summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/aom_subpixel_8t_intrin_ssse3.c
blob: 245fda1e941ba974de5ff1c9d32e592642348da2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <tmmintrin.h>

#include "config/aom_dsp_rtcd.h"

#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_dsp/x86/convolve_sse2.h"
#include "aom_dsp/x86/convolve_ssse3.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/transpose_sse2.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/emmintrin_compat.h"

DECLARE_ALIGNED(32, static const uint8_t, filt_h4[]) = {
  0,  1,  1,  2,  2, 3,  3,  4,  4,  5,  5,  6,  6,  7,  7,  8,  0,  1,  1,
  2,  2,  3,  3,  4, 4,  5,  5,  6,  6,  7,  7,  8,  2,  3,  3,  4,  4,  5,
  5,  6,  6,  7,  7, 8,  8,  9,  9,  10, 2,  3,  3,  4,  4,  5,  5,  6,  6,
  7,  7,  8,  8,  9, 9,  10, 4,  5,  5,  6,  6,  7,  7,  8,  8,  9,  9,  10,
  10, 11, 11, 12, 4, 5,  5,  6,  6,  7,  7,  8,  8,  9,  9,  10, 10, 11, 11,
  12, 6,  7,  7,  8, 8,  9,  9,  10, 10, 11, 11, 12, 12, 13, 13, 14, 6,  7,
  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};

DECLARE_ALIGNED(32, static const uint8_t, filtd4[]) = {
  2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8,
  2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8,
};

static void aom_filter_block1d4_h4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1;
  unsigned int i;
  src_ptr -= 3;
  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  // converting the 16 bit (short) to 8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u));
  filt1Reg = _mm_load_si128((__m128i const *)(filtd4));

  for (i = output_height; i > 0; i -= 1) {
    // load the 2 strides of source
    srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);

    // filter the source buffer
    srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg);

    // multiply 4 adjacent elements with the filter and add the result
    srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters);

    srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128());

    // shift by 6 bit each 16 bit
    srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
    srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve result
    srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());

    src_ptr += src_pixels_per_line;

    *((int *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1);
    output_ptr += output_pitch;
  }
}

static void aom_filter_block1d4_v4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
    ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i addFilterReg32;
  __m128i srcReg2, srcReg3, srcReg23, srcReg4, srcReg34, srcReg5, srcReg45,
      srcReg6, srcReg56;
  __m128i srcReg23_34_lo, srcReg45_56_lo;
  __m128i srcReg2345_3456_lo, srcReg2345_3456_hi;
  __m128i resReglo, resReghi;
  __m128i firstFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the
  // same data in both lanes of 128 bit register.
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u));

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = out_pitch << 1;

  srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg23 = _mm_unpacklo_epi32(srcReg2, srcReg3);

  srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));

  // have consecutive loads on the same 256 register
  srcReg34 = _mm_unpacklo_epi32(srcReg3, srcReg4);

  srcReg23_34_lo = _mm_unpacklo_epi8(srcReg23, srcReg34);

  for (i = output_height; i > 1; i -= 2) {
    srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
    srcReg45 = _mm_unpacklo_epi32(srcReg4, srcReg5);

    srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
    srcReg56 = _mm_unpacklo_epi32(srcReg5, srcReg6);

    // merge every two consecutive registers
    srcReg45_56_lo = _mm_unpacklo_epi8(srcReg45, srcReg56);

    srcReg2345_3456_lo = _mm_unpacklo_epi16(srcReg23_34_lo, srcReg45_56_lo);
    srcReg2345_3456_hi = _mm_unpackhi_epi16(srcReg23_34_lo, srcReg45_56_lo);

    // multiply 2 adjacent elements with the filter and add the result
    resReglo = _mm_maddubs_epi16(srcReg2345_3456_lo, firstFilters);
    resReghi = _mm_maddubs_epi16(srcReg2345_3456_hi, firstFilters);

    resReglo = _mm_hadds_epi16(resReglo, _mm_setzero_si128());
    resReghi = _mm_hadds_epi16(resReghi, _mm_setzero_si128());

