summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/highbd_convolve_sse2.c
blob: a2bb2832223c48edeaa7fd1c8d58a7a85193f170 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <emmintrin.h>

#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/x86/convolve.h"

// -----------------------------------------------------------------------------

void aom_highbd_filter_block1d4_v4_sse2(const uint16_t *src_ptr,
                                        ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                        ptrdiff_t dst_pitch, uint32_t height,
                                        const int16_t *filter, int bd) {
  __m128i filtersReg;
  __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
  __m128i srcReg23_lo, srcReg34_lo;
  __m128i srcReg45_lo, srcReg56_lo;
  __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
  __m128i resReg23_45_lo, resReg34_56_lo;
  __m128i resReg23_45, resReg34_56;
  __m128i addFilterReg64, secondFilters, thirdFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  const __m128i max = _mm_set1_epi16((1 << bd) - 1);
  addFilterReg64 = _mm_set1_epi32(64);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);

  // coeffs 0 1 0 1 2 3 2 3
  const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
  // coeffs 4 5 4 5 6 7 6 7
  const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg);

  secondFilters = _mm_unpackhi_epi64(tmp0, tmp0);  // coeffs 2 3 2 3 2 3 2 3
  thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1);   // coeffs 4 5 4 5 4 5 4 5

  // multiply the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = dst_pitch << 1;

  srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg23_lo = _mm_unpacklo_epi16(srcReg2, srcReg3);

  srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
  srcReg34_lo = _mm_unpacklo_epi16(srcReg3, srcReg4);

  for (i = height; i > 1; i -= 2) {
    srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
    srcReg45_lo = _mm_unpacklo_epi16(srcReg4, srcReg5);

    srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
    srcReg56_lo = _mm_unpacklo_epi16(srcReg5, srcReg6);

    // multiply 2 adjacent elements with the filter and add the result

    resReg23_lo = _mm_madd_epi16(srcReg23_lo, secondFilters);
    resReg34_lo = _mm_madd_epi16(srcReg34_lo, secondFilters);
    resReg45_lo = _mm_madd_epi16(srcReg45_lo, thirdFilters);
    resReg56_lo = _mm_madd_epi16(srcReg56_lo, thirdFilters);

    resReg23_45_lo = _mm_add_epi32(resReg23_lo, resReg45_lo);
    resReg34_56_lo = _mm_add_epi32(resReg34_lo, resReg56_lo);

    // shift by 7 bit each 32 bit
    resReg23_45_lo = _mm_add_epi32(resReg23_45_lo, addFilterReg64);
    resReg34_56_lo = _mm_add_epi32(resReg34_56_lo, addFilterReg64);
    resReg23_45_lo = _mm_srai_epi32(resReg23_45_lo, 7);
    resReg34_56_lo = _mm_srai_epi32(resReg34_56_lo, 7);

    // shrink to 16 bit each 32 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    resReg23_45 = _mm_packs_epi32(resReg23_45_lo, _mm_setzero_si128());
    resReg34_56 = _mm_packs_epi32(resReg34_56_lo, _mm_setzero_si128());

    resReg23_45 = _mm_max_epi16(resReg23_45, _mm_setzero_si128());
    resReg23_45 = _mm_min_epi16(resReg23_45, max);
    resReg34_56 = _mm_max_epi16(resReg34_56, _mm_setzero_si128());
    resReg34_56 = _mm_min_epi16(resReg34_56, max);

    src_ptr += src_stride;

    _mm_storel_epi64((__m128i *)dst_ptr, (resReg23_45));
    _mm_storel_epi64((__m128i *)(dst_ptr + dst_pitch), (resReg34_56));

    dst_ptr += dst_stride;

