1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
|
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "config/aom_config.h"
#if CONFIG_TFLITE
#include "tensorflow/lite/c/c_api.h"
#include "av1/encoder/deltaq4_model.c"
#endif
#include "av1/common/common_data.h"
#include "av1/common/enums.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/rdopt_utils.h"
#define MB_WIENER_PRED_BLOCK_SIZE BLOCK_128X128
#define MB_WIENER_PRED_BUF_STRIDE 128
void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td) {
const int is_high_bitdepth = is_cur_buf_hbd(&td->mb.e_mbd);
assert(MB_WIENER_PRED_BLOCK_SIZE < BLOCK_SIZES_ALL);
const int buf_width = block_size_wide[MB_WIENER_PRED_BLOCK_SIZE];
const int buf_height = block_size_high[MB_WIENER_PRED_BLOCK_SIZE];
assert(buf_width == MB_WIENER_PRED_BUF_STRIDE);
const size_t buf_size =
(buf_width * buf_height * sizeof(*td->wiener_tmp_pred_buf))
<< is_high_bitdepth;
CHECK_MEM_ERROR(cm, td->wiener_tmp_pred_buf, aom_memalign(32, buf_size));
}
void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td) {
aom_free(td->wiener_tmp_pred_buf);
td->wiener_tmp_pred_buf = NULL;
}
void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
// This block size is also used to determine number of workers in
// multi-threading. If it is changed, one needs to change it accordingly in
// "compute_num_ai_workers()".
cpi->weber_bsize = BLOCK_8X8;
if (cpi->oxcf.enable_rate_guide_deltaq) {
if (cpi->mb_weber_stats && cpi->prep_rate_estimates &&
cpi->ext_rate_distribution)
return;
} else {
if (cpi->mb_weber_stats) return;
}
CHECK_MEM_ERROR(cm, cpi->mb_weber_stats,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->mb_weber_stats)));
if (cpi->oxcf.enable_rate_guide_deltaq) {
CHECK_MEM_ERROR(
cm, cpi->prep_rate_estimates,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->prep_rate_estimates)));
CHECK_MEM_ERROR(
cm, cpi->ext_rate_distribution,
aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols,
sizeof(*cpi->ext_rate_distribution)));
}
}
static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t satd = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.satd;
++mb_count;
}
}
if (mb_count) satd = (int)(satd / mb_count);
satd = AOMMAX(1, satd);
return (int)satd;
}
static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
int64_t distortion = 0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
distortion +=
cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]
.distortion;
++mb_count;
}
}
if (mb_count) distortion = (int)(distortion / mb_count);
distortion = AOMMAX(1, distortion);
return (int)distortion;
}
static double get_max_scale(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int mb_stride = cpi->frame_info.mi_cols;
double min_max_scale = 10.0;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
if (weber_stats->max_scale < 1.0) continue;
if (weber_stats->max_scale < min_max_scale)
min_max_scale = weber_stats->max_scale;
}
}
return min_max_scale;
}
static int get_window_wiener_var(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int mi_step = mi_size_wide[cpi->weber_bsize];
int sb_wiener_var = 0;
int mb_stride = cpi->frame_info.mi_cols;
int mb_count = 0;
double base_num = 1;
double base_den = 1;
double base_reg = 1;
for (int row = mi_row; row < mi_row + mi_high; row += mi_step) {
for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
WeberStats *weber_stats =
&cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)];
base_num += ((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_variance) *
weber_stats->rec_pix_max;
base_den += fabs(
weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) -
weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance));
base_reg += sqrt((double)weber_stats->distortion) *
sqrt((double)weber_stats->src_pix_max) * 0.1;
++mb_count;
}
}
sb_wiener_var =
(int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count);
sb_wiener_var = AOMMAX(1, sb_wiener_var);
return (int)sb_wiener_var;
}
