summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/highbd_temporal_filter_neon.c
blob: 88e176f56c2ca531b780cf43258e2010f6db8d05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * Copyright (c) 2023, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <arm_neon.h>

#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"

static INLINE void get_squared_error(
    const uint16_t *frame1, const uint32_t stride1, const uint16_t *frame2,
    const uint32_t stride2, const uint32_t block_width,
    const uint32_t block_height, uint32_t *frame_sse,
    const unsigned int dst_stride) {
  uint32_t *dst = frame_sse;

  uint32_t i = 0;
  do {
    uint32_t j = 0;
    do {
      uint16x8_t s = vld1q_u16(frame1 + i * stride1 + j);
      uint16x8_t r = vld1q_u16(frame2 + i * stride2 + j);

      uint16x8_t abs_diff = vabdq_u16(s, r);
      uint32x4_t sse_lo =
          vmull_u16(vget_low_u16(abs_diff), vget_low_u16(abs_diff));
      uint32x4_t sse_hi =
          vmull_u16(vget_high_u16(abs_diff), vget_high_u16(abs_diff));

      vst1q_u32(dst + j, sse_lo);
      vst1q_u32(dst + j + 4, sse_hi);

      j += 8;
    } while (j < block_width);

    dst += dst_stride;
    i++;
  } while (i < block_height);
}

static uint32_t sum_kernel5x5_mask_single(const uint32x4_t vsrc[5][2],
                                          const uint32x4_t mask_single) {
  uint32x4_t vsums = vmulq_u32(vsrc[0][0], mask_single);
  vsums = vmlaq_u32(vsums, vsrc[1][0], mask_single);
  vsums = vmlaq_u32(vsums, vsrc[2][0], mask_single);
  vsums = vmlaq_u32(vsums, vsrc[3][0], mask_single);
  vsums = vmlaq_u32(vsums, vsrc[4][0], mask_single);
  return horizontal_add_u32x4(vsums);
}

static uint32x4_t sum_kernel5x5_mask_double(const uint32x4_t vsrc[5][2],
                                            const uint32x4_t mask1,
                                            const uint32x4_t mask2) {
  uint32x4_t vsums = vmulq_u32(vsrc[0][0], mask1);
  vsums = vmlaq_u32(vsums, vsrc[1][0], mask1);
  vsums = vmlaq_u32(vsums, vsrc[2][0], mask1);
  vsums = vmlaq_u32(vsums, vsrc[3][0], mask1);
  vsums = vmlaq_u32(vsums, vsrc[4][0], mask1);
  vsums = vmlaq_u32(vsums, vsrc[0][1], mask2);
  vsums = vmlaq_u32(vsums, vsrc[1][1], mask2);
  vsums = vmlaq_u32(vsums, vsrc[2][1], mask2);
  vsums = vmlaq_u32(vsums, vsrc[3][1], mask2);
  vsums = vmlaq_u32(vsums, vsrc[4][1], mask2);
  return vsums;
}

static void highbd_apply_temporal_filter(
    const uint16_t *frame, const unsigned int stride,
    const uint32_t block_width, const uint32_t block_height,
    const int *subblock_mses, unsigned int *accumulator, uint16_t *count,
    const uint32_t *frame_sse, const uint32_t frame_sse_stride,
    const uint32_t *luma_sse_sum, const double inv_num_ref_pixels,
    const double decay_factor, const double inv_factor,
    const double weight_factor, const double *d_factor, int tf_wgt_calc_lvl,
    int bd) {
  assert(((block_width == 16) || (block_width == 32)) &&
         ((block_height == 16) || (block_height == 32)));

  uint32_t acc_5x5_neon[BH][BW] = { 0 };
  const int half_window = TF_WINDOW_LENGTH >> 1;