    // save part of the registers for next strides
    srcReg23_lo = srcReg45_lo;
    srcReg34_lo = srcReg56_lo;
    srcReg4 = srcReg6;
  }
}

void aom_highbd_filter_block1d4_h4_sse2(const uint16_t *src_ptr,
                                        ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                        ptrdiff_t dst_pitch, uint32_t height,
                                        const int16_t *filter, int bd) {
  __m128i filtersReg;
  __m128i addFilterReg64;
  __m128i secondFilters, thirdFilters;
  __m128i srcRegFilt32b1_1;
  __m128i srcReg32b1;
  unsigned int i;
  src_ptr -= 3;
  addFilterReg64 = _mm_set1_epi32(64);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  const __m128i max = _mm_set1_epi16((1 << bd) - 1);

  // coeffs 0 1 0 1 2 3 2 3
  const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
  // coeffs 4 5 4 5 6 7 6 7
  const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg);

  secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0);  // coeffs 2 3 2 3 2 3 2 3
  thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1);   // coeffs 4 5 4 5 4 5 4 5

  for (i = height; i > 0; i -= 1) {
    srcReg32b1 = _mm_loadu_si128((const __m128i *)(src_ptr + 2));

    __m128i ss_3_1 = _mm_srli_si128(srcReg32b1, 2);
    __m128i ss_4_1 = _mm_srli_si128(srcReg32b1, 4);
    __m128i ss_5_1 = _mm_srli_si128(srcReg32b1, 6);
    __m128i ss_23 = _mm_unpacklo_epi32(srcReg32b1, ss_3_1);
    __m128i ss_45 = _mm_unpacklo_epi32(ss_4_1, ss_5_1);

    ss_23 = _mm_madd_epi16(ss_23, secondFilters);
    ss_45 = _mm_madd_epi16(ss_45, thirdFilters);
    srcRegFilt32b1_1 = _mm_add_epi32(ss_23, ss_45);

    // shift by 7 bit each 32 bit
    srcRegFilt32b1_1 = _mm_add_epi32(srcRegFilt32b1_1, addFilterReg64);
    srcRegFilt32b1_1 = _mm_srai_epi32(srcRegFilt32b1_1, 7);

    srcRegFilt32b1_1 = _mm_packs_epi32(srcRegFilt32b1_1, _mm_setzero_si128());
    srcRegFilt32b1_1 = _mm_max_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
    srcRegFilt32b1_1 = _mm_min_epi16(srcRegFilt32b1_1, max);

    src_ptr += src_pitch;

    _mm_storel_epi64((__m128i *)dst_ptr, srcRegFilt32b1_1);

    dst_ptr += dst_pitch;
  }
}

void aom_highbd_filter_block1d8_v4_sse2(const uint16_t *src_ptr,
                                        ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                        ptrdiff_t dst_pitch, uint32_t height,
                                        const int16_t *filter, int bd) {
  __m128i filtersReg;
  __m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
  __m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi;
  __m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi;
  __m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
  __m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi;
  __m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi;
  __m128i resReg23_45, resReg34_56;
  __m128i addFilterReg64, secondFilters, thirdFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  const __m128i max = _mm_set1_epi16((1 << bd) - 1);
  addFilterReg64 = _mm_set1_epi32(64);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);

  // coeffs 0 1 0 1 2 3 2 3
  const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
  // coeffs 4 5 4 5 6 7 6 7
  const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg);

  secondFilters = _mm_unpackhi_epi64(tmp0, tmp0);  // coeffs 2 3 2 3 2 3 2 3
  thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1);   // coeffs 4 5 4 5 4 5 4 5

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = dst_pitch << 1;

  srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg23_lo = _mm_unpacklo_epi16(srcReg2, srcReg3);
  srcReg23_hi = _mm_unpackhi_epi16(srcReg2, srcReg3);

  srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
  srcReg34_lo = _mm_unpacklo_epi16(srcReg3, srcReg4);
  srcReg34_hi = _mm_unpackhi_epi16(srcReg3, srcReg4);

  for (i = height; i > 1; i -= 2) {
    srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));

    srcReg45_lo = _mm_unpacklo_epi16(srcReg4, srcReg5);
    srcReg45_hi = _mm_unpackhi_epi16(srcReg4, srcReg5);

    srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));

    srcReg56_lo = _mm_unpacklo_epi16(srcReg5, srcReg6);
    srcReg56_hi = _mm_unpackhi_epi16(srcReg5, srcReg6);

