summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/reconinter.h
blob: c31f4531e258061c7200ba61457fa02f7a12cd1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_AV1_COMMON_RECONINTER_H_
#define AOM_AV1_COMMON_RECONINTER_H_

#include "av1/common/av1_common_int.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/warped_motion.h"
#include "aom/aom_integer.h"

// Work out how many pixels off the edge of a reference frame we're allowed
// to go when forming an inter prediction.
// The outermost row/col of each referernce frame is extended by
// (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep
// at least AOM_INTERP_EXTEND pixels within that to account for filtering.
//
// We have to break this up into two macros to keep both clang-format and
// tools/lint-hunks.py happy.
#define AOM_LEFT_TOP_MARGIN_PX(subsampling) \
  ((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND)
#define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \
  (AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS)

#ifdef __cplusplus
extern "C" {
#endif

#define MAX_WEDGE_TYPES 16

#define MAX_WEDGE_SIZE_LOG2 5  // 32x32
#define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
#define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)

#define WEDGE_WEIGHT_BITS 6

#define WEDGE_NONE -1

// Angles are with respect to horizontal anti-clockwise
enum {
  WEDGE_HORIZONTAL = 0,
  WEDGE_VERTICAL = 1,
  WEDGE_OBLIQUE27 = 2,
  WEDGE_OBLIQUE63 = 3,
  WEDGE_OBLIQUE117 = 4,
  WEDGE_OBLIQUE153 = 5,
  WEDGE_DIRECTIONS
} UENUM1BYTE(WedgeDirectionType);

// 3-tuple: {direction, x_offset, y_offset}
typedef struct {
  WedgeDirectionType direction;
  int x_offset;
  int y_offset;
} wedge_code_type;

typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];

typedef struct {
  int wedge_types;
  const wedge_code_type *codebook;
  uint8_t *signflip;
  wedge_masks_type *masks;
} wedge_params_type;

extern const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL];

typedef struct SubpelParams {
  int xs;
  int ys;
  int subpel_x;
  int subpel_y;
  int pos_x;
  int pos_y;
} SubpelParams;

struct build_prediction_ctxt {
  const AV1_COMMON *cm;
  uint8_t **tmp_buf;
  int *tmp_width;
  int *tmp_height;
  int *tmp_stride;
  int mb_to_far_edge;
  void *dcb;  // Decoder-only coding block.
};

typedef enum InterPredMode {
  TRANSLATION_PRED,
  WARP_PRED,
} InterPredMode;

typedef enum InterCompMode {
  UNIFORM_SINGLE,
  UNIFORM_COMP,
  MASK_COMP,
} InterCompMode;

typedef struct InterPredParams {
  InterPredMode mode;
  InterCompMode comp_mode;
  WarpedMotionParams warp_params;
  ConvolveParams conv_params;
  const InterpFilterParams *interp_filter_params[2];
  int block_width;
  int block_height;
  int pix_row;
  int pix_col;
  struct buf_2d ref_frame_buf;
  int subsampling_x;
  int subsampling_y;
  const struct scale_factors *scale_factors;
  int bit_depth;
  int use_hbd_buf;
  INTERINTER_COMPOUND_DATA mask_comp;
  BLOCK_SIZE sb_type;
  int is_intrabc;
  int top;
  int left;
} InterPredParams;

// Initialize sub-pel params required for inter prediction.
static AOM_INLINE void init_subpel_params(
    const MV *const src_mv, InterPredParams *const inter_pred_params,
    SubpelParams *subpel_params, int width, int height) {
  const struct scale_factors *sf = inter_pred_params->scale_factors;
  int ssx = inter_pred_params->subsampling_x;
  int ssy = inter_pred_params->subsampling_y;
  int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
  orig_pos_y += src_mv->row * (1 << (1 - ssy));
  int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
  orig_pos_x += src_mv->col * (1 << (1 - ssx));
  const int is_scaled = av1_is_scaled(sf);
  int pos_x, pos_y;
  if (LIKELY(!is_scaled)) {
    pos_y = av1_unscaled_value(orig_pos_y, sf);
    pos_x = av1_unscaled_value(orig_pos_x, sf);
  } else {
    pos_y = av1_scaled_y(orig_pos_y, sf);
    pos_x = av1_scaled_x(orig_pos_x, sf);
  }