  uint32x4_t vsrc[5][2] = { 0 };
  const uint32x4_t k0000 = vdupq_n_u32(0);
  const uint32x4_t k1111 = vdupq_n_u32(1);
  const uint32_t k3110_u32[4] = { 0, 1, 1, 3 };
  const uint32_t k2111_u32[4] = { 1, 1, 1, 2 };
  const uint32_t k1112_u32[4] = { 2, 1, 1, 1 };
  const uint32_t k0113_u32[4] = { 3, 1, 1, 0 };
  const uint32x4_t k3110 = vld1q_u32(k3110_u32);
  const uint32x4_t k2111 = vld1q_u32(k2111_u32);
  const uint32x4_t k1112 = vld1q_u32(k1112_u32);
  const uint32x4_t k0113 = vld1q_u32(k0113_u32);

  uint32x4_t vmask1[4], vmask2[4];
  vmask1[0] = k1111;
  vmask2[0] = vextq_u32(k1111, k0000, 3);
  vmask1[1] = vextq_u32(k0000, k1111, 3);
  vmask2[1] = vextq_u32(k1111, k0000, 2);
  vmask1[2] = vextq_u32(k0000, k1111, 2);
  vmask2[2] = vextq_u32(k1111, k0000, 1);
  vmask1[3] = vextq_u32(k0000, k1111, 1);
  vmask2[3] = k1111;

  uint32_t row = 0;
  do {
    uint32_t col = 0;
    const uint32_t *src = frame_sse + row * frame_sse_stride;
    if (row == 0) {
      vsrc[2][0] = vld1q_u32(src);
      vsrc[3][0] = vld1q_u32(src + frame_sse_stride);
      vsrc[4][0] = vld1q_u32(src + 2 * frame_sse_stride);

      // First 2 rows of the 5x5 matrix are padded from the 1st.
      vsrc[0][0] = vsrc[2][0];
      vsrc[1][0] = vsrc[2][0];
    } else if (row == 1) {
      vsrc[1][0] = vld1q_u32(src - frame_sse_stride);
      vsrc[2][0] = vld1q_u32(src);
      vsrc[3][0] = vld1q_u32(src + frame_sse_stride);
      vsrc[4][0] = vld1q_u32(src + 2 * frame_sse_stride);

      // First row of the 5x5 matrix are padded from the 1st.
      vsrc[0][0] = vsrc[1][0];
    } else if (row == block_height - 2) {
      vsrc[0][0] = vld1q_u32(src - 2 * frame_sse_stride);
      vsrc[1][0] = vld1q_u32(src - frame_sse_stride);
      vsrc[2][0] = vld1q_u32(src);
      vsrc[3][0] = vld1q_u32(src + frame_sse_stride);

      // Last row of the 5x5 matrix are padded from the one before.
      vsrc[4][0] = vsrc[3][0];
    } else if (row == block_height - 1) {
      vsrc[0][0] = vld1q_u32(src - 2 * frame_sse_stride);
      vsrc[1][0] = vld1q_u32(src - frame_sse_stride);
      vsrc[2][0] = vld1q_u32(src);

      // Last 2 rows of the 5x5 matrix are padded from the 3rd.
      vsrc[3][0] = vsrc[2][0];
      vsrc[4][0] = vsrc[2][0];
    } else {
      vsrc[0][0] = vld1q_u32(src - 2 * frame_sse_stride);
      vsrc[1][0] = vld1q_u32(src - frame_sse_stride);
      vsrc[2][0] = vld1q_u32(src);
      vsrc[3][0] = vld1q_u32(src + frame_sse_stride);
      vsrc[4][0] = vld1q_u32(src + 2 * frame_sse_stride);
    }

    acc_5x5_neon[row][0] = sum_kernel5x5_mask_single(vsrc, k0113);
    acc_5x5_neon[row][1] = sum_kernel5x5_mask_single(vsrc, k1112);

    col += 4;
    src += 4;
    // Traverse 4 columns at a time
    do {
      if (row == 0) {
        vsrc[2][1] = vld1q_u32(src);
        vsrc[3][1] = vld1q_u32(src + frame_sse_stride);
        vsrc[4][1] = vld1q_u32(src + 2 * frame_sse_stride);