static int get_var_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col);
if (mi_row >= (mi_high / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col));
}
if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col));
}
if (mi_col >= (mi_wide / 2)) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2));
}
if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) {
sb_wiener_var =
AOMMIN(sb_wiener_var,
get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2));
}
return sb_wiener_var;
}
static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) {
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob);
int rate_cost = 1;
for (int idx = 0; idx < eob; ++idx) {
int abs_level = abs(qcoeff[scan_order->scan[idx]]);
rate_cost += (int)(log1p(abs_level) / log(2.0)) + 1 + (abs_level > 0);
}
return (rate_cost << AV1_PROB_COST_SHIFT);
}
void av1_calc_mb_wiener_var_row(AV1_COMP *const cpi, MACROBLOCK *x,
MACROBLOCKD *xd, const int mi_row,
int16_t *src_diff, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff,
double *sum_rec_distortion,
double *sum_est_rate, uint8_t *pred_buffer) {
AV1_COMMON *const cm = &cpi->common;
uint8_t *buffer = cpi->source->y_buffer;
int buf_stride = cpi->source->y_stride;
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
const BLOCK_SIZE bsize = cpi->weber_bsize;
const TX_SIZE tx_size = max_txsize_lookup[bsize];
const int block_size = tx_size_wide[tx_size];
const int coeff_count = block_size * block_size;
const int mb_step = mi_size_wide[bsize];
const BitDepthInfo bd_info = get_bit_depth_info(xd);
const MultiThreadInfo *const mt_info = &cpi->mt_info;
const AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
AV1EncRowMultiThreadSync *const intra_row_mt_sync =
&cpi->ppi->intra_row_mt_sync;
const int mi_cols = cm->mi_params.mi_cols;
const int mt_thread_id = mi_row / mb_step;
// TODO(chengchen): test different unit step size
const int mt_unit_step = mi_size_wide[MB_WIENER_MT_UNIT_SIZE];
const int mt_unit_cols = (mi_cols + (mt_unit_step >> 1)) / mt_unit_step;
int mt_unit_col = 0;
const int is_high_bitdepth = is_cur_buf_hbd(xd);
uint8_t *dst_buffer = pred_buffer;
const int dst_buffer_stride = MB_WIENER_PRED_BUF_STRIDE;
if (is_high_bitdepth) {
uint16_t *pred_buffer_16 = (uint16_t *)pred_buffer;
dst_buffer = CONVERT_TO_BYTEPTR(pred_buffer_16);
}
for (int mi_col = 0; mi_col < mi_cols; mi_col += mb_step) {
if (mi_col % mt_unit_step == 0) {
intra_mt->intra_sync_read_ptr(intra_row_mt_sync, mt_thread_id,
mt_unit_col);
#if CONFIG_MULTITHREAD
const int num_workers =
AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
if (num_workers > 1) {
const AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
pthread_mutex_lock(enc_row_mt->mutex_);
const bool exit = enc_row_mt->mb_wiener_mt_exit;
pthread_mutex_unlock(enc_row_mt->mutex_);
// Stop further processing in case any worker has encountered an error.
if (exit) break;
}
#endif
}
PREDICTION_MODE best_mode = DC_PRED;
int best_intra_cost = INT_MAX;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd,
mi_row, mi_col);
set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width,
AOMMIN(mi_row + mi_height, cm->mi_params.mi_rows),
AOMMIN(mi_col + mi_width, cm->mi_params.mi_cols));
set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize],
av1_num_planes(cm));
xd->mi[0]->bsize = bsize;
xd->mi[0]->motion_mode = SIMPLE_TRANSLATION;
// Set above and left mbmi to NULL as they are not available in the
// preprocessing stage.
// They are used to detemine intra edge filter types in intra prediction.
if (xd->up_available) {
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mbmi = NULL;
}
uint8_t *mb_buffer =
buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE;
for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END;
++mode) {
// TODO(chengchen): Here we use src instead of reconstructed frame as
// the intra predictor to make single and multithread version match.
// Ideally we want to use the reconstructed.
