summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/pyramid.c
blob: 05ddbb2f5fed0e02dff6067369c862fd820e063b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * Copyright (c) 2022, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "aom_dsp/pyramid.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/bitops.h"
#include "aom_util/aom_pthread.h"

// TODO(rachelbarker): Move needed code from av1/ to aom_dsp/
#include "av1/common/resize.h"

#include <assert.h>
#include <string.h>

// Lifecycle:
// * Frame buffer alloc code calls aom_get_pyramid_alloc_size()
//   to work out how much space is needed for a given number of pyramid
//   levels. This is counted in the size checked against the max allocation
//   limit
// * Then calls aom_alloc_pyramid() to actually create the pyramid
// * Pyramid is initially marked as containing no valid data
// * Each pyramid layer is computed on-demand, the first time it is requested
// * Whenever frame buffer is reused, reset the counter of filled levels.
//   This invalidates all of the existing pyramid levels.
// * Whenever frame buffer is resized, reallocate pyramid

size_t aom_get_pyramid_alloc_size(int width, int height, bool image_is_16bit) {
  // Allocate the maximum possible number of layers for this width and height
  const int msb = get_msb(AOMMIN(width, height));
  const int n_levels = AOMMAX(msb - MIN_PYRAMID_SIZE_LOG2, 1);

  size_t alloc_size = 0;
  alloc_size += sizeof(ImagePyramid);
  alloc_size += n_levels * sizeof(PyramidLayer);

  // Calculate how much memory is needed for downscaled frame buffers
  size_t buffer_size = 0;

  // Work out if we need to allocate a few extra bytes for alignment.
  // aom_memalign() will ensure that the start of the allocation is aligned
  // to a multiple of PYRAMID_ALIGNMENT. But we want the first image pixel
  // to be aligned, not the first byte of the allocation.
  //
  // In the loop below, we ensure that the stride of every image is a multiple
  // of PYRAMID_ALIGNMENT. Thus the allocated size of each pyramid level will
  // also be a multiple of PYRAMID_ALIGNMENT. Thus, as long as we can get the
  // first pixel in the first pyramid layer aligned properly, that will
  // automatically mean that the first pixel of every row of every layer is
  // properly aligned too.
  //
  // Thus all we need to consider is the first pixel in the first layer.
  // This is located at offset
  //   extra_bytes + level_stride * PYRAMID_PADDING + PYRAMID_PADDING
  // bytes into the buffer. Since level_stride is a multiple of
  // PYRAMID_ALIGNMENT, we can ignore that. So we need
  //   extra_bytes + PYRAMID_PADDING = multiple of PYRAMID_ALIGNMENT
  //
  // To solve this, we can round PYRAMID_PADDING up to the next multiple
  // of PYRAMID_ALIGNMENT, then subtract the orginal value to calculate
  // how many extra bytes are needed.
  size_t first_px_offset =
      (PYRAMID_PADDING + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
  size_t extra_bytes = first_px_offset - PYRAMID_PADDING;
  buffer_size += extra_bytes;

  // If the original image is stored in an 8-bit buffer, then we can point the
  // lowest pyramid level at that buffer rather than allocating a new one.
  int first_allocated_level = image_is_16bit ? 0 : 1;

  for (int level = first_allocated_level; level < n_levels; level++) {
    int level_width = width >> level;
    int level_height = height >> level;

    // Allocate padding for each layer
    int padded_width = level_width + 2 * PYRAMID_PADDING;
    int padded_height = level_height + 2 * PYRAMID_PADDING;

    // Align the layer stride to be a multiple of PYRAMID_ALIGNMENT
    // This ensures that, as long as the top-left pixel in this pyramid level is
    // properly aligned, then so will the leftmost pixel in every row of the
    // pyramid level.
    int level_stride =
        (padded_width + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);

    buffer_size += level_stride * padded_height;
  }

  alloc_size += buffer_size;

  return alloc_size;
}

ImagePyramid *aom_alloc_pyramid(int width, int height, bool image_is_16bit) {
  // Allocate the maximum possible number of layers for this width and height
  const int msb = get_msb(AOMMIN(width, height));
  const int n_levels = AOMMAX(msb - MIN_PYRAMID_SIZE_LOG2, 1);

  ImagePyramid *pyr = aom_calloc(1, sizeof(*pyr));
  if (!pyr) {
    return NULL;
  }

  pyr->layers = aom_calloc(n_levels, sizeof(*pyr->layers));
  if (!pyr->layers) {
    aom_free(pyr);
    return NULL;
  }

  pyr->max_levels = n_levels;
  pyr->filled_levels = 0;

