summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/x86/wiener_convolve_avx2.c
blob: 3de630f20352039118a9ef48a79a62c24d2c4134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <immintrin.h>
#include <assert.h>

#include "config/av1_rtcd.h"

#include "av1/common/convolve.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/convolve_avx2.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_dsp/x86/synonyms_avx2.h"

// 128-bit xmmwords are written as [ ... ] with the MSB on the left.
// 256-bit ymmwords are written as two xmmwords, [ ... ][ ... ] with the MSB
// on the left.
// A row of, say, 8-bit pixels with values p0, p1, p2, ..., p30, p31 will be
// loaded and stored as [ p31 ... p17 p16 ][ p15 ... p1 p0 ].

// Exploiting the range of wiener filter coefficients,
// horizontal filtering can be done in 16 bit intermediate precision.
// The details are as follows :
// Consider the horizontal wiener filter coefficients of the following form :
//      [C0, C1, C2, 2^(FILTER_BITS) -2 * (C0 + C1 + C2), C2, C1, C0]
// Subtracting  2^(FILTER_BITS) from the centre tap we get the following  :
//      [C0, C1, C2,     -2 * (C0 + C1 + C2),             C2, C1, C0]
// The sum of the product "C0 * p0 + C1 * p1 + C2 * p2 -2 * (C0 + C1 + C2) * p3
// + C2 * p4 + C1 * p5 + C0 * p6" would be in the range of signed 16 bit
// precision. Finally, after rounding the above result by round_0, we multiply
// the centre pixel by 2^(FILTER_BITS - round_0) and add it to get the
// horizontal filter output.

void av1_wiener_convolve_add_src_avx2(const uint8_t *src, ptrdiff_t src_stride,
                                      uint8_t *dst, ptrdiff_t dst_stride,
                                      const int16_t *filter_x, int x_step_q4,
                                      const int16_t *filter_y, int y_step_q4,
                                      int w, int h,
                                      const WienerConvolveParams *conv_params) {
  const int bd = 8;
  assert(x_step_q4 == 16 && y_step_q4 == 16);
  assert(!(w & 7));
  (void)x_step_q4;
  (void)y_step_q4;

  DECLARE_ALIGNED(32, int16_t, im_block[(MAX_SB_SIZE + SUBPEL_TAPS) * 8]);
  int im_h = h + SUBPEL_TAPS - 2;
  int im_stride = 8;
  memset(im_block + (im_h * im_stride), 0, MAX_SB_SIZE);
  int i, j;
  const int center_tap = (SUBPEL_TAPS - 1) / 2;
  const uint8_t *const src_ptr = src - center_tap * src_stride - center_tap;

  __m256i filt[4], coeffs_h[4], coeffs_v[4], filt_center;

  assert(conv_params->round_0 > 0);

  filt[0] = _mm256_load_si256((__m256i const *)filt1_global_avx2);
  filt[1] = _mm256_load_si256((__m256i const *)filt2_global_avx2);
  filt[2] = _mm256_load_si256((__m256i const *)filt3_global_avx2);
  filt[3] = _mm256_load_si256((__m256i const *)filt4_global_avx2);

  filt_center = _mm256_load_si256((__m256i const *)filt_center_global_avx2);

  const __m128i coeffs_x = _mm_loadu_si128((__m128i *)filter_x);
  const __m256i filter_coeffs_x = _mm256_broadcastsi128_si256(coeffs_x);

  // coeffs 0 1 0 1 0 1 0 1
  coeffs_h[0] =
      _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0200u));
  // coeffs 2 3 2 3 2 3 2 3
  coeffs_h[1] =
      _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0604u));
  // coeffs 4 5 4 5 4 5 4 5
  coeffs_h[2] =
      _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0a08u));
  // coeffs 6 7 6 7 6 7 6 7
  coeffs_h[3] =
      _mm256_shuffle_epi8(filter_coeffs_x, _mm256_set1_epi16(0x0e0cu));

  const __m256i round_const_h =
      _mm256_set1_epi16((1 << (conv_params->round_0 - 1)));
  const __m256i round_const_horz =
      _mm256_set1_epi16((1 << (bd + FILTER_BITS - conv_params->round_0 - 1)));
  const __m256i clamp_low = _mm256_setzero_si256();
  const __m256i clamp_high =
      _mm256_set1_epi16(WIENER_CLAMP_LIMIT(conv_params->round_0, bd) - 1);
  const __m128i round_shift_h = _mm_cvtsi32_si128(conv_params->round_0);

  // Add an offset to account for the "add_src" part of the convolve function.
  const __m128i zero_128 = _mm_setzero_si128();
  const __m128i offset_0 = _mm_insert_epi16(zero_128, 1 << FILTER_BITS, 3);
  const __m128i coeffs_y = _mm_add_epi16(xx_loadu_128(filter_y), offset_0);

  const __m256i filter_coeffs_y = _mm256_broadcastsi128_si256(coeffs_y);

  // coeffs 0 1 0 1 0 1 0 1
  coeffs_v[0] = _mm256_shuffle_epi32(filter_coeffs_y, 0x00);
  // coeffs 2 3 2 3 2 3 2 3
  coeffs_v[1] = _mm256_shuffle_epi32(filter_coeffs_y, 0x55);
  // coeffs 4 5 4 5 4 5 4 5
  coeffs_v[2] = _mm256_shuffle_epi32(filter_coeffs_y, 0xaa);
  // coeffs 6 7 6 7 6 7 6 7
  coeffs_v[3] = _mm256_shuffle_epi32(filter_coeffs_y, 0xff);

  const __m256i round_const_v =
      _mm256_set1_epi32((1 << (conv_params->round_1 - 1)) -
                        (1 << (bd + conv_params->round_1 - 1)));
  const __m128i round_shift_v = _mm_cvtsi32_si128(conv_params->round_1);

  for (j = 0; j < w; j += 8) {
    for (i = 0; i < im_h; i += 2) {
      __m256i data = _mm256_castsi128_si256(
          _mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j]));

