summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/variance_avx2.c
blob: 046d6f10f805367d06b6a5991b03f05df4767b26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>

#include "config/aom_dsp_rtcd.h"

#include "aom_dsp/x86/masked_variance_intrin_ssse3.h"
#include "aom_dsp/x86/synonyms.h"

static INLINE __m128i mm256_add_hi_lo_epi16(const __m256i val) {
  return _mm_add_epi16(_mm256_castsi256_si128(val),
                       _mm256_extractf128_si256(val, 1));
}

static INLINE __m128i mm256_add_hi_lo_epi32(const __m256i val) {
  return _mm_add_epi32(_mm256_castsi256_si128(val),
                       _mm256_extractf128_si256(val, 1));
}

static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref,
                                        __m256i *const sse,
                                        __m256i *const sum) {
  const __m256i adj_sub = _mm256_set1_epi16((short)0xff01);  // (1,-1)

  // unpack into pairs of source and reference values
  const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref);
  const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref);

  // subtract adjacent elements using src*1 + ref*-1
  const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub);
  const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub);
  const __m256i madd0 = _mm256_madd_epi16(diff0, diff0);
  const __m256i madd1 = _mm256_madd_epi16(diff1, diff1);

  // add to the running totals
  *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1));
  *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1));
}

static INLINE int variance_final_from_32bit_sum_avx2(__m256i vsse, __m128i vsum,
                                                     unsigned int *const sse) {
  // extract the low lane and add it to the high lane
  const __m128i sse_reg_128 = mm256_add_hi_lo_epi32(vsse);

  // unpack sse and sum registers and add
  const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, vsum);
  const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, vsum);
  const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi);

  // perform the final summation and extract the results
  const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8));
  *((int *)sse) = _mm_cvtsi128_si32(res);
  return _mm_extract_epi32(res, 1);
}

// handle pixels (<= 512)
static INLINE int variance_final_512_avx2(__m256i vsse, __m256i vsum,
                                          unsigned int *const sse) {
  // extract the low lane and add it to the high lane
  const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
  const __m128i vsum_64 = _mm_add_epi16(vsum_128, _mm_srli_si128(vsum_128, 8));
  const __m128i sum_int32 = _mm_cvtepi16_epi32(vsum_64);
  return variance_final_from_32bit_sum_avx2(vsse, sum_int32, sse);
}

// handle 1024 pixels (32x32, 16x64, 64x16)
static INLINE int variance_final_1024_avx2(__m256i vsse, __m256i vsum,
                                           unsigned int *const sse) {
  // extract the low lane and add it to the high lane
  const __m128i vsum_128 = mm256_add_hi_lo_epi16(vsum);
  const __m128i vsum_64 =
      _mm_add_epi32(_mm_cvtepi16_epi32(vsum_128),
                    _mm_cvtepi16_epi32(_mm_srli_si128(vsum_128, 8)));
  return variance_final_from_32bit_sum_avx2(vsse, vsum_64, sse);
}

static INLINE __m256i sum_to_32bit_avx2(const __m256i sum) {
  const __m256i sum_lo = _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum));
  const __m256i sum_hi =
      _mm256_cvtepi16_epi32(_mm256_extractf128_si256(sum, 1));
  return _mm256_add_epi32(sum_lo, sum_hi);
}

// handle 2048 pixels (32x64, 64x32)
static INLINE int variance_final_2048_avx2(__m256i vsse, __m256i vsum,
                                           unsigned int *const sse) {
  vsum = sum_to_32bit_avx2(vsum);
  const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);
  return variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);
}

static INLINE void variance16_kernel_avx2(
    const uint8_t *const src, const int src_stride, const uint8_t *const ref,
    const int ref_stride, __m256i *const sse, __m256i *const sum) {
  const __m128i s0 = _mm_loadu_si128((__m128i const *)(src + 0 * src_stride));
  const __m128i s1 = _mm_loadu_si128((__m128i const *)(src + 1 * src_stride));
  const __m128i r0 = _mm_loadu_si128((__m128i const *)(ref + 0 * ref_stride));
  const __m128i r1 = _mm_loadu_si128((__m128i const *)(ref + 1 * ref_stride));
  const __m256i s = _mm256_inserti128_si256(_mm256_castsi128_si256(s0), s1, 1);
  const __m256i r = _mm256_inserti128_si256(_mm256_castsi128_si256(r0), r1, 1);
  variance_kernel_avx2(s, r, sse, sum);
}

static INLINE void variance32_kernel_avx2(const uint8_t *const src,
                                          const uint8_t *const ref,
                                          __m256i *const sse,
                                          __m256i *const sum) {
  const __m256i s = _mm256_loadu_si256((__m256i const *)(src));
  const __m256i r = _mm256_loadu_si256((__m256i const *)(ref));
  variance_kernel_avx2(s, r, sse, sum);
}

static INLINE void variance16_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {
  *vsum = _mm256_setzero_si256();

  for (int i = 0; i < h; i += 2) {
    variance16_kernel_avx2(src, src_stride, ref, ref_stride, vsse, vsum);
    src += 2 * src_stride;
    ref += 2 * ref_stride;
  }
}

static INLINE void variance32_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {
  *vsum = _mm256_setzero_si256();

  for (int i = 0; i < h; i++) {
    variance32_kernel_avx2(src, ref, vsse, vsum);
    src += src_stride;
    ref += ref_stride;
  }
}