    // shift by 6 bit each 16 bit
    resReglo = _mm_adds_epi16(resReglo, addFilterReg32);
    resReghi = _mm_adds_epi16(resReghi, addFilterReg32);
    resReglo = _mm_srai_epi16(resReglo, 6);
    resReghi = _mm_srai_epi16(resReghi, 6);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    resReglo = _mm_packus_epi16(resReglo, resReglo);
    resReghi = _mm_packus_epi16(resReghi, resReghi);

    src_ptr += src_stride;

    *((int *)(output_ptr)) = _mm_cvtsi128_si32(resReglo);
    *((int *)(output_ptr + out_pitch)) = _mm_cvtsi128_si32(resReghi);

    output_ptr += dst_stride;

    // save part of the registers for next strides
    srcReg23_34_lo = srcReg45_56_lo;
    srcReg4 = srcReg6;
  }
}

static void aom_filter_block1d8_h4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i addFilterReg32, filt2Reg, filt3Reg;
  __m128i secondFilters, thirdFilters;
  __m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3;
  __m128i srcReg32b1;
  unsigned int i;
  src_ptr -= 3;
  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  // converting the 16 bit (short) to 8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));

  filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32));
  filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2));

  for (i = output_height; i > 0; i -= 1) {
    srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);

    // filter the source buffer
    srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg);
    srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);

    // shift by 6 bit each 16 bit
    srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
    srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);

    // shrink to 8 bit each 16 bits
    srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());

    src_ptr += src_pixels_per_line;

    _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1);

    output_ptr += output_pitch;
  }
}

static void aom_filter_block1d8_v4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
    ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
  __m128i srcReg23, srcReg34, srcReg45, srcReg56;
  __m128i resReg23, resReg34, resReg45, resReg56;
  __m128i resReg23_45, resReg34_56;
  __m128i addFilterReg32, secondFilters, thirdFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the
  // same data in both lanes of 128 bit register.
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the second 16 bits (third and forth byte)
  // across 128 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 128 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = out_pitch << 1;

  srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3);

  srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));

  // have consecutive loads on the same 256 register
  srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4);

  for (i = output_height; i > 1; i -= 2) {
    srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));

    srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5);

    srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));

    srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6);

    // multiply 2 adjacent elements with the filter and add the result
    resReg23 = _mm_maddubs_epi16(srcReg23, secondFilters);
    resReg34 = _mm_maddubs_epi16(srcReg34, secondFilters);
    resReg45 = _mm_maddubs_epi16(srcReg45, thirdFilters);
    resReg56 = _mm_maddubs_epi16(srcReg56, thirdFilters);

    // add and saturate the results together
    resReg23_45 = _mm_adds_epi16(resReg23, resReg45);
    resReg34_56 = _mm_adds_epi16(resReg34, resReg56);

    // shift by 6 bit each 16 bit
    resReg23_45 = _mm_adds_epi16(resReg23_45, addFilterReg32);
    resReg34_56 = _mm_adds_epi16(resReg34_56, addFilterReg32);
    resReg23_45 = _mm_srai_epi16(resReg23_45, 6);
    resReg34_56 = _mm_srai_epi16(resReg34_56, 6);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    resReg23_45 = _mm_packus_epi16(resReg23_45, _mm_setzero_si128());
    resReg34_56 = _mm_packus_epi16(resReg34_56, _mm_setzero_si128());

    src_ptr += src_stride;

    _mm_storel_epi64((__m128i *)output_ptr, (resReg23_45));
    _mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56));

    output_ptr += dst_stride;