    // multiply 2 adjacent elements with the filter and add the result

    resReg23_lo = _mm_madd_epi16(srcReg23_lo, secondFilters);
    resReg34_lo = _mm_madd_epi16(srcReg34_lo, secondFilters);
    resReg45_lo = _mm_madd_epi16(srcReg45_lo, thirdFilters);
    resReg56_lo = _mm_madd_epi16(srcReg56_lo, thirdFilters);

    resReg23_45_lo = _mm_add_epi32(resReg23_lo, resReg45_lo);
    resReg34_56_lo = _mm_add_epi32(resReg34_lo, resReg56_lo);

    // multiply 2 adjacent elements with the filter and add the result

    resReg23_hi = _mm_madd_epi16(srcReg23_hi, secondFilters);
    resReg34_hi = _mm_madd_epi16(srcReg34_hi, secondFilters);
    resReg45_hi = _mm_madd_epi16(srcReg45_hi, thirdFilters);
    resReg56_hi = _mm_madd_epi16(srcReg56_hi, thirdFilters);

    resReg23_45_hi = _mm_add_epi32(resReg23_hi, resReg45_hi);
    resReg34_56_hi = _mm_add_epi32(resReg34_hi, resReg56_hi);

    // shift by 7 bit each 32 bit
    resReg23_45_lo = _mm_add_epi32(resReg23_45_lo, addFilterReg64);
    resReg34_56_lo = _mm_add_epi32(resReg34_56_lo, addFilterReg64);
    resReg23_45_hi = _mm_add_epi32(resReg23_45_hi, addFilterReg64);
    resReg34_56_hi = _mm_add_epi32(resReg34_56_hi, addFilterReg64);
    resReg23_45_lo = _mm_srai_epi32(resReg23_45_lo, 7);
    resReg34_56_lo = _mm_srai_epi32(resReg34_56_lo, 7);
    resReg23_45_hi = _mm_srai_epi32(resReg23_45_hi, 7);
    resReg34_56_hi = _mm_srai_epi32(resReg34_56_hi, 7);

    // shrink to 16 bit each 32 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    resReg23_45 = _mm_packs_epi32(resReg23_45_lo, resReg23_45_hi);
    resReg34_56 = _mm_packs_epi32(resReg34_56_lo, resReg34_56_hi);

    resReg23_45 = _mm_max_epi16(resReg23_45, _mm_setzero_si128());
    resReg23_45 = _mm_min_epi16(resReg23_45, max);
    resReg34_56 = _mm_max_epi16(resReg34_56, _mm_setzero_si128());
    resReg34_56 = _mm_min_epi16(resReg34_56, max);

    src_ptr += src_stride;

    _mm_store_si128((__m128i *)dst_ptr, (resReg23_45));
    _mm_store_si128((__m128i *)(dst_ptr + dst_pitch), (resReg34_56));

    dst_ptr += dst_stride;

    // save part of the registers for next strides
    srcReg23_lo = srcReg45_lo;
    srcReg23_hi = srcReg45_hi;
    srcReg34_lo = srcReg56_lo;
    srcReg34_hi = srcReg56_hi;
    srcReg4 = srcReg6;
  }
}

void aom_highbd_filter_block1d8_h4_sse2(const uint16_t *src_ptr,
                                        ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                        ptrdiff_t dst_pitch, uint32_t height,
                                        const int16_t *filter, int bd) {
  __m128i filtersReg;
  __m128i addFilterReg64;
  __m128i secondFilters, thirdFilters;
  __m128i srcRegFilt32b1_1, srcRegFilt32b1_2;
  __m128i srcReg32b1, srcReg32b2;
  unsigned int i;
  src_ptr -= 3;
  addFilterReg64 = _mm_set1_epi32(64);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  const __m128i max = _mm_set1_epi16((1 << bd) - 1);