  // Compute sizes and offsets for each pyramid level
  // These are gathered up first, so that we can allocate all pyramid levels
  // in a single buffer
  size_t buffer_size = 0;
  size_t *layer_offsets = aom_calloc(n_levels, sizeof(*layer_offsets));
  if (!layer_offsets) {
    aom_free(pyr->layers);
    aom_free(pyr);
    return NULL;
  }

  // Work out if we need to allocate a few extra bytes for alignment.
  // aom_memalign() will ensure that the start of the allocation is aligned
  // to a multiple of PYRAMID_ALIGNMENT. But we want the first image pixel
  // to be aligned, not the first byte of the allocation.
  //
  // In the loop below, we ensure that the stride of every image is a multiple
  // of PYRAMID_ALIGNMENT. Thus the allocated size of each pyramid level will
  // also be a multiple of PYRAMID_ALIGNMENT. Thus, as long as we can get the
  // first pixel in the first pyramid layer aligned properly, that will
  // automatically mean that the first pixel of every row of every layer is
  // properly aligned too.
  //
  // Thus all we need to consider is the first pixel in the first layer.
  // This is located at offset
  //   extra_bytes + level_stride * PYRAMID_PADDING + PYRAMID_PADDING
  // bytes into the buffer. Since level_stride is a multiple of
  // PYRAMID_ALIGNMENT, we can ignore that. So we need
  //   extra_bytes + PYRAMID_PADDING = multiple of PYRAMID_ALIGNMENT
  //
  // To solve this, we can round PYRAMID_PADDING up to the next multiple
  // of PYRAMID_ALIGNMENT, then subtract the orginal value to calculate
  // how many extra bytes are needed.
  size_t first_px_offset =
      (PYRAMID_PADDING + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);
  size_t extra_bytes = first_px_offset - PYRAMID_PADDING;
  buffer_size += extra_bytes;

  // If the original image is stored in an 8-bit buffer, then we can point the
  // lowest pyramid level at that buffer rather than allocating a new one.
  int first_allocated_level = image_is_16bit ? 0 : 1;

  for (int level = first_allocated_level; level < n_levels; level++) {
    PyramidLayer *layer = &pyr->layers[level];

    int level_width = width >> level;
    int level_height = height >> level;

    // Allocate padding for each layer
    int padded_width = level_width + 2 * PYRAMID_PADDING;
    int padded_height = level_height + 2 * PYRAMID_PADDING;

    // Align the layer stride to be a multiple of PYRAMID_ALIGNMENT
    // This ensures that, as long as the top-left pixel in this pyramid level is
    // properly aligned, then so will the leftmost pixel in every row of the
    // pyramid level.
    int level_stride =
        (padded_width + PYRAMID_ALIGNMENT - 1) & ~(PYRAMID_ALIGNMENT - 1);

    size_t level_alloc_start = buffer_size;
    size_t level_start =
        level_alloc_start + PYRAMID_PADDING * level_stride + PYRAMID_PADDING;

    buffer_size += level_stride * padded_height;

    layer_offsets[level] = level_start;
    layer->width = level_width;
    layer->height = level_height;
    layer->stride = level_stride;
  }

  pyr->buffer_alloc =
      aom_memalign(PYRAMID_ALIGNMENT, buffer_size * sizeof(*pyr->buffer_alloc));
  if (!pyr->buffer_alloc) {
    aom_free(pyr->layers);
    aom_free(pyr);
    aom_free(layer_offsets);
    return NULL;
  }

  // Fill in pointers for each level
  // If image is 8-bit, then the lowest level is left unconfigured for now,
  // and will be set up properly when the pyramid is filled in
  for (int level = first_allocated_level; level < n_levels; level++) {
    PyramidLayer *layer = &pyr->layers[level];
    layer->buffer = pyr->buffer_alloc + layer_offsets[level];
  }

#if CONFIG_MULTITHREAD
  pthread_mutex_init(&pyr->mutex, NULL);
#endif  // CONFIG_MULTITHREAD

  aom_free(layer_offsets);
  return pyr;
}

// Fill the border region of a pyramid frame.
// This must be called after the main image area is filled out.
// `img_buf` should point to the first pixel in the image area,
// ie. it should be pyr->level_buffer + pyr->level_loc[level].
static INLINE void fill_border(uint8_t *img_buf, const int width,
                               const int height, const int stride) {
  // Fill left and right areas
  for (int row = 0; row < height; row++) {
    uint8_t *row_start = &img_buf[row * stride];
    uint8_t left_pixel = row_start[0];
    memset(row_start - PYRAMID_PADDING, left_pixel, PYRAMID_PADDING);
    uint8_t right_pixel = row_start[width - 1];
    memset(row_start + width, right_pixel, PYRAMID_PADDING);
  }