static INLINE void variance64_avx2(const uint8_t *src, const int src_stride,
                                   const uint8_t *ref, const int ref_stride,
                                   const int h, __m256i *const vsse,
                                   __m256i *const vsum) {
  *vsum = _mm256_setzero_si256();

  for (int i = 0; i < h; i++) {
    variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
    variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
    src += src_stride;
    ref += ref_stride;
  }
}

static INLINE void variance128_avx2(const uint8_t *src, const int src_stride,
                                    const uint8_t *ref, const int ref_stride,
                                    const int h, __m256i *const vsse,
                                    __m256i *const vsum) {
  *vsum = _mm256_setzero_si256();

  for (int i = 0; i < h; i++) {
    variance32_kernel_avx2(src + 0, ref + 0, vsse, vsum);
    variance32_kernel_avx2(src + 32, ref + 32, vsse, vsum);
    variance32_kernel_avx2(src + 64, ref + 64, vsse, vsum);
    variance32_kernel_avx2(src + 96, ref + 96, vsse, vsum);
    src += src_stride;
    ref += ref_stride;
  }
}

#define AOM_VAR_NO_LOOP_AVX2(bw, bh, bits, max_pixel)                         \
  unsigned int aom_variance##bw##x##bh##_avx2(                                \
      const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
      unsigned int *sse) {                                                    \
    __m256i vsse = _mm256_setzero_si256();                                    \
    __m256i vsum;                                                             \
    variance##bw##_avx2(src, src_stride, ref, ref_stride, bh, &vsse, &vsum);  \
    const int sum = variance_final_##max_pixel##_avx2(vsse, vsum, sse);       \
    return *sse - (uint32_t)(((int64_t)sum * sum) >> bits);                   \
  }

AOM_VAR_NO_LOOP_AVX2(16, 8, 7, 512)
AOM_VAR_NO_LOOP_AVX2(16, 16, 8, 512)
AOM_VAR_NO_LOOP_AVX2(16, 32, 9, 512)

AOM_VAR_NO_LOOP_AVX2(32, 16, 9, 512)
AOM_VAR_NO_LOOP_AVX2(32, 32, 10, 1024)
AOM_VAR_NO_LOOP_AVX2(32, 64, 11, 2048)

AOM_VAR_NO_LOOP_AVX2(64, 32, 11, 2048)

#if !CONFIG_REALTIME_ONLY
AOM_VAR_NO_LOOP_AVX2(64, 16, 10, 1024)
AOM_VAR_NO_LOOP_AVX2(32, 8, 8, 512)
AOM_VAR_NO_LOOP_AVX2(16, 64, 10, 1024)
AOM_VAR_NO_LOOP_AVX2(16, 4, 6, 512)
#endif

#define AOM_VAR_LOOP_AVX2(bw, bh, bits, uh)                                   \
  unsigned int aom_variance##bw##x##bh##_avx2(                                \
      const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
      unsigned int *sse) {                                                    \
    __m256i vsse = _mm256_setzero_si256();                                    \
    __m256i vsum = _mm256_setzero_si256();                                    \
    for (int i = 0; i < (bh / uh); i++) {                                     \
      __m256i vsum16;                                                         \
      variance##bw##_avx2(src, src_stride, ref, ref_stride, uh, &vsse,        \
                          &vsum16);                                           \
      vsum = _mm256_add_epi32(vsum, sum_to_32bit_avx2(vsum16));               \
      src += uh * src_stride;                                                 \
      ref += uh * ref_stride;                                                 \
    }                                                                         \
    const __m128i vsum_128 = mm256_add_hi_lo_epi32(vsum);                     \
    const int sum = variance_final_from_32bit_sum_avx2(vsse, vsum_128, sse);  \
    return *sse - (unsigned int)(((int64_t)sum * sum) >> bits);               \
  }

AOM_VAR_LOOP_AVX2(64, 64, 12, 32)    // 64x32 * ( 64/32)
AOM_VAR_LOOP_AVX2(64, 128, 13, 32)   // 64x32 * (128/32)
AOM_VAR_LOOP_AVX2(128, 64, 13, 16)   // 128x16 * ( 64/16)
AOM_VAR_LOOP_AVX2(128, 128, 14, 16)  // 128x16 * (128/16)

unsigned int aom_mse16x16_avx2(const uint8_t *src, int src_stride,
                               const uint8_t *ref, int ref_stride,
                               unsigned int *sse) {
  aom_variance16x16_avx2(src, src_stride, ref, ref_stride, sse);
  return *sse;
}

static INLINE __m256i mm256_loadu2(const uint8_t *p0, const uint8_t *p1) {
  const __m256i d =
      _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
  return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
}

static INLINE __m256i mm256_loadu2_16(const uint16_t *p0, const uint16_t *p1) {
  const __m256i d =
      _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)p1));
  return _mm256_insertf128_si256(d, _mm_loadu_si128((const __m128i *)p0), 1);
}

static INLINE void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1,
                                            const __m256i a,
                                            uint8_t *comp_pred) {
  const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA);
  const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS;
  const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits));

  const __m256i ma = _mm256_sub_epi8(alpha_max, a);

  const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1);
  const __m256i aaAL = _mm256_unpacklo_epi8(a, ma);
  const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1);
  const __m256i aaAH = _mm256_unpackhi_epi8(a, ma);

  const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL);
  const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH);
  const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset);
  const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset);

  const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH);
  _mm256_storeu_si256((__m256i *)(comp_pred), roundA);
}