        // First 2 rows of the 5x5 matrix are padded from the 1st.
        vsrc[0][1] = vsrc[2][1];
        vsrc[1][1] = vsrc[2][1];
      } else if (row == 1) {
        vsrc[1][1] = vld1q_u32(src - frame_sse_stride);
        vsrc[2][1] = vld1q_u32(src);
        vsrc[3][1] = vld1q_u32(src + frame_sse_stride);
        vsrc[4][1] = vld1q_u32(src + 2 * frame_sse_stride);

        // First row of the 5x5 matrix are padded from the 1st.
        vsrc[0][1] = vsrc[1][1];
      } else if (row == block_height - 2) {
        vsrc[0][1] = vld1q_u32(src - 2 * frame_sse_stride);
        vsrc[1][1] = vld1q_u32(src - frame_sse_stride);
        vsrc[2][1] = vld1q_u32(src);
        vsrc[3][1] = vld1q_u32(src + frame_sse_stride);

        // Last row of the 5x5 matrix are padded from the one before.
        vsrc[4][1] = vsrc[3][1];
      } else if (row == block_height - 1) {
        vsrc[0][1] = vld1q_u32(src - 2 * frame_sse_stride);
        vsrc[1][1] = vld1q_u32(src - frame_sse_stride);
        vsrc[2][1] = vld1q_u32(src);

        // Last 2 rows of the 5x5 matrix are padded from the 3rd.
        vsrc[3][1] = vsrc[2][1];
        vsrc[4][1] = vsrc[2][1];
      } else {
        vsrc[0][1] = vld1q_u32(src - 2 * frame_sse_stride);
        vsrc[1][1] = vld1q_u32(src - frame_sse_stride);
        vsrc[2][1] = vld1q_u32(src);
        vsrc[3][1] = vld1q_u32(src + frame_sse_stride);
        vsrc[4][1] = vld1q_u32(src + 2 * frame_sse_stride);
      }

      uint32x4_t sums[4];
      sums[0] = sum_kernel5x5_mask_double(vsrc, vmask1[0], vmask2[0]);
      sums[1] = sum_kernel5x5_mask_double(vsrc, vmask1[1], vmask2[1]);
      sums[2] = sum_kernel5x5_mask_double(vsrc, vmask1[2], vmask2[2]);
      sums[3] = sum_kernel5x5_mask_double(vsrc, vmask1[3], vmask2[3]);
      vst1q_u32(&acc_5x5_neon[row][col - half_window],
                horizontal_add_4d_u32x4(sums));

      vsrc[0][0] = vsrc[0][1];
      vsrc[1][0] = vsrc[1][1];
      vsrc[2][0] = vsrc[2][1];
      vsrc[3][0] = vsrc[3][1];
      vsrc[4][0] = vsrc[4][1];

      src += 4;
      col += 4;
    } while (col <= block_width - 4);

    acc_5x5_neon[row][col - half_window] =
        sum_kernel5x5_mask_single(vsrc, k2111);
    acc_5x5_neon[row][col - half_window + 1] =
        sum_kernel5x5_mask_single(vsrc, k3110);

    row++;
  } while (row < block_height);

  // Perform filtering.
  if (tf_wgt_calc_lvl == 0) {
    for (unsigned int i = 0, k = 0; i < block_height; i++) {
      for (unsigned int j = 0; j < block_width; j++, k++) {
        const int pixel_value = frame[i * stride + j];
        // Scale down the difference for high bit depth input.
        const uint32_t diff_sse =
            (acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j]) >> ((bd - 8) * 2);