    // save part of the registers for next strides
    srcReg23 = srcReg45;
    srcReg34 = srcReg56;
    srcReg4 = srcReg6;
  }
}

static void aom_filter_block1d16_h4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i addFilterReg32, filt2Reg, filt3Reg;
  __m128i secondFilters, thirdFilters;
  __m128i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
  __m128i srcReg32b1, srcReg32b2;
  unsigned int i;
  src_ptr -= 3;
  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  // converting the 16 bit (short) to 8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));

  filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32));
  filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2));

  for (i = output_height; i > 0; i -= 1) {
    srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);

    // filter the source buffer
    srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg);
    srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);

    // reading stride of the next 16 bytes
    // (part of it was being read by earlier read)
    srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8));

    // filter the source buffer
    srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b2, filt2Reg);
    srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b2, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    // add and saturate the results together
    srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2);

    // shift by 6 bit each 16 bit
    srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
    srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
    srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
    srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve result
    srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);

    src_ptr += src_pixels_per_line;

    _mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1);

    output_ptr += output_pitch;
  }
}

static void aom_filter_block1d16_v4_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
    ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i filtersReg;
  __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
  __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi;
  __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi;
  __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
  __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi;
  __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi;
  __m128i resReg23_45, resReg34_56;
  __m128i addFilterReg32, secondFilters, thirdFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  addFilterReg32 = _mm_set1_epi16(32);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the
  // same data in both lanes of 128 bit register.
  filtersReg = _mm_srai_epi16(filtersReg, 1);
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the second 16 bits (third and forth byte)
  // across 128 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 128 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = out_pitch << 1;

  srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3);
  srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3);

  srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));

  // have consecutive loads on the same 256 register
  srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4);
  srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4);

  for (i = output_height; i > 1; i -= 2) {
    srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));

    srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5);
    srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5);

    srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));

    srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6);
    srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6);

    // multiply 2 adjacent elements with the filter and add the result
    resReg23_lo = _mm_maddubs_epi16(srcReg23_lo, secondFilters);
    resReg34_lo = _mm_maddubs_epi16(srcReg34_lo, secondFilters);
    resReg45_lo = _mm_maddubs_epi16(srcReg45_lo, thirdFilters);
    resReg56_lo = _mm_maddubs_epi16(srcReg56_lo, thirdFilters);

    // add and saturate the results together
    resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo);
    resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo);

    // multiply 2 adjacent elements with the filter and add the result

    resReg23_hi = _mm_maddubs_epi16(srcReg23_hi, secondFilters);
    resReg34_hi = _mm_maddubs_epi16(srcReg34_hi, secondFilters);
    resReg45_hi = _mm_maddubs_epi16(srcReg45_hi, thirdFilters);
    resReg56_hi = _mm_maddubs_epi16(srcReg56_hi, thirdFilters);

    // add and saturate the results together
    resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi);
    resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi);

    // shift by 6 bit each 16 bit
    resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32);
    resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32);
    resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32);
    resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32);
    resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6);
    resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6);
    resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6);
    resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi);
    resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi);

    src_ptr += src_stride;

    _mm_store_si128((__m128i *)output_ptr, (resReg23_45));
    _mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56));

    output_ptr += dst_stride;

    // save part of the registers for next strides
    srcReg23_lo = srcReg45_lo;
    srcReg34_lo = srcReg56_lo;
    srcReg23_hi = srcReg45_hi;
    srcReg34_hi = srcReg56_hi;
    srcReg4 = srcReg6;
  }
}

static INLINE __m128i shuffle_filter_convolve8_8_ssse3(
    const __m128i *const s, const int16_t *const filter) {
  __m128i f[4];
  shuffle_filter_ssse3(filter, f);
  return convolve8_8_ssse3(s, f);
}

static void filter_horiz_w8_ssse3(const uint8_t *const src,
                                  const ptrdiff_t src_stride,
                                  uint8_t *const dst,
                                  const int16_t *const x_filter) {
  __m128i s[8], ss[4], temp;