      // Load the next line
      if (i + 1 < im_h)
        data = _mm256_inserti128_si256(
            data,
            _mm_loadu_si128(
                (__m128i *)&src_ptr[(i * src_stride) + j + src_stride]),
            1);

      __m256i res = convolve_lowbd_x(data, coeffs_h, filt);

      res =
          _mm256_sra_epi16(_mm256_add_epi16(res, round_const_h), round_shift_h);

      __m256i data_0 = _mm256_shuffle_epi8(data, filt_center);

      // multiply the center pixel by 2^(FILTER_BITS - round_0) and add it to
      // the result
      data_0 = _mm256_slli_epi16(data_0, FILTER_BITS - conv_params->round_0);
      res = _mm256_add_epi16(res, data_0);
      res = _mm256_add_epi16(res, round_const_horz);
      const __m256i res_clamped =
          _mm256_min_epi16(_mm256_max_epi16(res, clamp_low), clamp_high);
      _mm256_store_si256((__m256i *)&im_block[i * im_stride], res_clamped);
    }

    /* Vertical filter */
    {
      __m256i src_0 = _mm256_loadu_si256((__m256i *)(im_block + 0 * im_stride));
      __m256i src_1 = _mm256_loadu_si256((__m256i *)(im_block + 1 * im_stride));
      __m256i src_2 = _mm256_loadu_si256((__m256i *)(im_block + 2 * im_stride));
      __m256i src_3 = _mm256_loadu_si256((__m256i *)(im_block + 3 * im_stride));
      __m256i src_4 = _mm256_loadu_si256((__m256i *)(im_block + 4 * im_stride));
      __m256i src_5 = _mm256_loadu_si256((__m256i *)(im_block + 5 * im_stride));

      __m256i s[8];
      s[0] = _mm256_unpacklo_epi16(src_0, src_1);
      s[1] = _mm256_unpacklo_epi16(src_2, src_3);
      s[2] = _mm256_unpacklo_epi16(src_4, src_5);

      s[4] = _mm256_unpackhi_epi16(src_0, src_1);
      s[5] = _mm256_unpackhi_epi16(src_2, src_3);
      s[6] = _mm256_unpackhi_epi16(src_4, src_5);

      for (i = 0; i < h - 1; i += 2) {
        const int16_t *data = &im_block[i * im_stride];

        const __m256i s6 =
            _mm256_loadu_si256((__m256i *)(data + 6 * im_stride));
        const __m256i s7 =
            _mm256_loadu_si256((__m256i *)(data + 7 * im_stride));

        s[3] = _mm256_unpacklo_epi16(s6, s7);
        s[7] = _mm256_unpackhi_epi16(s6, s7);

        __m256i res_a = convolve(s, coeffs_v);
        __m256i res_b = convolve(s + 4, coeffs_v);

        const __m256i res_a_round = _mm256_sra_epi32(
            _mm256_add_epi32(res_a, round_const_v), round_shift_v);
        const __m256i res_b_round = _mm256_sra_epi32(
            _mm256_add_epi32(res_b, round_const_v), round_shift_v);

        /* rounding code */
        // 16 bit conversion
        const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round);
        // 8 bit conversion and saturation to uint8
        const __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit);

        const __m128i res_0 = _mm256_castsi256_si128(res_8b);
        const __m128i res_1 = _mm256_extracti128_si256(res_8b, 1);

        // Store values into the destination buffer
        __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j];
        __m128i *const p_1 = (__m128i *)&dst[i * dst_stride + j + dst_stride];

        _mm_storel_epi64(p_0, res_0);
        _mm_storel_epi64(p_1, res_1);

        s[0] = s[1];
        s[1] = s[2];
        s[2] = s[3];

        s[4] = s[5];
        s[5] = s[6];
        s[6] = s[7];
      }
      if (h - i) {
        s[0] = _mm256_permute2x128_si256(s[0], s[4], 0x20);
        s[1] = _mm256_permute2x128_si256(s[1], s[5], 0x20);
        s[2] = _mm256_permute2x128_si256(s[2], s[6], 0x20);

        const int16_t *data = &im_block[i * im_stride];
        const __m128i s6_ = _mm_loadu_si128((__m128i *)(data + 6 * im_stride));
        const __m128i s7_ = _mm_loadu_si128((__m128i *)(data + 7 * im_stride));

        __m128i s3 = _mm_unpacklo_epi16(s6_, s7_);
        __m128i s7 = _mm_unpackhi_epi16(s6_, s7_);

        s[3] = _mm256_inserti128_si256(_mm256_castsi128_si256(s3), s7, 1);
        __m256i convolveres = convolve(s, coeffs_v);

        const __m256i res_round = _mm256_sra_epi32(
            _mm256_add_epi32(convolveres, round_const_v), round_shift_v);

        /* rounding code */
        // 16 bit conversion
        __m128i reslo = _mm256_castsi256_si128(res_round);
        __m128i reshi = _mm256_extracti128_si256(res_round, 1);
        const __m128i res_16bit = _mm_packus_epi32(reslo, reshi);

        // 8 bit conversion and saturation to uint8
        const __m128i res_8b = _mm_packus_epi16(res_16bit, res_16bit);
        __m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j];
        _mm_storel_epi64(p_0, res_8b);
      }
    }
  }
}