void aom_comp_avg_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
                            int height, const uint8_t *ref, int ref_stride) {
  int row = 0;
  if (width == 8) {
    do {
      const __m256i pred_0123 = _mm256_loadu_si256((const __m256i *)(pred));
      const __m128i ref_0 = _mm_loadl_epi64((const __m128i *)(ref));
      const __m128i ref_1 =
          _mm_loadl_epi64((const __m128i *)(ref + ref_stride));
      const __m128i ref_2 =
          _mm_loadl_epi64((const __m128i *)(ref + 2 * ref_stride));
      const __m128i ref_3 =
          _mm_loadl_epi64((const __m128i *)(ref + 3 * ref_stride));
      const __m128i ref_01 = _mm_unpacklo_epi64(ref_0, ref_1);
      const __m128i ref_23 = _mm_unpacklo_epi64(ref_2, ref_3);

      const __m256i ref_0123 =
          _mm256_inserti128_si256(_mm256_castsi128_si256(ref_01), ref_23, 1);
      const __m256i average = _mm256_avg_epu8(pred_0123, ref_0123);
      _mm256_storeu_si256((__m256i *)(comp_pred), average);

      row += 4;
      pred += 32;
      comp_pred += 32;
      ref += 4 * ref_stride;
    } while (row < height);
  } else if (width == 16) {
    do {
      const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
      const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
      const __m256i tmp0 =
          _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(ref)));
      const __m256i ref_0 = _mm256_inserti128_si256(
          tmp0, _mm_loadu_si128((const __m128i *)(ref + ref_stride)), 1);
      const __m256i tmp1 = _mm256_castsi128_si256(
          _mm_loadu_si128((const __m128i *)(ref + 2 * ref_stride)));
      const __m256i ref_1 = _mm256_inserti128_si256(
          tmp1, _mm_loadu_si128((const __m128i *)(ref + 3 * ref_stride)), 1);
      const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
      const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
      _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
      _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);

      row += 4;
      pred += 64;
      comp_pred += 64;
      ref += 4 * ref_stride;
    } while (row < height);
  } else if (width == 32) {
    do {
      const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred));
      const __m256i pred_1 = _mm256_loadu_si256((const __m256i *)(pred + 32));
      const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref));
      const __m256i ref_1 =
          _mm256_loadu_si256((const __m256i *)(ref + ref_stride));
      const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
      const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
      _mm256_storeu_si256((__m256i *)(comp_pred), average_0);
      _mm256_storeu_si256((__m256i *)(comp_pred + 32), average_1);

      row += 2;
      pred += 64;
      comp_pred += 64;
      ref += 2 * ref_stride;
    } while (row < height);
  } else if (width % 64 == 0) {
    do {
      for (int x = 0; x < width; x += 64) {
        const __m256i pred_0 = _mm256_loadu_si256((const __m256i *)(pred + x));
        const __m256i pred_1 =
            _mm256_loadu_si256((const __m256i *)(pred + x + 32));
        const __m256i ref_0 = _mm256_loadu_si256((const __m256i *)(ref + x));
        const __m256i ref_1 =
            _mm256_loadu_si256((const __m256i *)(ref + x + 32));
        const __m256i average_0 = _mm256_avg_epu8(pred_0, ref_0);
        const __m256i average_1 = _mm256_avg_epu8(pred_1, ref_1);
        _mm256_storeu_si256((__m256i *)(comp_pred + x), average_0);
        _mm256_storeu_si256((__m256i *)(comp_pred + x + 32), average_1);
      }
      row++;
      pred += width;
      comp_pred += width;
      ref += ref_stride;
    } while (row < height);
  } else {
    aom_comp_avg_pred_c(comp_pred, pred, width, height, ref, ref_stride);
  }
}

void aom_comp_mask_pred_avx2(uint8_t *comp_pred, const uint8_t *pred, int width,
                             int height, const uint8_t *ref, int ref_stride,
                             const uint8_t *mask, int mask_stride,
                             int invert_mask) {
  int i = 0;
  const uint8_t *src0 = invert_mask ? pred : ref;
  const uint8_t *src1 = invert_mask ? ref : pred;
  const int stride0 = invert_mask ? width : ref_stride;
  const int stride1 = invert_mask ? ref_stride : width;
  if (width == 8) {
    comp_mask_pred_8_ssse3(comp_pred, height, src0, stride0, src1, stride1,
                           mask, mask_stride);
  } else if (width == 16) {
    do {
      const __m256i sA0 = mm256_loadu2(src0 + stride0, src0);
      const __m256i sA1 = mm256_loadu2(src1 + stride1, src1);
      const __m256i aA = mm256_loadu2(mask + mask_stride, mask);
      src0 += (stride0 << 1);
      src1 += (stride1 << 1);
      mask += (mask_stride << 1);
      const __m256i sB0 = mm256_loadu2(src0 + stride0, src0);
      const __m256i sB1 = mm256_loadu2(src1 + stride1, src1);
      const __m256i aB = mm256_loadu2(mask + mask_stride, mask);
      src0 += (stride0 << 1);
      src1 += (stride1 << 1);
      mask += (mask_stride << 1);
      // comp_pred's stride == width == 16
      comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
      comp_mask_pred_line_avx2(sB0, sB1, aB, comp_pred + 32);
      comp_pred += (16 << 2);
      i += 4;
    } while (i < height);
  } else {
    do {
      for (int x = 0; x < width; x += 32) {
        const __m256i sA0 = _mm256_lddqu_si256((const __m256i *)(src0 + x));
        const __m256i sA1 = _mm256_lddqu_si256((const __m256i *)(src1 + x));
        const __m256i aA = _mm256_lddqu_si256((const __m256i *)(mask + x));