        const double window_error = diff_sse * inv_num_ref_pixels;
        const int subblock_idx =
            (i >= block_height / 2) * 2 + (j >= block_width / 2);
        const double block_error = (double)subblock_mses[subblock_idx];
        const double combined_error =
            weight_factor * window_error + block_error * inv_factor;
        // Compute filter weight.
        double scaled_error =
            combined_error * d_factor[subblock_idx] * decay_factor;
        scaled_error = AOMMIN(scaled_error, 7);
        const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
        accumulator[k] += weight * pixel_value;
        count[k] += weight;
      }
    }
  } else {
    for (unsigned int i = 0, k = 0; i < block_height; i++) {
      for (unsigned int j = 0; j < block_width; j++, k++) {
        const int pixel_value = frame[i * stride + j];
        // Scale down the difference for high bit depth input.
        const uint32_t diff_sse =
            (acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j]) >> ((bd - 8) * 2);

        const double window_error = diff_sse * inv_num_ref_pixels;
        const int subblock_idx =
            (i >= block_height / 2) * 2 + (j >= block_width / 2);
        const double block_error = (double)subblock_mses[subblock_idx];
        const double combined_error =
            weight_factor * window_error + block_error * inv_factor;
        // Compute filter weight.
        double scaled_error =
            combined_error * d_factor[subblock_idx] * decay_factor;
        scaled_error = AOMMIN(scaled_error, 7);
        const float fweight =
            approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
        const int weight = iroundpf(fweight);
        accumulator[k] += weight * pixel_value;
        count[k] += weight;
      }
    }
  }
}

void av1_highbd_apply_temporal_filter_neon(
    const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
    const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
    const int num_planes, const double *noise_levels, const MV *subblock_mvs,
    const int *subblock_mses, const int q_factor, const int filter_strength,
    int tf_wgt_calc_lvl, const uint8_t *pred8, uint32_t *accum,
    uint16_t *count) {
  const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
  assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with Neon!");
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
  (void)is_high_bitdepth;
  assert(is_high_bitdepth);

  // Block information.
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  // Frame information.
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  const int min_frame_size = AOMMIN(frame_height, frame_width);
  // Variables to simplify combined error calculation.
  const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
                                   TF_SEARCH_ERROR_NORM_WEIGHT);
  const double weight_factor =
      (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
  // Adjust filtering based on q.
  // Larger q -> stronger filtering -> larger weight.
  // Smaller q -> weaker filtering -> smaller weight.
  double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
  q_decay = CLIP(q_decay, 1e-5, 1);
  if (q_factor >= TF_QINDEX_CUTOFF) {
    // Max q_factor is 255, therefore the upper bound of q_decay is 8.
    // We do not need a clip here.
    q_decay = 0.5 * pow((double)q_factor / 64, 2);
  }
  // Smaller strength -> smaller filtering weight.
  double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
  s_decay = CLIP(s_decay, 1e-5, 1);
  double d_factor[4] = { 0 };
  uint32_t frame_sse[BW * BH] = { 0 };
  uint32_t luma_sse_sum[BW * BH] = { 0 };
  uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);

  for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
    // Larger motion vector -> smaller filtering weight.
    const MV mv = subblock_mvs[subblock_idx];
    const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
    double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
    distance_threshold = AOMMAX(distance_threshold, 1);
    d_factor[subblock_idx] = distance / distance_threshold;
    d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
  }

  // Handle planes in sequence.
  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
    const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
    const uint32_t frame_stride =
        frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
    const uint32_t frame_sse_stride = plane_w;
    const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;

    const uint16_t *ref =
        CONVERT_TO_SHORTPTR(frame_to_filter->buffers[plane]) + frame_offset;
    const int ss_x_shift =
        mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
    const int ss_y_shift =
        mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
    const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
                               ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
    const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
    // Larger noise -> larger filtering weight.
    const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
    // Decay factors for non-local mean approach.
    const double decay_factor = 1 / (n_decay * q_decay * s_decay);

