1_stride;
      dst += dst_stride;
    }
  }
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

// Blending with alpha mask. Mask values come from the range [0, 64],
// as described for AOM_BLEND_A64 in aom_dsp/blend.h. src0 or src1 can
// be the same as dst, or dst can be different from both sources.

void aom_blend_a64_mask_c(uint8_t *dst, uint32_t dst_stride,
                          const uint8_t *src0, uint32_t src0_stride,
                          const uint8_t *src1, uint32_t src1_stride,
                          const uint8_t *mask, uint32_t mask_stride, int w,
                          int h, int subw, int subh) {
  int i, j;

  assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
  assert(IMPLIES(src1 == dst, src1_stride == dst_stride));

  assert(h >= 1);
  assert(w >= 1);
  assert(IS_POWER_OF_TWO(h));
  assert(IS_POWER_OF_TWO(w));

  if (subw == 0 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = mask[i * mask_stride + j];
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else if (subw == 1 && subh == 1) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = ROUND_POWER_OF_TWO(
            mask[(2 * i) * mask_stride + (2 * j)] +
                mask[(2 * i + 1) * mask_stride + (2 * j)] +
                mask[(2 * i) * mask_stride + (2 * j + 1)] +
                mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
            2);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else if (subw == 1 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
                                    mask[i * mask_stride + (2 * j + 1)]);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
                                    mask[(2 * i + 1) * mask_stride + j]);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  }
}

#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_blend_a64_mask_c(uint8_t *dst_8, uint32_t dst_stride,
                                 const uint8_t *src0_8, uint32_t src0_stride,
                                 const uint8_t *src1_8, uint32_t src1_stride,
                                 const uint8_t *mask, uint32_t mask_stride,
                                 int w, int h, int subw, int subh, int bd) {
  int i, j;
  uint16_t *dst = CONVERT_TO_SHORTPTR(dst_8);
  const uint16_t *src0 = CONVERT_TO_SHORTPTR(src0_8);
  const uint16_t *src1 = CONVERT_TO_SHORTPTR(src1_8);
  (void)bd;

  assert(IMPLIES(src0 == dst, src0_stride == dst_stride));
  assert(IMPLIES(src1 == dst, src1_stride == dst_stride));

  assert(h >= 1);
  assert(w >= 1);
  assert(IS_POWER_OF_TWO(h));
  assert(IS_POWER_OF_TWO(w));

  assert(bd == 8 || bd == 10 || bd == 12);

  if (subw == 0 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = mask[i * mask_stride + j];
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else if (subw == 1 && subh == 1) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = ROUND_POWER_OF_TWO(
            mask[(2 * i) * mask_stride + (2 * j)] +
                mask[(2 * i + 1) * mask_stride + (2 * j)] +
                mask[(2 * i) * mask_stride + (2 * j + 1)] +
                mask[(2 * i + 1) * mask_stride + (2 * j + 1)],
            2);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else if (subw == 1 && subh == 0) {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = AOM_BLEND_AVG(mask[i * mask_stride + (2 * j)],
                                    mask[i * mask_stride + (2 * j + 1)]);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  } else {
    for (i = 0; i < h; ++i) {
      for (j = 0; j < w; ++j) {
        const int m = AOM_BLEND_AVG(mask[(2 * i) * mask_stride + j],
                                    mask[(2 * i + 1) * mask_stride + j]);
        dst[i * dst_stride + j] = AOM_BLEND_A64(m, src0[i * src0_stride + j],
                                                src1[i * src1_stride + j]);
      }
    }
  }
}
#endif  // CONFIG_AV1_HIGHBITDEPTH