        comp_mask_pred_line_avx2(sA0, sA1, aA, comp_pred);
        comp_pred += 32;
      }
      src0 += stride0;
      src1 += stride1;
      mask += mask_stride;
      i++;
    } while (i < height);
  }
}

static INLINE __m256i highbd_comp_mask_pred_line_avx2(const __m256i s0,
                                                      const __m256i s1,
                                                      const __m256i a) {
  const __m256i alpha_max = _mm256_set1_epi16((1 << AOM_BLEND_A64_ROUND_BITS));
  const __m256i round_const =
      _mm256_set1_epi32((1 << AOM_BLEND_A64_ROUND_BITS) >> 1);
  const __m256i a_inv = _mm256_sub_epi16(alpha_max, a);

  const __m256i s_lo = _mm256_unpacklo_epi16(s0, s1);
  const __m256i a_lo = _mm256_unpacklo_epi16(a, a_inv);
  const __m256i pred_lo = _mm256_madd_epi16(s_lo, a_lo);
  const __m256i pred_l = _mm256_srai_epi32(
      _mm256_add_epi32(pred_lo, round_const), AOM_BLEND_A64_ROUND_BITS);

  const __m256i s_hi = _mm256_unpackhi_epi16(s0, s1);
  const __m256i a_hi = _mm256_unpackhi_epi16(a, a_inv);
  const __m256i pred_hi = _mm256_madd_epi16(s_hi, a_hi);
  const __m256i pred_h = _mm256_srai_epi32(
      _mm256_add_epi32(pred_hi, round_const), AOM_BLEND_A64_ROUND_BITS);

  const __m256i comp = _mm256_packs_epi32(pred_l, pred_h);

  return comp;
}

void aom_highbd_comp_mask_pred_avx2(uint8_t *comp_pred8, const uint8_t *pred8,
                                    int width, int height, const uint8_t *ref8,
                                    int ref_stride, const uint8_t *mask,
                                    int mask_stride, int invert_mask) {
  int i = 0;
  uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
  uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
  uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
  const uint16_t *src0 = invert_mask ? pred : ref;
  const uint16_t *src1 = invert_mask ? ref : pred;
  const int stride0 = invert_mask ? width : ref_stride;
  const int stride1 = invert_mask ? ref_stride : width;
  const __m256i zero = _mm256_setzero_si256();

  if (width == 8) {
    do {
      const __m256i s0 = mm256_loadu2_16(src0 + stride0, src0);
      const __m256i s1 = mm256_loadu2_16(src1 + stride1, src1);

      const __m128i m_l = _mm_loadl_epi64((const __m128i *)mask);
      const __m128i m_h = _mm_loadl_epi64((const __m128i *)(mask + 8));

      __m256i m = _mm256_castsi128_si256(m_l);
      m = _mm256_insertf128_si256(m, m_h, 1);
      const __m256i m_16 = _mm256_unpacklo_epi8(m, zero);

      const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);

      _mm_storeu_si128((__m128i *)(comp_pred), _mm256_castsi256_si128(comp));

      _mm_storeu_si128((__m128i *)(comp_pred + width),
                       _mm256_extractf128_si256(comp, 1));

      src0 += (stride0 << 1);
      src1 += (stride1 << 1);
      mask += (mask_stride << 1);
      comp_pred += (width << 1);
      i += 2;
    } while (i < height);
  } else if (width == 16) {
    do {
      const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0));
      const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1));
      const __m256i m_16 =
          _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)mask));

      const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m_16);

      _mm256_storeu_si256((__m256i *)comp_pred, comp);

      src0 += stride0;
      src1 += stride1;
      mask += mask_stride;
      comp_pred += width;
      i += 1;
    } while (i < height);
  } else {
    do {
      for (int x = 0; x < width; x += 32) {
        const __m256i s0 = _mm256_loadu_si256((const __m256i *)(src0 + x));
        const __m256i s2 = _mm256_loadu_si256((const __m256i *)(src0 + x + 16));
        const __m256i s1 = _mm256_loadu_si256((const __m256i *)(src1 + x));
        const __m256i s3 = _mm256_loadu_si256((const __m256i *)(src1 + x + 16));

        const __m256i m01_16 =
            _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)(mask + x)));
        const __m256i m23_16 = _mm256_cvtepu8_epi16(
            _mm_loadu_si128((const __m128i *)(mask + x + 16)));

        const __m256i comp = highbd_comp_mask_pred_line_avx2(s0, s1, m01_16);
        const __m256i comp1 = highbd_comp_mask_pred_line_avx2(s2, s3, m23_16);