    // Filter U-plane and V-plane using Y-plane. This is because motion
    // search is only done on Y-plane, so the information from Y-plane
    // will be more accurate. The luma sse sum is reused in both chroma
    // planes.
    if (plane == AOM_PLANE_U) {
      for (unsigned int i = 0; i < plane_h; i++) {
        for (unsigned int j = 0; j < plane_w; j++) {
          for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
            for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
              const int yy = (i << ss_y_shift) + ii;  // Y-coord on Y-plane.
              const int xx = (j << ss_x_shift) + jj;  // X-coord on Y-plane.
              const int ww = frame_sse_stride
                             << ss_x_shift;  // Width of Y-plane.
              luma_sse_sum[i * BW + j] += frame_sse[yy * ww + xx];
            }
          }
        }
      }
    }
    get_squared_error(ref, frame_stride, pred + plane_offset, plane_w, plane_w,
                      plane_h, frame_sse, frame_sse_stride);

    highbd_apply_temporal_filter(
        pred + plane_offset, plane_w, plane_w, plane_h, subblock_mses,
        accum + plane_offset, count + plane_offset, frame_sse, frame_sse_stride,
        luma_sse_sum, inv_num_ref_pixels, decay_factor, inv_factor,
        weight_factor, d_factor, tf_wgt_calc_lvl, mbd->bd);

    plane_offset += plane_h * plane_w;
  }
}

double av1_highbd_estimate_noise_from_single_plane_neon(const uint16_t *src,
                                                        int height, int width,
                                                        int stride,
                                                        int bitdepth,
                                                        int edge_thresh) {
  uint16x8_t thresh = vdupq_n_u16(edge_thresh);
  uint64x2_t acc = vdupq_n_u64(0);
  // Count is in theory positive as it counts the number of times we're under
  // the threshold, but it will be counted negatively in order to make best use
  // of the vclt instruction, which sets every bit of a lane to 1 when the
  // condition is true.
  int32x4_t count = vdupq_n_s32(0);
  int final_count = 0;
  uint64_t final_acc = 0;
  const uint16_t *src_start = src + stride + 1;
  int h = 1;

  do {
    int w = 1;
    const uint16_t *src_ptr = src_start;

    while (w <= (width - 1) - 8) {
      uint16x8_t mat[3][3];
      mat[0][0] = vld1q_u16(src_ptr - stride - 1);
      mat[0][1] = vld1q_u16(src_ptr - stride);
      mat[0][2] = vld1q_u16(src_ptr - stride + 1);
      mat[1][0] = vld1q_u16(src_ptr - 1);
      mat[1][1] = vld1q_u16(src_ptr);
      mat[1][2] = vld1q_u16(src_ptr + 1);
      mat[2][0] = vld1q_u16(src_ptr + stride - 1);
      mat[2][1] = vld1q_u16(src_ptr + stride);
      mat[2][2] = vld1q_u16(src_ptr + stride + 1);

      // Compute Sobel gradients.
      uint16x8_t gxa = vaddq_u16(mat[0][0], mat[2][0]);
      uint16x8_t gxb = vaddq_u16(mat[0][2], mat[2][2]);
      gxa = vaddq_u16(gxa, vaddq_u16(mat[1][0], mat[1][0]));
      gxb = vaddq_u16(gxb, vaddq_u16(mat[1][2], mat[1][2]));

      uint16x8_t gya = vaddq_u16(mat[0][0], mat[0][2]);
      uint16x8_t gyb = vaddq_u16(mat[2][0], mat[2][2]);
      gya = vaddq_u16(gya, vaddq_u16(mat[0][1], mat[0][1]));
      gyb = vaddq_u16(gyb, vaddq_u16(mat[2][1], mat[2][1]));

      uint16x8_t ga = vabaq_u16(vabdq_u16(gxa, gxb), gya, gyb);
      ga = vrshlq_u16(ga, vdupq_n_s16(8 - bitdepth));