  // coeffs 0 1 0 1 2 3 2 3
  const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
  // coeffs 4 5 4 5 6 7 6 7
  const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg);

  secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0);  // coeffs 2 3 2 3 2 3 2 3
  thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1);   // coeffs 4 5 4 5 4 5 4 5

  for (i = height; i > 0; i -= 1) {
    srcReg32b1 = _mm_loadu_si128((const __m128i *)(src_ptr + 2));
    srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 6));

    __m128i ss_4_1 = _mm_srli_si128(srcReg32b1, 4);
    __m128i ss_4_2 = _mm_srli_si128(srcReg32b2, 4);
    __m128i ss_4 = _mm_unpacklo_epi64(ss_4_1, ss_4_2);

    __m128i d1 = _mm_madd_epi16(srcReg32b1, secondFilters);
    __m128i d2 = _mm_madd_epi16(ss_4, thirdFilters);
    srcRegFilt32b1_1 = _mm_add_epi32(d1, d2);

    __m128i ss_3_1 = _mm_srli_si128(srcReg32b1, 2);
    __m128i ss_5_1 = _mm_srli_si128(srcReg32b1, 6);
    __m128i ss_3_2 = _mm_srli_si128(srcReg32b2, 2);
    __m128i ss_5_2 = _mm_srli_si128(srcReg32b2, 6);
    __m128i ss_3 = _mm_unpacklo_epi64(ss_3_1, ss_3_2);
    __m128i ss_5 = _mm_unpacklo_epi64(ss_5_1, ss_5_2);

    d1 = _mm_madd_epi16(ss_3, secondFilters);
    d2 = _mm_madd_epi16(ss_5, thirdFilters);
    srcRegFilt32b1_2 = _mm_add_epi32(d1, d2);

    __m128i res_lo_1 = _mm_unpacklo_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);
    __m128i res_hi_1 = _mm_unpackhi_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);

    // shift by 7 bit each 32 bit
    res_lo_1 = _mm_add_epi32(res_lo_1, addFilterReg64);
    res_hi_1 = _mm_add_epi32(res_hi_1, addFilterReg64);
    res_lo_1 = _mm_srai_epi32(res_lo_1, 7);
    res_hi_1 = _mm_srai_epi32(res_hi_1, 7);

    srcRegFilt32b1_1 = _mm_packs_epi32(res_lo_1, res_hi_1);

    srcRegFilt32b1_1 = _mm_max_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
    srcRegFilt32b1_1 = _mm_min_epi16(srcRegFilt32b1_1, max);

    src_ptr += src_pitch;

    _mm_store_si128((__m128i *)dst_ptr, srcRegFilt32b1_1);

    dst_ptr += dst_pitch;
  }
}

void aom_highbd_filter_block1d16_v4_sse2(const uint16_t *src_ptr,
                                         ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                         ptrdiff_t dst_pitch, uint32_t height,
                                         const int16_t *filter, int bd) {
  aom_highbd_filter_block1d8_v4_sse2(src_ptr, src_pitch, dst_ptr, dst_pitch,
                                     height, filter, bd);
  aom_highbd_filter_block1d8_v4_sse2((src_ptr + 8), src_pitch, (dst_ptr + 8),
                                     dst_pitch, height, filter, bd);
}

void aom_highbd_filter_block1d16_h4_sse2(const uint16_t *src_ptr,
                                         ptrdiff_t src_pitch, uint16_t *dst_ptr,
                                         ptrdiff_t dst_pitch, uint32_t height,
                                         const int16_t *filter, int bd) {
  aom_highbd_filter_block1d8_h4_sse2(src_ptr, src_pitch, dst_ptr, dst_pitch,
                                     height, filter, bd);
  aom_highbd_filter_block1d8_h4_sse2((src_ptr + 8), src_pitch, (dst_ptr + 8),
                                     dst_pitch, height, filter, bd);
}