  pos_x += SCALE_EXTRA_OFF;
  pos_y += SCALE_EXTRA_OFF;

  const int bottom = (height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
  const int right = (width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
  pos_y = clamp(pos_y, inter_pred_params->top, bottom);
  pos_x = clamp(pos_x, inter_pred_params->left, right);

  subpel_params->pos_x = pos_x;
  subpel_params->pos_y = pos_y;
  subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
  subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
  subpel_params->xs = sf->x_step_q4;
  subpel_params->ys = sf->y_step_q4;
}

// Initialize interp filter required for inter prediction.
static AOM_INLINE void init_interp_filter_params(
    const InterpFilterParams *interp_filter_params[2],
    const InterpFilters *filter, int block_width, int block_height,
    int is_intrabc) {
  if (UNLIKELY(is_intrabc)) {
    interp_filter_params[0] = &av1_intrabc_filter_params;
    interp_filter_params[1] = &av1_intrabc_filter_params;
  } else {
    interp_filter_params[0] = av1_get_interp_filter_params_with_block_size(
        (InterpFilter)filter->x_filter, block_width);
    interp_filter_params[1] = av1_get_interp_filter_params_with_block_size(
        (InterpFilter)filter->y_filter, block_height);
  }
}

// Initialize parameters required for inter prediction at mode level.
static AOM_INLINE void init_inter_mode_params(
    const MV *const src_mv, InterPredParams *const inter_pred_params,
    SubpelParams *subpel_params, const struct scale_factors *sf, int width,
    int height) {
  inter_pred_params->scale_factors = sf;
  init_subpel_params(src_mv, inter_pred_params, subpel_params, width, height);
}

// Initialize parameters required for inter prediction at block level.
static AOM_INLINE void init_inter_block_params(
    InterPredParams *inter_pred_params, int block_width, int block_height,
    int pix_row, int pix_col, int subsampling_x, int subsampling_y,
    int bit_depth, int use_hbd_buf, int is_intrabc) {
  inter_pred_params->block_width = block_width;
  inter_pred_params->block_height = block_height;
  inter_pred_params->pix_row = pix_row;
  inter_pred_params->pix_col = pix_col;
  inter_pred_params->subsampling_x = subsampling_x;
  inter_pred_params->subsampling_y = subsampling_y;
  inter_pred_params->bit_depth = bit_depth;
  inter_pred_params->use_hbd_buf = use_hbd_buf;
  inter_pred_params->is_intrabc = is_intrabc;
  inter_pred_params->mode = TRANSLATION_PRED;
  inter_pred_params->comp_mode = UNIFORM_SINGLE;
  inter_pred_params->top = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_y);
  inter_pred_params->left = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_x);
}

// Initialize params required for inter prediction.
static AOM_INLINE void av1_init_inter_params(
    InterPredParams *inter_pred_params, int block_width, int block_height,
    int pix_row, int pix_col, int subsampling_x, int subsampling_y,
    int bit_depth, int use_hbd_buf, int is_intrabc,
    const struct scale_factors *sf, const struct buf_2d *ref_buf,
    int_interpfilters interp_filters) {
  init_inter_block_params(inter_pred_params, block_width, block_height, pix_row,
                          pix_col, subsampling_x, subsampling_y, bit_depth,
                          use_hbd_buf, is_intrabc);
  init_interp_filter_params(inter_pred_params->interp_filter_params,
                            &interp_filters.as_filters, block_width,
                            block_height, is_intrabc);
  inter_pred_params->scale_factors = sf;
  inter_pred_params->ref_frame_buf = *ref_buf;
}

static AOM_INLINE void av1_init_comp_mode(InterPredParams *inter_pred_params) {
  inter_pred_params->comp_mode = UNIFORM_COMP;
}

void av1_init_warp_params(InterPredParams *inter_pred_params,
                          const WarpTypesAllowed *warp_types, int ref,
                          const MACROBLOCKD *xd, const MB_MODE_INFO *mi);