  load_8bit_8x8(src, src_stride, s);
  // 00 01 10 11 20 21 30 31  40 41 50 51 60 61 70 71
  // 02 03 12 13 22 23 32 33  42 43 52 53 62 63 72 73
  // 04 05 14 15 24 25 34 35  44 45 54 55 64 65 74 75
  // 06 07 16 17 26 27 36 37  46 47 56 57 66 67 76 77
  transpose_16bit_4x8(s, ss);
  temp = shuffle_filter_convolve8_8_ssse3(ss, x_filter);
  // shrink to 8 bit each 16 bits
  temp = _mm_packus_epi16(temp, temp);
  // save only 8 bytes convolve result
  _mm_storel_epi64((__m128i *)dst, temp);
}

static void transpose8x8_to_dst(const uint8_t *const src,
                                const ptrdiff_t src_stride, uint8_t *const dst,
                                const ptrdiff_t dst_stride) {
  __m128i s[8];

  load_8bit_8x8(src, src_stride, s);
  transpose_8bit_8x8(s, s);
  store_8bit_8x8(s, dst, dst_stride);
}

static void scaledconvolve_horiz_w8(const uint8_t *src,
                                    const ptrdiff_t src_stride, uint8_t *dst,
                                    const ptrdiff_t dst_stride,
                                    const InterpKernel *const x_filters,
                                    const int x0_q4, const int x_step_q4,
                                    const int w, const int h) {
  DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
  int x, y, z;
  src -= SUBPEL_TAPS / 2 - 1;

  // This function processes 8x8 areas. The intermediate height is not always
  // a multiple of 8, so force it to be a multiple of 8 here.
  y = h + (8 - (h & 0x7));

  do {
    int x_q4 = x0_q4;
    for (x = 0; x < w; x += 8) {
      // process 8 src_x steps
      for (z = 0; z < 8; ++z) {
        const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
        const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
        if (x_q4 & SUBPEL_MASK) {
          filter_horiz_w8_ssse3(src_x, src_stride, temp + (z * 8), x_filter);
        } else {
          int i;
          for (i = 0; i < 8; ++i) {
            temp[z * 8 + i] = src_x[i * src_stride + 3];
          }
        }
        x_q4 += x_step_q4;
      }

      // transpose the 8x8 filters values back to dst
      transpose8x8_to_dst(temp, 8, dst + x, dst_stride);
    }

    src += src_stride * 8;
    dst += dst_stride * 8;
  } while (y -= 8);
}

static void filter_horiz_w4_ssse3(const uint8_t *const src,
                                  const ptrdiff_t src_stride,
                                  uint8_t *const dst,
                                  const int16_t *const filter) {
  __m128i s[4];
  __m128i temp;

  load_8bit_8x4(src, src_stride, s);
  transpose_16bit_4x4(s, s);

  temp = shuffle_filter_convolve8_8_ssse3(s, filter);
  // shrink to 8 bit each 16 bits
  temp = _mm_packus_epi16(temp, temp);
  // save only 4 bytes
  *(int *)dst = _mm_cvtsi128_si32(temp);
}

static void transpose4x4_to_dst(const uint8_t *const src,
                                const ptrdiff_t src_stride, uint8_t *const dst,
                                const ptrdiff_t dst_stride) {
  __m128i s[4];

  load_8bit_4x4(src, src_stride, s);
  s[0] = transpose_8bit_4x4(s);
  s[1] = _mm_srli_si128(s[0], 4);
  s[2] = _mm_srli_si128(s[0], 8);
  s[3] = _mm_srli_si128(s[0], 12);
  store_8bit_4x4(s, dst, dst_stride);
}

static void scaledconvolve_horiz_w4(const uint8_t *src,
                                    const ptrdiff_t src_stride, uint8_t *dst,
                                    const ptrdiff_t dst_stride,
                                    const InterpKernel *const x_filters,
                                    const int x0_q4, const int x_step_q4,
                                    const int w, const int h) {
  DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
  int x, y, z;
  src -= SUBPEL_TAPS / 2 - 1;