        _mm256_storeu_si256((__m256i *)comp_pred, comp);
        _mm256_storeu_si256((__m256i *)(comp_pred + 16), comp1);

        comp_pred += 32;
      }
      src0 += stride0;
      src1 += stride1;
      mask += mask_stride;
      i += 1;
    } while (i < height);
  }
}

uint64_t aom_mse_4xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                int sstride, int h) {
  uint64_t sum = 0;
  __m128i dst0_4x8, dst1_4x8, dst2_4x8, dst3_4x8, dst_16x8;
  __m128i src0_4x16, src1_4x16, src2_4x16, src3_4x16;
  __m256i src0_8x16, src1_8x16, dst_16x16, src_16x16;
  __m256i res0_4x64, res1_4x64;
  __m256i sub_result;
  const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
  __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());
  for (int i = 0; i < h; i += 4) {
    dst0_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 0) * dstride]));
    dst1_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 1) * dstride]));
    dst2_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 2) * dstride]));
    dst3_4x8 = _mm_cvtsi32_si128(*(int const *)(&dst[(i + 3) * dstride]));
    dst_16x8 = _mm_unpacklo_epi64(_mm_unpacklo_epi32(dst0_4x8, dst1_4x8),
                                  _mm_unpacklo_epi32(dst2_4x8, dst3_4x8));
    dst_16x16 = _mm256_cvtepu8_epi16(dst_16x8);

    src0_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 0) * sstride]));
    src1_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 1) * sstride]));
    src2_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 2) * sstride]));
    src3_4x16 = _mm_loadl_epi64((__m128i const *)(&src[(i + 3) * sstride]));
    src0_8x16 =
        _mm256_castsi128_si256(_mm_unpacklo_epi64(src0_4x16, src1_4x16));
    src1_8x16 =
        _mm256_castsi128_si256(_mm_unpacklo_epi64(src2_4x16, src3_4x16));
    src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);

    // r15 r14 r13------------r1 r0  - 16 bit
    sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));

    // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
    src_16x16 = _mm256_madd_epi16(sub_result, sub_result);

    // accumulation of result
    square_result = _mm256_add_epi32(square_result, src_16x16);
  }

  // s5 s4 s1 s0  - 64bit
  res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
  // s7 s6 s3 s2 - 64bit
  res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
  // r3 r2 r1 r0 - 64bit
  res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
  // r1+r3 r2+r0 - 64bit
  const __m128i sum_1x64 =
      _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
                    _mm256_extracti128_si256(res0_4x64, 1));
  xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
  return sum;
}

// Compute mse of four consecutive 4x4 blocks.
// In src buffer, each 4x4 block in a 32x32 filter block is stored sequentially.
// Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
// buffer, thus dstride is a frame level stride.
uint64_t aom_mse_4xh_quad_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                     int src_blk_stride, int h) {
  uint64_t sum = 0;
  __m128i dst0_16x8, dst1_16x8, dst2_16x8, dst3_16x8;
  __m256i dst0_16x16, dst1_16x16, dst2_16x16, dst3_16x16;
  __m256i res0_4x64, res1_4x64;
  __m256i sub_result_0, sub_result_1, sub_result_2, sub_result_3;
  const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
  __m256i square_result = zeros;
  uint16_t *src_temp = src;

  for (int i = 0; i < h; i += 4) {
    dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
    dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));
    dst2_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 2) * dstride]));
    dst3_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 3) * dstride]));

    // row0 of 1st,2nd, 3rd and 4th 4x4 blocks- d00 d10 d20 d30
    dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
    // row1 of 1st,2nd, 3rd and 4th 4x4 blocks - d01 d11 d21 d31
    dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);
    // row2 of 1st,2nd, 3rd and 4th 4x4 blocks - d02 d12 d22 d32
    dst2_16x16 = _mm256_cvtepu8_epi16(dst2_16x8);
    // row3 of 1st,2nd, 3rd and 4th 4x4 blocks - d03 d13 d23 d33
    dst3_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);

    // All rows of 1st 4x4 block - r00 r01 r02 r03
    __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
    // All rows of 2nd 4x4 block - r10 r11 r12 r13
    __m256i src1_16x16 =
        _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
    // All rows of 3rd 4x4 block - r20 r21 r22 r23
    __m256i src2_16x16 =
        _mm256_loadu_si256((__m256i const *)(&src_temp[2 * src_blk_stride]));
    // All rows of 4th 4x4 block - r30 r31 r32 r33
    __m256i src3_16x16 =
        _mm256_loadu_si256((__m256i const *)(&src_temp[3 * src_blk_stride]));

    // r00 r10 r02 r12
    __m256i tmp0_16x16 = _mm256_unpacklo_epi64(src0_16x16, src1_16x16);
    // r01 r11 r03 r13
    __m256i tmp1_16x16 = _mm256_unpackhi_epi64(src0_16x16, src1_16x16);
    // r20 r30 r22 r32
    __m256i tmp2_16x16 = _mm256_unpacklo_epi64(src2_16x16, src3_16x16);
    // r21 r31 r23 r33
    __m256i tmp3_16x16 = _mm256_unpackhi_epi64(src2_16x16, src3_16x16);

    // r00 r10 r20 r30
    src0_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x20);
    // r01 r11 r21 r31
    src1_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x20);
    // r02 r12 r22 r32
    src2_16x16 = _mm256_permute2f128_si256(tmp0_16x16, tmp2_16x16, 0x31);
    // r03 r13 r23 r33
    src3_16x16 = _mm256_permute2f128_si256(tmp1_16x16, tmp3_16x16, 0x31);

    // r15 r14 r13------------r1 r0  - 16 bit
    sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(src0_16x16, dst0_16x16));
    sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(src1_16x16, dst1_16x16));
    sub_result_2 = _mm256_abs_epi16(_mm256_sub_epi16(src2_16x16, dst2_16x16));
    sub_result_3 = _mm256_abs_epi16(_mm256_sub_epi16(src3_16x16, dst3_16x16));