static INLINE int has_scale(int xs, int ys) {
  return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS;
}

static INLINE void revert_scale_extra_bits(SubpelParams *sp) {
  sp->subpel_x >>= SCALE_EXTRA_BITS;
  sp->subpel_y >>= SCALE_EXTRA_BITS;
  sp->xs >>= SCALE_EXTRA_BITS;
  sp->ys >>= SCALE_EXTRA_BITS;
  assert(sp->subpel_x < SUBPEL_SHIFTS);
  assert(sp->subpel_y < SUBPEL_SHIFTS);
  assert(sp->xs <= SUBPEL_SHIFTS);
  assert(sp->ys <= SUBPEL_SHIFTS);
}

static INLINE void inter_predictor(
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
    const SubpelParams *subpel_params, int w, int h,
    ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2]) {
  assert(conv_params->do_average == 0 || conv_params->do_average == 1);
  const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
  if (is_scaled) {
    av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
                           interp_filters, subpel_params->subpel_x,
                           subpel_params->xs, subpel_params->subpel_y,
                           subpel_params->ys, 1, conv_params);
  } else {
    SubpelParams sp = *subpel_params;
    revert_scale_extra_bits(&sp);
    av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
                           interp_filters, sp.subpel_x, sp.xs, sp.subpel_y,
                           sp.ys, 0, conv_params);
  }
}

static INLINE void highbd_inter_predictor(
    const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
    const SubpelParams *subpel_params, int w, int h,
    ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2],
    int bd) {
  assert(conv_params->do_average == 0 || conv_params->do_average == 1);
  const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
  if (is_scaled) {
    av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
                                  interp_filters, subpel_params->subpel_x,
                                  subpel_params->xs, subpel_params->subpel_y,
                                  subpel_params->ys, 1, conv_params, bd);
  } else {
    SubpelParams sp = *subpel_params;
    revert_scale_extra_bits(&sp);
    av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
                                  interp_filters, sp.subpel_x, sp.xs,
                                  sp.subpel_y, sp.ys, 0, conv_params, bd);
  }
}

void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi);
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
                               const struct macroblockd_plane *pd, int dir);

static INLINE int is_interinter_compound_used(COMPOUND_TYPE type,
                                              BLOCK_SIZE sb_type) {
  const int comp_allowed = is_comp_ref_allowed(sb_type);
  switch (type) {
    case COMPOUND_AVERAGE:
    case COMPOUND_DISTWTD:
    case COMPOUND_DIFFWTD: return comp_allowed;
    case COMPOUND_WEDGE:
      return comp_allowed && av1_wedge_params_lookup[sb_type].wedge_types > 0;
    default: assert(0); return 0;
  }
}

static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) {
  COMPOUND_TYPE comp_type;
  int i;
  if (!is_comp_ref_allowed(sb_type)) return 0;
  for (i = 0; i < COMPOUND_TYPES; i++) {
    comp_type = (COMPOUND_TYPE)i;
    if (is_masked_compound_type(comp_type) &&
        is_interinter_compound_used(comp_type, sb_type))
      return 1;
  }
  return 0;
}

static INLINE int get_wedge_types_lookup(BLOCK_SIZE sb_type) {
  return av1_wedge_params_lookup[sb_type].wedge_types;
}

static INLINE int av1_is_wedge_used(BLOCK_SIZE sb_type) {
  return av1_wedge_params_lookup[sb_type].wedge_types > 0;
}

void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
                              int dst_stride,
                              InterPredParams *inter_pred_params,
                              const SubpelParams *subpel_params);
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
                                     uint8_t *dst, int dst_stride,
                                     InterPredParams *inter_pred_params,
                                     const SubpelParams *subpel_params);