  // Fill top area
  for (int row = -PYRAMID_PADDING; row < 0; row++) {
    uint8_t *row_start = &img_buf[row * stride];
    memcpy(row_start - PYRAMID_PADDING, img_buf - PYRAMID_PADDING,
           width + 2 * PYRAMID_PADDING);
  }

  // Fill bottom area
  uint8_t *last_row_start = &img_buf[(height - 1) * stride];
  for (int row = height; row < height + PYRAMID_PADDING; row++) {
    uint8_t *row_start = &img_buf[row * stride];
    memcpy(row_start - PYRAMID_PADDING, last_row_start - PYRAMID_PADDING,
           width + 2 * PYRAMID_PADDING);
  }
}

// Compute downsampling pyramid for a frame
//
// This function will ensure that the first `n_levels` levels of the pyramid
// are filled, unless the frame is too small to have this many levels.
// In that case, we will fill all available levels and then stop.
//
// Returns the actual number of levels filled, capped at n_levels,
// or -1 on error.
//
// This must only be called while holding frame_pyr->mutex
static INLINE int fill_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth,
                               int n_levels, ImagePyramid *frame_pyr) {
  int already_filled_levels = frame_pyr->filled_levels;

  // This condition should already be enforced by aom_compute_pyramid
  assert(n_levels <= frame_pyr->max_levels);

  if (already_filled_levels >= n_levels) {
    return n_levels;
  }

  const int frame_width = frame->y_crop_width;
  const int frame_height = frame->y_crop_height;
  const int frame_stride = frame->y_stride;
  assert((frame_width >> n_levels) >= 0);
  assert((frame_height >> n_levels) >= 0);

  if (already_filled_levels == 0) {
    // Fill in largest level from the original image
    PyramidLayer *first_layer = &frame_pyr->layers[0];
    if (frame->flags & YV12_FLAG_HIGHBITDEPTH) {
      // For frames stored in a 16-bit buffer, we need to downconvert to 8 bits
      assert(first_layer->width == frame_width);
      assert(first_layer->height == frame_height);

      uint16_t *frame_buffer = CONVERT_TO_SHORTPTR(frame->y_buffer);
      uint8_t *pyr_buffer = first_layer->buffer;
      int pyr_stride = first_layer->stride;
      for (int y = 0; y < frame_height; y++) {
        uint16_t *frame_row = frame_buffer + y * frame_stride;
        uint8_t *pyr_row = pyr_buffer + y * pyr_stride;
        for (int x = 0; x < frame_width; x++) {
          pyr_row[x] = frame_row[x] >> (bit_depth - 8);
        }
      }

      fill_border(pyr_buffer, frame_width, frame_height, pyr_stride);
    } else {
      // For frames stored in an 8-bit buffer, we don't need to copy anything -
      // we can just reference the original image buffer
      first_layer->buffer = frame->y_buffer;
      first_layer->width = frame_width;
      first_layer->height = frame_height;
      first_layer->stride = frame_stride;
    }

    already_filled_levels = 1;
  }

  // Fill in the remaining levels through progressive downsampling
  for (int level = already_filled_levels; level < n_levels; ++level) {
    bool mem_status = false;
    PyramidLayer *prev_layer = &frame_pyr->layers[level - 1];
    uint8_t *prev_buffer = prev_layer->buffer;
    int prev_stride = prev_layer->stride;

    PyramidLayer *this_layer = &frame_pyr->layers[level];
    uint8_t *this_buffer = this_layer->buffer;
    int this_width = this_layer->width;
    int this_height = this_layer->height;
    int this_stride = this_layer->stride;

    // The width and height of the previous layer that needs to be considered to
    // derive the current layer frame.
    const int input_layer_width = this_width << 1;
    const int input_layer_height = this_height << 1;

    // Compute the this pyramid level by downsampling the current level.
    //
    // We downsample by a factor of exactly 2, clipping the rightmost and
    // bottommost pixel off of the current level if needed. We do this for
    // two main reasons:
    //
    // 1) In the disflow code, when stepping from a higher pyramid level to a
    //    lower pyramid level, we need to not just interpolate the flow field
    //    but also to scale each flow vector by the upsampling ratio.
    //    So it is much more convenient if this ratio is simply 2.
    //
    // 2) Up/downsampling by a factor of 2 can be implemented much more
    //    efficiently than up/downsampling by a generic ratio.
    //    TODO(rachelbarker): Use optimized downsample-by-2 function