    // s7 s6 s5 s4 s3 s2 s1 s0    - 32bit
    src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
    src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);
    src2_16x16 = _mm256_madd_epi16(sub_result_2, sub_result_2);
    src3_16x16 = _mm256_madd_epi16(sub_result_3, sub_result_3);

    // accumulation of result
    src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
    src2_16x16 = _mm256_add_epi32(src2_16x16, src3_16x16);
    const __m256i square_result_0 = _mm256_add_epi32(src0_16x16, src2_16x16);
    square_result = _mm256_add_epi32(square_result, square_result_0);
    src_temp += 16;
  }

  // s5 s4 s1 s0  - 64bit
  res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
  // s7  s6  s3  s2 - 64bit
  res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
  // r3 r2 r1 r0 - 64bit
  res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
  // r1+r3 r2+r0 - 64bit
  const __m128i sum_1x64 =
      _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
                    _mm256_extracti128_si256(res0_4x64, 1));
  xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
  return sum;
}

uint64_t aom_mse_8xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                int sstride, int h) {
  uint64_t sum = 0;
  __m128i dst0_8x8, dst1_8x8, dst3_16x8;
  __m256i src0_8x16, src1_8x16, src_16x16, dst_16x16;
  __m256i res0_4x64, res1_4x64;
  __m256i sub_result;
  const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
  __m256i square_result = _mm256_broadcastsi128_si256(_mm_setzero_si128());

  for (int i = 0; i < h; i += 2) {
    dst0_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 0) * dstride]));
    dst1_8x8 = _mm_loadl_epi64((__m128i const *)(&dst[(i + 1) * dstride]));
    dst3_16x8 = _mm_unpacklo_epi64(dst0_8x8, dst1_8x8);
    dst_16x16 = _mm256_cvtepu8_epi16(dst3_16x8);

    src0_8x16 =
        _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)&src[i * sstride]));
    src1_8x16 = _mm256_castsi128_si256(
        _mm_loadu_si128((__m128i *)&src[(i + 1) * sstride]));
    src_16x16 = _mm256_permute2x128_si256(src0_8x16, src1_8x16, 0x20);

    // r15 r14 r13 - - - r1 r0 - 16 bit
    sub_result = _mm256_abs_epi16(_mm256_sub_epi16(src_16x16, dst_16x16));

    // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit
    src_16x16 = _mm256_madd_epi16(sub_result, sub_result);

    // accumulation of result
    square_result = _mm256_add_epi32(square_result, src_16x16);
  }

  // s5 s4 s1 s0  - 64bit
  res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
  // s7 s6 s3 s2 - 64bit
  res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
  // r3 r2 r1 r0 - 64bit
  res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
  // r1+r3 r2+r0 - 64bit
  const __m128i sum_1x64 =
      _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
                    _mm256_extracti128_si256(res0_4x64, 1));
  xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
  return sum;
}

// Compute mse of two consecutive 8x8 blocks.
// In src buffer, each 8x8 block in a 64x64 filter block is stored sequentially.
// Hence src_blk_stride is same as block width. Whereas dst buffer is a frame
// buffer, thus dstride is a frame level stride.
uint64_t aom_mse_8xh_dual_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                     int src_blk_stride, int h) {
  uint64_t sum = 0;
  __m128i dst0_16x8, dst1_16x8;
  __m256i dst0_16x16, dst1_16x16;
  __m256i res0_4x64, res1_4x64;
  __m256i sub_result_0, sub_result_1;
  const __m256i zeros = _mm256_broadcastsi128_si256(_mm_setzero_si128());
  __m256i square_result = zeros;
  uint16_t *src_temp = src;

  for (int i = 0; i < h; i += 2) {
    dst0_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 0) * dstride]));
    dst1_16x8 = _mm_loadu_si128((__m128i *)(&dst[(i + 1) * dstride]));

    // row0 of 1st and 2nd 8x8 block - d00 d10
    dst0_16x16 = _mm256_cvtepu8_epi16(dst0_16x8);
    // row1 of 1st and 2nd 8x8 block - d01 d11
    dst1_16x16 = _mm256_cvtepu8_epi16(dst1_16x8);

    // 2 rows of 1st 8x8 block - r00 r01
    __m256i src0_16x16 = _mm256_loadu_si256((__m256i const *)(&src_temp[0]));
    // 2 rows of 2nd 8x8 block - r10 r11
    __m256i src1_16x16 =
        _mm256_loadu_si256((__m256i const *)(&src_temp[src_blk_stride]));
    // r00 r10 - 128bit
    __m256i tmp0_16x16 =
        _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x20);
    // r01 r11 - 128bit
    __m256i tmp1_16x16 =
        _mm256_permute2f128_si256(src0_16x16, src1_16x16, 0x31);

    // r15 r14 r13------------r1 r0 - 16 bit
    sub_result_0 = _mm256_abs_epi16(_mm256_sub_epi16(tmp0_16x16, dst0_16x16));
    sub_result_1 = _mm256_abs_epi16(_mm256_sub_epi16(tmp1_16x16, dst1_16x16));

    // s7 s6 s5 s4 s3 s2 s1 s0 - 32bit each
    src0_16x16 = _mm256_madd_epi16(sub_result_0, sub_result_0);
    src1_16x16 = _mm256_madd_epi16(sub_result_1, sub_result_1);

    // accumulation of result
    src0_16x16 = _mm256_add_epi32(src0_16x16, src1_16x16);
    square_result = _mm256_add_epi32(square_result, src0_16x16);
    src_temp += 16;
  }