av1_predict_intra_block(
xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
block_size, block_size, tx_size, mode, 0, 0, FILTER_INTRA_MODES,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
int intra_cost = aom_satd(coeff, coeff_count);
if (intra_cost < best_intra_cost) {
best_intra_cost = intra_cost;
best_mode = mode;
}
}
av1_predict_intra_block(
xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter,
block_size, block_size, tx_size, best_mode, 0, 0, FILTER_INTRA_MODES,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0);
av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size,
mb_buffer, buf_stride, dst_buffer, dst_buffer_stride);
av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff);
const struct macroblock_plane *const p = &x->plane[0];
uint16_t eob;
const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
QUANT_PARAM quant_param;
int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param);
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
} else {
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob,
scan_order, &quant_param);
}
#else
av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, scan_order,
&quant_param);
#endif // CONFIG_AV1_HIGHBITDEPTH
if (cpi->oxcf.enable_rate_guide_deltaq) {
const int rate_cost = rate_estimator(qcoeff, eob, tx_size);
cpi->prep_rate_estimates[(mi_row / mb_step) * cpi->frame_info.mi_cols +
(mi_col / mb_step)] = rate_cost;
}
av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer,
dst_buffer_stride, eob, 0);
WeberStats *weber_stats =
&cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols +
(mi_col / mb_step)];
weber_stats->rec_pix_max = 1;
weber_stats->rec_variance = 0;
weber_stats->src_pix_max = 1;
weber_stats->src_variance = 0;
weber_stats->distortion = 0;
int64_t src_mean = 0;
int64_t rec_mean = 0;
int64_t dist_mean = 0;
for (int pix_row = 0; pix_row < block_size; ++pix_row) {
for (int pix_col = 0; pix_col < block_size; ++pix_col) {
int src_pix, rec_pix;
#if CONFIG_AV1_HIGHBITDEPTH
if (is_cur_buf_hbd(xd)) {
uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer);
uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer);
src_pix = src[pix_row * buf_stride + pix_col];
rec_pix = rec[pix_row * dst_buffer_stride + pix_col];
} else {
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
}
#else
src_pix = mb_buffer[pix_row * buf_stride + pix_col];
rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col];
#endif
src_mean += src_pix;
rec_mean += rec_pix;
dist_mean += src_pix - rec_pix;
weber_stats->src_variance += src_pix * src_pix;
weber_stats->rec_variance += rec_pix * rec_pix;
weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix);
weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix);
weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix);
}
}
if (cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
*sum_rec_distortion += weber_stats->distortion;
int est_block_rate = 0;
int64_t est_block_dist = 0;
model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion,
pix_num, &est_block_rate,
&est_block_dist);
*sum_est_rate += est_block_rate;
}
weber_stats->src_variance -= (src_mean * src_mean) / pix_num;
weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num;
weber_stats->distortion -= (dist_mean * dist_mean) / pix_num;
weber_stats->satd = best_intra_cost;
qcoeff[0] = 0;
int max_scale = 0;
for (int idx = 1; idx < coeff_count; ++idx) {
const int abs_qcoeff = abs(qcoeff[idx]);
max_scale = AOMMAX(max_scale, abs_qcoeff);
}
weber_stats->max_scale = max_scale;
if ((mi_col + mb_step) % mt_unit_step == 0 ||
(mi_col + mb_step) >= mi_cols) {
intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id,
mt_unit_col, mt_unit_cols);
++mt_unit_col;
}
}
// Set the pointer to null since mbmi is only allocated inside this function.
xd->mi = NULL;
}
static void calc_mb_wiener_var(AV1_COMP *const cpi, double *sum_rec_distortion,
double *sum_est_rate) {
MACROBLOCK *x = &cpi->td.mb;
MACROBLOCKD *xd = &x->e_mbd;
const BLOCK_SIZE bsize = cpi->weber_bsize;
const int mb_step = mi_size_wide[bsize];
DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) {
av1_calc_mb_wiener_var_row(cpi, x, xd, mi_row, src_diff, coeff, qcoeff,
dqcoeff, sum_rec_distortion, sum_est_rate,
cpi->td.wiener_tmp_pred_buf);
}
}
static int64_t estimate_wiener_var_norm(AV1_COMP *const cpi,
const BLOCK_SIZE norm_block_size) {
const AV1_COMMON *const cm = &cpi->common;
int64_t norm_factor = 1;
assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_128X128);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) {
const int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
const double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count));
norm_factor = AOMMAX(1, norm_factor);
return norm_factor;
}
static void automatic_intra_tools_off(AV1_COMP *cpi,
const double sum_rec_distortion,
const double sum_est_rate) {
if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return;
// Thresholds
const int high_quality_qindex = 128;
const double high_quality_bpp = 2.0;
const double high_quality_dist_per_pix = 4.0;
AV1_COMMON *const cm = &cpi->common;
const int qindex = cm->quant_params.base_qindex;
const double dist_per_pix =
(double)sum_rec_distortion / (cm->width * cm->height);
// The estimate bpp is not accurate, an empirical constant 100 is divided.
const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100);
if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp &&
dist_per_pix < high_quality_dist_per_pix) {
cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0;
cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0;
}
}
static void ext_rate_guided_quantization(AV1_COMP *cpi) {
// Calculation uses 8x8.
const int mb_step = mi_size_wide[cpi->weber_bsize];
// Accumulate to 16x16, step size is in the unit of mi.