    // SIMD support has been added specifically for cases where the downsample
    // factor is exactly 2. In such instances, horizontal and vertical resizing
    // is performed utilizing the down2_symeven() function, which considers the
    // even dimensions of the input layer.
    if (should_resize_by_half(input_layer_height, input_layer_width,
                              this_height, this_width)) {
      assert(input_layer_height % 2 == 0 && input_layer_width % 2 == 0 &&
             "Input width or height cannot be odd.");
      mem_status = av1_resize_plane_to_half(
          prev_buffer, input_layer_height, input_layer_width, prev_stride,
          this_buffer, this_height, this_width, this_stride);
    } else {
      mem_status = av1_resize_plane(prev_buffer, input_layer_height,
                                    input_layer_width, prev_stride, this_buffer,
                                    this_height, this_width, this_stride);
    }

    // Terminate early in cases of memory allocation failure.
    if (!mem_status) {
      frame_pyr->filled_levels = n_levels;
      return -1;
    }

    fill_border(this_buffer, this_width, this_height, this_stride);
  }

  frame_pyr->filled_levels = n_levels;
  return n_levels;
}

// Fill out a downsampling pyramid for a given frame.
//
// The top level (index 0) will always be an 8-bit copy of the input frame,
// regardless of the input bit depth. Additional levels are then downscaled
// by powers of 2.
//
// This function will ensure that the first `n_levels` levels of the pyramid
// are filled, unless the frame is too small to have this many levels.
// In that case, we will fill all available levels and then stop.
// No matter how small the frame is, at least one level is guaranteed
// to be filled.
//
// Returns the actual number of levels filled, capped at n_levels,
// or -1 on error.
int aom_compute_pyramid(const YV12_BUFFER_CONFIG *frame, int bit_depth,
                        int n_levels, ImagePyramid *pyr) {
  assert(pyr);

  // Per the comments in the ImagePyramid struct, we must take this mutex
  // before reading or writing the filled_levels field, and hold it while
  // computing any additional pyramid levels, to ensure proper behaviour
  // when multithreading is used
#if CONFIG_MULTITHREAD
  pthread_mutex_lock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD

  n_levels = AOMMIN(n_levels, pyr->max_levels);
  int result = n_levels;
  if (pyr->filled_levels < n_levels) {
    // Compute any missing levels that we need
    result = fill_pyramid(frame, bit_depth, n_levels, pyr);
  }

  // At this point, as long as result >= 0, the requested number of pyramid
  // levels are guaranteed to be valid, and can be safely read from without
  // holding the mutex any further
  assert(IMPLIES(result >= 0, pyr->filled_levels >= n_levels));
#if CONFIG_MULTITHREAD
  pthread_mutex_unlock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD
  return result;
}

#ifndef NDEBUG
// Check if a pyramid has already been computed to at least n levels
// This is mostly a debug helper - as it is necessary to hold pyr->mutex
// while reading the number of already-computed levels, we cannot just write:
//   assert(pyr->filled_levels >= n_levels);
// This function allows the check to be correctly written as:
//   assert(aom_is_pyramid_valid(pyr, n_levels));
//
// Note: This deliberately does not restrict n_levels based on the maximum
// number of permitted levels for the frame size. This allows the check to
// catch cases where the caller forgets to handle the case where
// max_levels is less than the requested number of levels
bool aom_is_pyramid_valid(ImagePyramid *pyr, int n_levels) {
  assert(pyr);

  // Per the comments in the ImagePyramid struct, we must take this mutex
  // before reading or writing the filled_levels field, to ensure proper
  // behaviour when multithreading is used
#if CONFIG_MULTITHREAD
  pthread_mutex_lock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD

  bool result = (pyr->filled_levels >= n_levels);

#if CONFIG_MULTITHREAD
  pthread_mutex_unlock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD

  return result;
}
#endif

// Mark a pyramid as no longer containing valid data.
// This must be done whenever the corresponding frame buffer is reused
void aom_invalidate_pyramid(ImagePyramid *pyr) {
  if (pyr) {
#if CONFIG_MULTITHREAD
    pthread_mutex_lock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD
    pyr->filled_levels = 0;
#if CONFIG_MULTITHREAD
    pthread_mutex_unlock(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD
  }
}

// Release the memory associated with a pyramid
void aom_free_pyramid(ImagePyramid *pyr) {
  if (pyr) {
#if CONFIG_MULTITHREAD
    pthread_mutex_destroy(&pyr->mutex);
#endif  // CONFIG_MULTITHREAD
    aom_free(pyr->buffer_alloc);
    aom_free(pyr->layers);
    aom_free(pyr);
  }
}