  // s5 s4 s1 s0  - 64bit
  res0_4x64 = _mm256_unpacklo_epi32(square_result, zeros);
  // s7 s6 s3 s2 - 64bit
  res1_4x64 = _mm256_unpackhi_epi32(square_result, zeros);
  // r3 r2 r1 r0 - 64bit
  res0_4x64 = _mm256_add_epi64(res0_4x64, res1_4x64);
  // r1+r3 r2+r0 - 64bit
  const __m128i sum_1x64 =
      _mm_add_epi64(_mm256_castsi256_si128(res0_4x64),
                    _mm256_extracti128_si256(res0_4x64, 1));
  xx_storel_64(&sum, _mm_add_epi64(sum_1x64, _mm_srli_si128(sum_1x64, 8)));
  return sum;
}

uint64_t aom_mse_wxh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                int sstride, int w, int h) {
  assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
         "w=8/4 and h=8/4 must be satisfied");
  switch (w) {
    case 4: return aom_mse_4xh_16bit_avx2(dst, dstride, src, sstride, h);
    case 8: return aom_mse_8xh_16bit_avx2(dst, dstride, src, sstride, h);
    default: assert(0 && "unsupported width"); return -1;
  }
}

// Computes mse of two 8x8 or four 4x4 consecutive blocks. Luma plane uses 8x8
// block and Chroma uses 4x4 block. In src buffer, each block in a filter block
// is stored sequentially. Hence src_blk_stride is same as block width. Whereas
// dst buffer is a frame buffer, thus dstride is a frame level stride.
uint64_t aom_mse_16xh_16bit_avx2(uint8_t *dst, int dstride, uint16_t *src,
                                 int w, int h) {
  assert((w == 8 || w == 4) && (h == 8 || h == 4) &&
         "w=8/4 and h=8/4 must be satisfied");
  switch (w) {
    case 4: return aom_mse_4xh_quad_16bit_avx2(dst, dstride, src, w * h, h);
    case 8: return aom_mse_8xh_dual_16bit_avx2(dst, dstride, src, w * h, h);
    default: assert(0 && "unsupported width"); return -1;
  }
}

static INLINE void calc_sum_sse_wd32_avx2(const uint8_t *src,
                                          const uint8_t *ref,
                                          __m256i set_one_minusone,
                                          __m256i sse_8x16[2],
                                          __m256i sum_8x16[2]) {
  const __m256i s00_256 = _mm256_loadu_si256((__m256i const *)(src));
  const __m256i r00_256 = _mm256_loadu_si256((__m256i const *)(ref));

  const __m256i u_low_256 = _mm256_unpacklo_epi8(s00_256, r00_256);
  const __m256i u_high_256 = _mm256_unpackhi_epi8(s00_256, r00_256);

  const __m256i diff0 = _mm256_maddubs_epi16(u_low_256, set_one_minusone);
  const __m256i diff1 = _mm256_maddubs_epi16(u_high_256, set_one_minusone);

  sse_8x16[0] = _mm256_add_epi32(sse_8x16[0], _mm256_madd_epi16(diff0, diff0));
  sse_8x16[1] = _mm256_add_epi32(sse_8x16[1], _mm256_madd_epi16(diff1, diff1));
  sum_8x16[0] = _mm256_add_epi16(sum_8x16[0], diff0);
  sum_8x16[1] = _mm256_add_epi16(sum_8x16[1], diff1);
}

static INLINE __m256i calc_sum_sse_order(__m256i *sse_hx16, __m256i *sum_hx16,
                                         unsigned int *tot_sse, int *tot_sum) {
  // s00 s01 s10 s11 s20 s21 s30 s31
  const __m256i sse_results = _mm256_hadd_epi32(sse_hx16[0], sse_hx16[1]);
  // d00 d01 d02 d03 | d10 d11 d12 d13 | d20 d21 d22 d23 | d30 d31 d32 d33
  const __m256i sum_result_r0 = _mm256_hadd_epi16(sum_hx16[0], sum_hx16[1]);
  // d00 d01 d10 d11 | d00 d02 d10 d11 | d20 d21 d30 d31 | d20 d21 d30 d31
  const __m256i sum_result_1 = _mm256_hadd_epi16(sum_result_r0, sum_result_r0);
  // d00 d01 d10 d11 d20 d21 d30 d31 | X
  const __m256i sum_result_3 = _mm256_permute4x64_epi64(sum_result_1, 0x08);
  // d00 d01 d10 d11 d20 d21 d30 d31
  const __m256i sum_results =
      _mm256_cvtepi16_epi32(_mm256_castsi256_si128(sum_result_3));