const int block_step = 4;
const char *filename = cpi->oxcf.rate_distribution_info;
FILE *pfile = fopen(filename, "r");
if (pfile == NULL) {
assert(pfile != NULL);
return;
}
double ext_rate_sum = 0.0;
for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
float val;
const int fields_converted = fscanf(pfile, "%f", &val);
if (fields_converted != 1) {
assert(fields_converted == 1);
fclose(pfile);
return;
}
ext_rate_sum += val;
cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
(col / mb_step)] = val;
}
}
fclose(pfile);
int uniform_rate_sum = 0;
for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) {
for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) {
int rate_sum = 0;
for (int r = 0; r < block_step; r += mb_step) {
for (int c = 0; c < block_step; c += mb_step) {
const int mi_row = row + r;
const int mi_col = col + c;
rate_sum += cpi->prep_rate_estimates[(mi_row / mb_step) *
cpi->frame_info.mi_cols +
(mi_col / mb_step)];
}
}
uniform_rate_sum += rate_sum;
}
}
const double scale = uniform_rate_sum / ext_rate_sum;
cpi->ext_rate_scale = scale;
}
void av1_set_mb_wiener_variance(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const SequenceHeader *const seq_params = cm->seq_params;
if (aom_realloc_frame_buffer(
&cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x,
seq_params->subsampling_y, seq_params->use_highbitdepth,
cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
NULL, cpi->image_pyramid_levels, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td);
cpi->norm_wiener_variance = 0;
MACROBLOCK *x = &cpi->td.mb;
MACROBLOCKD *xd = &x->e_mbd;
// xd->mi needs to be setup since it is used in av1_frame_init_quantizer.
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
MB_MODE_INFO *mbmi_ptr = &mbmi;
xd->mi = &mbmi_ptr;
cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level;
av1_frame_init_quantizer(cpi);
double sum_rec_distortion = 0.0;
double sum_est_rate = 0.0;
MultiThreadInfo *const mt_info = &cpi->mt_info;
const int num_workers =
AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers);
AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt;
intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read_dummy;
intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write_dummy;
// Calculate differential contrast for each block for the entire image.
// TODO(chengchen): properly accumulate the distortion and rate in
// av1_calc_mb_wiener_var_mt(). Until then, call calc_mb_wiener_var() if
// auto_intra_tools_off is true.
if (num_workers > 1 && !cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) {
intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read;
intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write;
av1_calc_mb_wiener_var_mt(cpi, num_workers, &sum_rec_distortion,
&sum_est_rate);
} else {
calc_mb_wiener_var(cpi, &sum_rec_distortion, &sum_est_rate);
}
// Determine whether to turn off several intra coding tools.
automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate);
// Read external rate distribution and use it to guide delta quantization
if (cpi->oxcf.enable_rate_guide_deltaq) ext_rate_guided_quantization(cpi);
const BLOCK_SIZE norm_block_size = cm->seq_params->sb_size;
cpi->norm_wiener_variance = estimate_wiener_var_norm(cpi, norm_block_size);
const int norm_step = mi_size_wide[norm_block_size];
double sb_wiener_log = 0;
double sb_count = 0;
for (int its_cnt = 0; its_cnt < 2; ++its_cnt) {
sb_wiener_log = 0;
sb_count = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols;
mi_col += norm_step) {
int sb_wiener_var =
get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col);
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(
1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col));
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
if (beta < 1 / min_max_scale) continue;
sb_wiener_var = (int)(cpi->norm_wiener_variance / beta);
int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col);
int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col);
double scaled_satd = (double)satd / sqrt((double)sse);
sb_wiener_log += scaled_satd * log(sb_wiener_var);
sb_count += scaled_satd;
}
}
if (sb_count > 0)
cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count));
cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance);
}
// Set the pointer to null since mbmi is only allocated inside this function.
xd->mi = NULL;
aom_free_frame_buffer(&cm->cur_frame->buf);
av1_dealloc_mb_wiener_var_pred_buf(&cpi->td);
}
static int get_rate_guided_quantizer(AV1_COMP *const cpi, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
// Calculation uses 8x8.