// TODO(jkoleszar): yet another mv clamping function :-(
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
                                           const MV *src_mv, int bw, int bh,
                                           int ss_x, int ss_y) {
  // If the MV points so far into the UMV border that no visible pixels
  // are used for reconstruction, the subpel part of the MV can be
  // discarded and the MV limited to 16 pixels with equivalent results.
  const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
  const int spel_right = spel_left - SUBPEL_SHIFTS;
  const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
  const int spel_bottom = spel_top - SUBPEL_SHIFTS;
  MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))),
                    (int16_t)(src_mv->col * (1 << (1 - ss_x))) };
  assert(ss_x <= 1);
  assert(ss_y <= 1);
  const SubpelMvLimits mv_limits = {
    xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
    xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
    xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
    xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom
  };

  clamp_mv(&clamped_mv, &mv_limits);

  return clamped_mv;
}

static INLINE int64_t scaled_buffer_offset(int x_offset, int y_offset,
                                           int stride,
                                           const struct scale_factors *sf) {
  int x, y;
  if (!sf) {
    x = x_offset;
    y = y_offset;
  } else if (av1_is_scaled(sf)) {
    x = av1_scaled_x(x_offset, sf) >> SCALE_EXTRA_BITS;
    y = av1_scaled_y(y_offset, sf) >> SCALE_EXTRA_BITS;
  } else {
    x = av1_unscaled_value(x_offset, sf) >> SCALE_EXTRA_BITS;
    y = av1_unscaled_value(y_offset, sf) >> SCALE_EXTRA_BITS;
  }
  return (int64_t)y * stride + x;
}

static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize,
                                    uint8_t *src, int width, int height,
                                    int stride, int mi_row, int mi_col,
                                    const struct scale_factors *scale,
                                    int subsampling_x, int subsampling_y) {
  // Offset the buffer pointer
  if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
    mi_row -= 1;
  if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
    mi_col -= 1;

  const int x = (MI_SIZE * mi_col) >> subsampling_x;
  const int y = (MI_SIZE * mi_row) >> subsampling_y;
  dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
  dst->buf0 = src;
  dst->width = width;
  dst->height = height;
  dst->stride = stride;
}

void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
                          const int plane_start, const int plane_end);

void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
                          const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
                          const struct scale_factors *sf, const int num_planes);

static INLINE void set_default_interp_filters(
    MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) {
  mbmi->interp_filters =
      av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter));
}

static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  if (mbmi->skip_mode) return 0;
  if (mbmi->motion_mode == WARPED_CAUSAL) return 0;
  if (is_nontrans_global_motion(xd, xd->mi[0])) return 0;
  return 1;
}

// Sets up buffers 'dst_buf1' and 'dst_buf2' from relevant buffers in 'xd' for
// subsequent use in OBMC prediction.
void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1,
                             uint8_t **dst_buf2);

void av1_setup_build_prediction_by_above_pred(
    MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
    MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
    const int num_planes);
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
                                             uint8_t left_mi_height,
                                             MB_MODE_INFO *left_mbmi,
                                             struct build_prediction_ctxt *ctxt,
                                             const int num_planes);
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                     uint8_t *above[MAX_MB_PLANE],
                                     int above_stride[MAX_MB_PLANE],
                                     uint8_t *left[MAX_MB_PLANE],
                                     int left_stride[MAX_MB_PLANE]);

const uint8_t *av1_get_obmc_mask(int length);
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd);

#define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1)
#define MASK_MASTER_STRIDE (MASK_MASTER_SIZE)

void av1_init_wedge_masks(void);

static INLINE const uint8_t *av1_get_contiguous_soft_mask(int8_t wedge_index,
                                                          int8_t wedge_sign,
                                                          BLOCK_SIZE sb_type) {
  return av1_wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
}

void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm,
                                     const MB_MODE_INFO *mbmi, int *fwd_offset,
                                     int *bck_offset,
                                     int *use_dist_wtd_comp_avg,
                                     int is_compound);

const uint8_t *av1_get_compound_type_mask(
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type);

// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
                                    uint8_t *pred, int stride,
                                    const BUFFER_SET *ctx, int plane,
                                    BLOCK_SIZE bsize);

void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
                                               MACROBLOCKD *xd,
                                               BLOCK_SIZE bsize, int plane,
                                               const BUFFER_SET *ctx,
                                               uint8_t *dst, int dst_stride);

void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
                            const uint8_t *inter_pred, int inter_stride,
                            const uint8_t *intra_pred, int intra_stride);

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AOM_AV1_COMMON_RECONINTER_H_