summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/blk_sse_sum_avx2.c
blob: fdf7de3f4cdc267491d6943df181ab630f94245b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>

#include "config/aom_dsp_rtcd.h"

static INLINE void accumulate_sse_sum(__m256i regx_sum, __m256i regx2_sum,
                                      int *x_sum, int64_t *x2_sum) {
  __m256i sum_buffer, sse_buffer;
  __m128i out_buffer;

  // Accumulate the various elements of register into first element.
  sum_buffer = _mm256_permute2f128_si256(regx_sum, regx_sum, 1);
  regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
  regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 8));
  regx_sum = _mm256_add_epi32(regx_sum, _mm256_srli_si256(regx_sum, 4));

  sse_buffer = _mm256_permute2f128_si256(regx2_sum, regx2_sum, 1);
  regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);
  regx2_sum = _mm256_add_epi64(regx2_sum, _mm256_srli_si256(regx2_sum, 8));

  out_buffer = _mm256_castsi256_si128(regx_sum);
  *x_sum += _mm_cvtsi128_si32(out_buffer);
  out_buffer = _mm256_castsi256_si128(regx2_sum);
#if AOM_ARCH_X86_64
  *x2_sum += _mm_cvtsi128_si64(out_buffer);
#else
  {
    int64_t tmp;
    _mm_storel_epi64((__m128i *)&tmp, out_buffer);
    *x2_sum += tmp;
  }
#endif
}

static INLINE void sse_sum_wd4_avx2(const int16_t *data, int stride, int bh,
                                    int *x_sum, int64_t *x2_sum) {
  __m128i row1, row2, row3;
  __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
      temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
  const int16_t *data_tmp = data;
  __m256i one = _mm256_set1_epi16(1);
  regx_sum = _mm256_setzero_si256();
  regx2_sum = regx_sum;
  sum_buffer = _mm256_setzero_si256();
  sse_buffer = sum_buffer;

  for (int j = 0; j < (bh >> 2); ++j) {
    // Load 4 rows at a time.
    row1 = _mm_loadl_epi64((__m128i const *)(data_tmp));
    row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + stride));
    row1 = _mm_unpacklo_epi64(row1, row2);
    row2 = _mm_loadl_epi64((__m128i const *)(data_tmp + 2 * stride));
    row3 = _mm_loadl_epi64((__m128i const *)(data_tmp + 3 * stride));
    row2 = _mm_unpacklo_epi64(row2, row3);
    load_pixels =
        _mm256_insertf128_si256(_mm256_castsi128_si256(row1), row2, 1);

    row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
    row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
    sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
    sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
    data_tmp += 4 * stride;
  }

  // To prevent 32-bit variable overflow, unpack the elements to 64-bit.
  temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
  temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
  sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
  regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
  regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);

  accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}

static INLINE void sse_sum_wd8_avx2(const int16_t *data, int stride, int bh,
                                    int *x_sum, int64_t *x2_sum) {
  __m128i load_128bit, load_next_128bit;
  __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
      temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
  const int16_t *data_tmp = data;
  __m256i one = _mm256_set1_epi16(1);
  regx_sum = _mm256_setzero_si256();
  regx2_sum = regx_sum;
  sum_buffer = _mm256_setzero_si256();
  sse_buffer = sum_buffer;

  for (int j = 0; j < (bh >> 1); ++j) {
    // Load 2 rows at a time.
    load_128bit = _mm_loadu_si128((__m128i const *)(data_tmp));
    load_next_128bit = _mm_loadu_si128((__m128i const *)(data_tmp + stride));
    load_pixels = _mm256_insertf128_si256(_mm256_castsi128_si256(load_128bit),
                                          load_next_128bit, 1);

    row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
    row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
    sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
    sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
    data_tmp += 2 * stride;
  }

  temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
  temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
  sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
  regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
  regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);

  accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}

static INLINE void sse_sum_wd16_avx2(const int16_t *data, int stride, int bh,
                                     int *x_sum, int64_t *x2_sum,
                                     int loop_count) {
  __m256i regx_sum, regx2_sum, load_pixels, sum_buffer, sse_buffer,
      temp_buffer1, temp_buffer2, row_sum_buffer, row_sse_buffer;
  const int16_t *data_tmp = data;
  __m256i one = _mm256_set1_epi16(1);
  regx_sum = _mm256_setzero_si256();
  regx2_sum = regx_sum;
  sum_buffer = _mm256_setzero_si256();
  sse_buffer = sum_buffer;

  for (int i = 0; i < loop_count; ++i) {
    data_tmp = data + 16 * i;
    for (int j = 0; j < bh; ++j) {
      load_pixels = _mm256_lddqu_si256((__m256i const *)(data_tmp));

      row_sum_buffer = _mm256_madd_epi16(load_pixels, one);
      row_sse_buffer = _mm256_madd_epi16(load_pixels, load_pixels);
      sum_buffer = _mm256_add_epi32(row_sum_buffer, sum_buffer);
      sse_buffer = _mm256_add_epi32(row_sse_buffer, sse_buffer);
      data_tmp += stride;
    }
  }

  temp_buffer1 = _mm256_unpacklo_epi32(sse_buffer, _mm256_setzero_si256());
  temp_buffer2 = _mm256_unpackhi_epi32(sse_buffer, _mm256_setzero_si256());
  sse_buffer = _mm256_add_epi64(temp_buffer1, temp_buffer2);
  regx_sum = _mm256_add_epi32(sum_buffer, regx_sum);
  regx2_sum = _mm256_add_epi64(sse_buffer, regx2_sum);

  accumulate_sse_sum(regx_sum, regx2_sum, x_sum, x2_sum);
}

void aom_get_blk_sse_sum_avx2(const int16_t *data, int stride, int bw, int bh,
                              int *x_sum, int64_t *x2_sum) {
  *x_sum = 0;
  *x2_sum = 0;

  if ((bh & 3) == 0) {
    switch (bw) {
        // For smaller block widths, compute multiple rows simultaneously.
      case 4: sse_sum_wd4_avx2(data, stride, bh, x_sum, x2_sum); break;
      case 8: sse_sum_wd8_avx2(data, stride, bh, x_sum, x2_sum); break;
      case 16:
      case 32:
        sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4);
        break;
      case 64:
        // 32-bit variables will overflow for 64 rows at a single time, so
        // compute 32 rows at a time.
        if (bh <= 32) {
          sse_sum_wd16_avx2(data, stride, bh, x_sum, x2_sum, bw >> 4);
        } else {
          sse_sum_wd16_avx2(data, stride, 32, x_sum, x2_sum, bw >> 4);
          sse_sum_wd16_avx2(data + 32 * stride, stride, 32, x_sum, x2_sum,
                            bw >> 4);
        }
        break;

      default: aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum);
    }
  } else {
    aom_get_blk_sse_sum_c(data, stride, bw, bh, x_sum, x2_sum);
  }
}