  for (y = 0; y < h; y += 4) {
    int x_q4 = x0_q4;
    for (x = 0; x < w; x += 4) {
      // process 4 src_x steps
      for (z = 0; z < 4; ++z) {
        const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
        const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
        if (x_q4 & SUBPEL_MASK) {
          filter_horiz_w4_ssse3(src_x, src_stride, temp + (z * 4), x_filter);
        } else {
          int i;
          for (i = 0; i < 4; ++i) {
            temp[z * 4 + i] = src_x[i * src_stride + 3];
          }
        }
        x_q4 += x_step_q4;
      }

      // transpose the 4x4 filters values back to dst
      transpose4x4_to_dst(temp, 4, dst + x, dst_stride);
    }

    src += src_stride * 4;
    dst += dst_stride * 4;
  }
}

static __m128i filter_vert_kernel(const __m128i *const s,
                                  const int16_t *const filter) {
  __m128i ss[4];
  __m128i temp;

  // 00 10 01 11 02 12 03 13
  ss[0] = _mm_unpacklo_epi8(s[0], s[1]);
  // 20 30 21 31 22 32 23 33
  ss[1] = _mm_unpacklo_epi8(s[2], s[3]);
  // 40 50 41 51 42 52 43 53
  ss[2] = _mm_unpacklo_epi8(s[4], s[5]);
  // 60 70 61 71 62 72 63 73
  ss[3] = _mm_unpacklo_epi8(s[6], s[7]);

  temp = shuffle_filter_convolve8_8_ssse3(ss, filter);
  // shrink to 8 bit each 16 bits
  return _mm_packus_epi16(temp, temp);
}

static void filter_vert_w4_ssse3(const uint8_t *const src,
                                 const ptrdiff_t src_stride, uint8_t *const dst,
                                 const int16_t *const filter) {
  __m128i s[8];
  __m128i temp;

  load_8bit_4x8(src, src_stride, s);
  temp = filter_vert_kernel(s, filter);
  // save only 4 bytes
  *(int *)dst = _mm_cvtsi128_si32(temp);
}

static void scaledconvolve_vert_w4(
    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    const int y0_q4, const int y_step_q4, const int w, const int h) {
  int y;
  int y_q4 = y0_q4;

  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
  for (y = 0; y < h; ++y) {
    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];

    if (y_q4 & SUBPEL_MASK) {
      filter_vert_w4_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
    } else {
      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
    }

    y_q4 += y_step_q4;
  }
}

static void filter_vert_w8_ssse3(const uint8_t *const src,
                                 const ptrdiff_t src_stride, uint8_t *const dst,
                                 const int16_t *const filter) {
  __m128i s[8], temp;

  load_8bit_8x8(src, src_stride, s);
  temp = filter_vert_kernel(s, filter);
  // save only 8 bytes convolve result
  _mm_storel_epi64((__m128i *)dst, temp);
}

static void scaledconvolve_vert_w8(
    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    const int y0_q4, const int y_step_q4, const int w, const int h) {
  int y;
  int y_q4 = y0_q4;

  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
  for (y = 0; y < h; ++y) {
    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
    if (y_q4 & SUBPEL_MASK) {
      filter_vert_w8_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter);
    } else {
      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
    }
    y_q4 += y_step_q4;
  }
}

static void filter_vert_w16_ssse3(const uint8_t *src,
                                  const ptrdiff_t src_stride,
                                  uint8_t *const dst,
                                  const int16_t *const filter, const int w) {
  int i;
  __m128i f[4];
  shuffle_filter_ssse3(filter, f);

  for (i = 0; i < w; i += 16) {
    __m128i s[8], s_lo[4], s_hi[4], temp_lo, temp_hi;

    loadu_8bit_16x8(src, src_stride, s);