  // Add sum & sse registers appropriately to get total sum & sse separately.
  // s0 s1 d0 d1 s2 s3 d2 d3
  const __m256i sum_sse_add = _mm256_hadd_epi32(sse_results, sum_results);
  // s0 s1 s2 s3 d0 d1 d2 d3
  const __m256i sum_sse_order_add = _mm256_permute4x64_epi64(sum_sse_add, 0xd8);
  // s0+s1 s2+s3 s0+s1 s2+s3 d0+d1 d2+d3 d0+d1 d2+d3
  const __m256i sum_sse_order_add_1 =
      _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);
  // s0 x x x | d0 x x x
  const __m256i sum_sse_order_add_final =
      _mm256_hadd_epi32(sum_sse_order_add_1, sum_sse_order_add_1);
  // s0
  const uint32_t first_value =
      (uint32_t)_mm256_extract_epi32(sum_sse_order_add_final, 0);
  *tot_sse += first_value;
  // d0
  const int second_value = _mm256_extract_epi32(sum_sse_order_add_final, 4);
  *tot_sum += second_value;
  return sum_sse_order_add;
}

static INLINE void get_var_sse_sum_8x8_quad_avx2(
    const uint8_t *src, int src_stride, const uint8_t *ref,
    const int ref_stride, const int h, uint32_t *sse8x8, int *sum8x8,
    unsigned int *tot_sse, int *tot_sum, uint32_t *var8x8) {
  assert(h <= 128);  // May overflow for larger height.
  __m256i sse_8x16[2], sum_8x16[2];
  sum_8x16[0] = _mm256_setzero_si256();
  sse_8x16[0] = _mm256_setzero_si256();
  sum_8x16[1] = sum_8x16[0];
  sse_8x16[1] = sse_8x16[0];
  const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);

  for (int i = 0; i < h; i++) {
    // Process 8x32 block of one row.
    calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_8x16, sum_8x16);
    src += src_stride;
    ref += ref_stride;
  }

  const __m256i sum_sse_order_add =
      calc_sum_sse_order(sse_8x16, sum_8x16, tot_sse, tot_sum);

  // s0 s1 s2 s3
  _mm_storeu_si128((__m128i *)sse8x8,
                   _mm256_castsi256_si128(sum_sse_order_add));
  // d0 d1 d2 d3
  const __m128i sum_temp8x8 = _mm256_extractf128_si256(sum_sse_order_add, 1);
  _mm_storeu_si128((__m128i *)sum8x8, sum_temp8x8);

  // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
  const __m128i mull_results =
      _mm_srli_epi32(_mm_mullo_epi32(sum_temp8x8, sum_temp8x8), 6);
  // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
  const __m128i variance_8x8 =
      _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add), mull_results);
  // v0 v1 v2 v3
  _mm_storeu_si128((__m128i *)var8x8, variance_8x8);
}

static INLINE void get_var_sse_sum_16x16_dual_avx2(
    const uint8_t *src, int src_stride, const uint8_t *ref,
    const int ref_stride, const int h, uint32_t *sse16x16,
    unsigned int *tot_sse, int *tot_sum, uint32_t *var16x16) {
  assert(h <= 128);  // May overflow for larger height.
  __m256i sse_16x16[2], sum_16x16[2];
  sum_16x16[0] = _mm256_setzero_si256();
  sse_16x16[0] = _mm256_setzero_si256();
  sum_16x16[1] = sum_16x16[0];
  sse_16x16[1] = sse_16x16[0];
  const __m256i set_one_minusone = _mm256_set1_epi16((short)0xff01);

  for (int i = 0; i < h; i++) {
    // Process 16x32 block of one row.
    calc_sum_sse_wd32_avx2(src, ref, set_one_minusone, sse_16x16, sum_16x16);
    src += src_stride;
    ref += ref_stride;
  }

  const __m256i sum_sse_order_add =
      calc_sum_sse_order(sse_16x16, sum_16x16, tot_sse, tot_sum);

  const __m256i sum_sse_order_add_1 =
      _mm256_hadd_epi32(sum_sse_order_add, sum_sse_order_add);

  // s0+s1 s2+s3 x x
  _mm_storel_epi64((__m128i *)sse16x16,
                   _mm256_castsi256_si128(sum_sse_order_add_1));

  // d0+d1 d2+d3 x x
  const __m128i sum_temp16x16 =
      _mm256_extractf128_si256(sum_sse_order_add_1, 1);

  // (d0xd0 >> 6)=f0 (d1xd1 >> 6)=f1 (d2xd2 >> 6)=f2 (d3xd3 >> 6)=f3
  const __m128i mull_results =
      _mm_srli_epi32(_mm_mullo_epi32(sum_temp16x16, sum_temp16x16), 8);

  // s0-f0=v0 s1-f1=v1 s2-f2=v2 s3-f3=v3
  const __m128i variance_16x16 =
      _mm_sub_epi32(_mm256_castsi256_si128(sum_sse_order_add_1), mull_results);

  // v0 v1 v2 v3
  _mm_storel_epi64((__m128i *)var16x16, variance_16x16);
}

void aom_get_var_sse_sum_8x8_quad_avx2(const uint8_t *src_ptr,
                                       int source_stride,
                                       const uint8_t *ref_ptr, int ref_stride,
                                       uint32_t *sse8x8, int *sum8x8,
                                       unsigned int *tot_sse, int *tot_sum,
                                       uint32_t *var8x8) {
  get_var_sse_sum_8x8_quad_avx2(src_ptr, source_stride, ref_ptr, ref_stride, 8,
                                sse8x8, sum8x8, tot_sse, tot_sum, var8x8);
}

void aom_get_var_sse_sum_16x16_dual_avx2(const uint8_t *src_ptr,
                                         int source_stride,
                                         const uint8_t *ref_ptr, int ref_stride,
                                         uint32_t *sse16x16,
                                         unsigned int *tot_sse, int *tot_sum,
                                         uint32_t *var16x16) {
  get_var_sse_sum_16x16_dual_avx2(src_ptr, source_stride, ref_ptr, ref_stride,
                                  16, sse16x16, tot_sse, tot_sum, var16x16);
}