const int mb_step = mi_size_wide[cpi->weber_bsize];
// Accumulate to 16x16
const int block_step = mi_size_wide[BLOCK_16X16];
double sb_rate_hific = 0.0;
double sb_rate_uniform = 0.0;
for (int row = mi_row; row < mi_row + mi_size_wide[bsize];
row += block_step) {
for (int col = mi_col; col < mi_col + mi_size_high[bsize];
col += block_step) {
sb_rate_hific +=
cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols +
(col / mb_step)];
for (int r = 0; r < block_step; r += mb_step) {
for (int c = 0; c < block_step; c += mb_step) {
const int this_row = row + r;
const int this_col = col + c;
sb_rate_uniform +=
cpi->prep_rate_estimates[(this_row / mb_step) *
cpi->frame_info.mi_cols +
(this_col / mb_step)];
}
}
}
}
sb_rate_hific *= cpi->ext_rate_scale;
const double weight = 1.0;
const double rate_diff =
weight * (sb_rate_hific - sb_rate_uniform) / sb_rate_uniform;
double scale = pow(2, rate_diff);
scale = scale * scale;
double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
scale = 1.0 / AOMMIN(1.0 / scale, min_max_scale);
AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
int offset =
av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, scale);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
const int max_offset = delta_q_info->delta_q_res * 10;
offset = AOMMIN(offset, max_offset - 1);
offset = AOMMAX(offset, -max_offset + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
int av1_get_sbq_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
if (cpi->oxcf.enable_rate_guide_deltaq) {
return get_rate_guided_quantizer(cpi, bsize, mi_row, mi_col);
}
AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col);
int offset = 0;
double beta = (double)cpi->norm_wiener_variance / sb_wiener_var;
double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col));
beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale);
// Cap beta such that the delta q value is not much far away from the base q.
beta = AOMMIN(beta, 4);
beta = AOMMAX(beta, 0.25);
offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
if (cpi->mb_delta_q) return;
CHECK_MEM_ERROR(cm, cpi->mb_delta_q,
aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols,
sizeof(*cpi->mb_delta_q)));
}
#if CONFIG_TFLITE
static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows,
int bit_depth, uint8_t *y_buffer, int y_stride,
float *predicts0, float *predicts1) {
// Create the model and interpreter options.
TfLiteModel *model =
TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize);
if (model == NULL) return 1;
TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate();
TfLiteInterpreterOptionsSetNumThreads(options, 2);
if (options == NULL) {
TfLiteModelDelete(model);
return 1;
}
// Create the interpreter.
TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options);
if (interpreter == NULL) {
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Allocate tensors and populate the input tensor data.
TfLiteInterpreterAllocateTensors(interpreter);
TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
if (input_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
size_t input_size = TfLiteTensorByteSize(input_tensor);
float *input_data = aom_calloc(input_size, 1);
if (input_data == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int row_offset = (row * num_mi_h) << 2;
const int col_offset = (col * num_mi_w) << 2;
uint8_t *buf = y_buffer + row_offset * y_stride + col_offset;
int r = row_offset, pos = 0;
const float base = (float)((1 << bit_depth) - 1);
while (r < row_offset + (num_mi_h << 2)) {
for (int c = 0; c < (num_mi_w << 2); ++c) {
input_data[pos++] = bit_depth > 8
? (float)*CONVERT_TO_SHORTPTR(buf + c) / base
: (float)*(buf + c) / base;
}
buf += y_stride;
++r;
}
TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size);
// Execute inference.
if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
// Extract the output tensor data.
const TfLiteTensor *output_tensor =
TfLiteInterpreterGetOutputTensor(interpreter, 0);
if (output_tensor == NULL) {
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
return 1;
}
size_t output_size = TfLiteTensorByteSize(output_tensor);
float output_data[2];
TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size);
predicts0[row * num_cols + col] = output_data[0];
predicts1[row * num_cols + col] = output_data[1];
}
}
// Dispose of the model and interpreter objects.
TfLiteInterpreterDelete(interpreter);
TfLiteInterpreterOptionsDelete(options);
TfLiteModelDelete(model);
aom_free(input_data);
return 0;
}
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const uint32_t bit_depth = cpi->td.mb.e_mbd.bd;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
// TODO(sdeng): fit a better model_1; disable it at this time.