    // merge the result together
    s_lo[0] = _mm_unpacklo_epi8(s[0], s[1]);
    s_hi[0] = _mm_unpackhi_epi8(s[0], s[1]);
    s_lo[1] = _mm_unpacklo_epi8(s[2], s[3]);
    s_hi[1] = _mm_unpackhi_epi8(s[2], s[3]);
    s_lo[2] = _mm_unpacklo_epi8(s[4], s[5]);
    s_hi[2] = _mm_unpackhi_epi8(s[4], s[5]);
    s_lo[3] = _mm_unpacklo_epi8(s[6], s[7]);
    s_hi[3] = _mm_unpackhi_epi8(s[6], s[7]);
    temp_lo = convolve8_8_ssse3(s_lo, f);
    temp_hi = convolve8_8_ssse3(s_hi, f);

    // shrink to 8 bit each 16 bits, the first lane contain the first convolve
    // result and the second lane contain the second convolve result
    temp_hi = _mm_packus_epi16(temp_lo, temp_hi);
    src += 16;
    // save 16 bytes convolve result
    _mm_store_si128((__m128i *)&dst[i], temp_hi);
  }
}

static void scaledconvolve_vert_w16(
    const uint8_t *src, const ptrdiff_t src_stride, uint8_t *const dst,
    const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
    const int y0_q4, const int y_step_q4, const int w, const int h) {
  int y;
  int y_q4 = y0_q4;

  src -= src_stride * (SUBPEL_TAPS / 2 - 1);
  for (y = 0; y < h; ++y) {
    const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
    const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
    if (y_q4 & SUBPEL_MASK) {
      filter_vert_w16_ssse3(src_y, src_stride, &dst[y * dst_stride], y_filter,
                            w);
    } else {
      memcpy(&dst[y * dst_stride], &src_y[3 * src_stride], w);
    }
    y_q4 += y_step_q4;
  }
}

void aom_scaled_2d_ssse3(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
                         ptrdiff_t dst_stride, const InterpKernel *filter,
                         int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
                         int w, int h) {
  // Note: Fixed size intermediate buffer, temp, places limits on parameters.
  // 2d filtering proceeds in 2 steps:
  //   (1) Interpolate horizontally into an intermediate buffer, temp.
  //   (2) Interpolate temp vertically to derive the sub-pixel result.
  // Deriving the maximum number of rows in the temp buffer (135):
  // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
  // --Largest block size is 64x64 pixels.
  // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
  //   original frame (in 1/16th pixel units).
  // --Must round-up because block may be located at sub-pixel position.
  // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
  // --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
  // --Require an additional 8 rows for the horiz_w8 transpose tail.
  // When calling in frame scaling function, the smallest scaling factor is x1/4
  // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
  // big enough.
  DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
  const int intermediate_height =
      (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;

  assert(w <= 64);
  assert(h <= 64);
  assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
  assert(x_step_q4 <= 64);

  if (w >= 8) {
    scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
                            src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
                            intermediate_height);
  } else {
    scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
                            src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
                            intermediate_height);
  }

  if (w >= 16) {
    scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
                            dst_stride, filter, y0_q4, y_step_q4, w, h);
  } else if (w == 8) {
    scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
                           dst_stride, filter, y0_q4, y_step_q4, w, h);
  } else {
    scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
                           dst_stride, filter, y0_q4, y_step_q4, w, h);
  }
}

filter8_1dfunction aom_filter_block1d16_v8_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_ssse3;

filter8_1dfunction aom_filter_block1d16_v2_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_ssse3;

// void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                                uint8_t *dst, ptrdiff_t dst_stride,
//                                const int16_t *filter_x, int x_step_q4,
//                                const int16_t *filter_y, int y_step_q4,
//                                int w, int h);
// void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                               uint8_t *dst, ptrdiff_t dst_stride,
//                               const int16_t *filter_x, int x_step_q4,
//                               const int16_t *filter_y, int y_step_q4,
//                               int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3)
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3)