float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f;
CHECK_MEM_ERROR(cm, mb_delta_q0,
aom_calloc(num_rows * num_cols, sizeof(float)));
CHECK_MEM_ERROR(cm, mb_delta_q1,
aom_calloc(num_rows * num_cols, sizeof(float)));
if (model_predict(block_size, num_cols, num_rows, bit_depth, y_buffer,
y_stride, mb_delta_q0, mb_delta_q1)) {
aom_internal_error(cm->error, AOM_CODEC_ERROR,
"Failed to call TFlite functions.");
}
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
delta_q_avg0 += mb_delta_q0[index];
}
}
delta_q_avg0 /= (float)(num_rows * num_cols);
float scaling_factor;
const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ;
if (cq_level < delta_q_avg0) {
scaling_factor = cq_level / delta_q_avg0;
} else {
scaling_factor = 1.0f - (cq_level - delta_q_avg0) / (1.0f - delta_q_avg0);
}
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
cpi->mb_delta_q[index] =
RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ *
scaling_factor * (mb_delta_q0[index] - delta_q_avg0));
}
}
aom_free(mb_delta_q0);
aom_free(mb_delta_q1);
}
#else // !CONFIG_TFLITE
void av1_set_mb_ur_variance(AV1_COMP *cpi) {
const AV1_COMMON *cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
uint8_t *y_buffer = cpi->source->y_buffer;
const int y_stride = cpi->source->y_stride;
const int block_size = cpi->common.seq_params->sb_size;
const int num_mi_w = mi_size_wide[block_size];
const int num_mi_h = mi_size_high[block_size];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h;
int *mb_delta_q[2];
CHECK_MEM_ERROR(cm, mb_delta_q[0],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0])));
CHECK_MEM_ERROR(cm, mb_delta_q[1],
aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1])));
// Approximates the model change between current version (Spet 2021) and the
// baseline (July 2021).
const double model_change[] = { 3.0, 3.0 };
// The following parameters are fitted from user labeled data.
const double a[] = { -24.50 * 4.0, -17.20 * 4.0 };
const double b[] = { 0.004898, 0.003093 };
const double c[] = { (29.932 + model_change[0]) * 4.0,
(42.100 + model_change[1]) * 4.0 };
int delta_q_avg[2] = { 0, 0 };
// Loop through each SB block.
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
double var = 0.0, num_of_var = 0.0;
const int index = row * num_cols + col;
// Loop through each 8x8 block.
for (int mi_row = row * num_mi_h;
mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h;
mi_row += 2) {
for (int mi_col = col * num_mi_w;
mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w;
mi_col += 2) {
struct buf_2d buf;
const int row_offset_y = mi_row << 2;
const int col_offset_y = mi_col << 2;
buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y;
buf.stride = y_stride;
unsigned int block_variance;
block_variance = av1_get_perpixel_variance_facade(
cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y);
block_variance = AOMMAX(block_variance, 1);
var += log((double)block_variance);
num_of_var += 1.0;
}
}
var = exp(var / num_of_var);
mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]);
mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]);
delta_q_avg[0] += mb_delta_q[0][index];
delta_q_avg[1] += mb_delta_q[1][index];
}
}
delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols));
delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols));
int model_idx;
double scaling_factor;
const int cq_level = cpi->oxcf.rc_cfg.cq_level;
if (cq_level < delta_q_avg[0]) {
model_idx = 0;
scaling_factor = (double)cq_level / delta_q_avg[0];
} else if (cq_level < delta_q_avg[1]) {
model_idx = 2;
scaling_factor =
(double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]);
} else {
model_idx = 1;
scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]);
}
const double new_delta_q_avg =
delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]);
for (int row = 0; row < num_rows; ++row) {
for (int col = 0; col < num_cols; ++col) {
const int index = row * num_cols + col;
if (model_idx == 2) {
const double delta_q =
mb_delta_q[0][index] +
scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]);
cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength /
100.0 * (delta_q - new_delta_q_avg));
} else {
cpi->mb_delta_q[index] = RINT(
(double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor *
(mb_delta_q[model_idx][index] - delta_q_avg[model_idx]));
}
}
}
aom_free(mb_delta_q[0]);
aom_free(mb_delta_q[1]);
}
#endif
int av1_get_sbq_user_rating_based(AV1_COMP *const cpi, int mi_row, int mi_col) {
const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
const CommonModeInfoParams *const mi_params = &cpi->common.mi_params;
AV1_COMMON *const cm = &cpi->common;
const int base_qindex = cm->quant_params.base_qindex;
if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex;
const int num_mi_w = mi_size_wide[bsize];
const int num_mi_h = mi_size_high[bsize];
const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w;
const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w);
const int delta_q = cpi->mb_delta_q[index];
int qindex = base_qindex + delta_q;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ + 1);
return qindex;
}
|