      // Check which vector elements are under the threshold. The Laplacian is
      // then unconditionnally computed and we accumulate zeros if we're not
      // under the threshold. This is much faster than using an if statement.
      uint16x8_t thresh_u16 = vcltq_u16(ga, thresh);

      uint16x8_t center = vshlq_n_u16(mat[1][1], 2);

      uint16x8_t adj0 = vaddq_u16(mat[0][1], mat[2][1]);
      uint16x8_t adj1 = vaddq_u16(mat[1][0], mat[1][2]);
      uint16x8_t adj = vaddq_u16(adj0, adj1);
      adj = vaddq_u16(adj, adj);

      uint16x8_t diag0 = vaddq_u16(mat[0][0], mat[0][2]);
      uint16x8_t diag1 = vaddq_u16(mat[2][0], mat[2][2]);
      uint16x8_t diag = vaddq_u16(diag0, diag1);

      uint16x8_t v = vabdq_u16(vaddq_u16(center, diag), adj);
      v = vandq_u16(vrshlq_u16(v, vdupq_n_s16(8 - bitdepth)), thresh_u16);
      uint32x4_t v_u32 = vpaddlq_u16(v);

      acc = vpadalq_u32(acc, v_u32);
      // Add -1 for each lane where the gradient is under the threshold.
      count = vpadalq_s16(count, vreinterpretq_s16_u16(thresh_u16));

      w += 8;
      src_ptr += 8;
    }

    if (w <= (width - 1) - 4) {
      uint16x4_t mat[3][3];
      mat[0][0] = vld1_u16(src_ptr - stride - 1);
      mat[0][1] = vld1_u16(src_ptr - stride);
      mat[0][2] = vld1_u16(src_ptr - stride + 1);
      mat[1][0] = vld1_u16(src_ptr - 1);
      mat[1][1] = vld1_u16(src_ptr);
      mat[1][2] = vld1_u16(src_ptr + 1);
      mat[2][0] = vld1_u16(src_ptr + stride - 1);
      mat[2][1] = vld1_u16(src_ptr + stride);
      mat[2][2] = vld1_u16(src_ptr + stride + 1);

      // Compute Sobel gradients.
      uint16x4_t gxa = vadd_u16(mat[0][0], mat[2][0]);
      uint16x4_t gxb = vadd_u16(mat[0][2], mat[2][2]);
      gxa = vadd_u16(gxa, vadd_u16(mat[1][0], mat[1][0]));
      gxb = vadd_u16(gxb, vadd_u16(mat[1][2], mat[1][2]));

      uint16x4_t gya = vadd_u16(mat[0][0], mat[0][2]);
      uint16x4_t gyb = vadd_u16(mat[2][0], mat[2][2]);
      gya = vadd_u16(gya, vadd_u16(mat[0][1], mat[0][1]));
      gyb = vadd_u16(gyb, vadd_u16(mat[2][1], mat[2][1]));

      uint16x4_t ga = vaba_u16(vabd_u16(gxa, gxb), gya, gyb);
      ga = vrshl_u16(ga, vdup_n_s16(8 - bitdepth));

      // Check which vector elements are under the threshold. The Laplacian is
      // then unconditionnally computed and we accumulate zeros if we're not
      // under the threshold. This is much faster than using an if statement.
      uint16x4_t thresh_u16 = vclt_u16(ga, vget_low_u16(thresh));

      uint16x4_t center = vshl_n_u16(mat[1][1], 2);

      uint16x4_t adj0 = vadd_u16(mat[0][1], mat[2][1]);
      uint16x4_t adj1 = vadd_u16(mat[1][0], mat[1][2]);
      uint16x4_t adj = vadd_u16(adj0, adj1);
      adj = vadd_u16(adj, adj);

      uint16x4_t diag0 = vadd_u16(mat[0][0], mat[0][2]);
      uint16x4_t diag1 = vadd_u16(mat[2][0], mat[2][2]);
      uint16x4_t diag = vadd_u16(diag0, diag1);

      uint16x4_t v = vabd_u16(vadd_u16(center, diag), adj);
      v = vand_u16(v, thresh_u16);
      uint32x4_t v_u32 = vmovl_u16(vrshl_u16(v, vdup_n_s16(8 - bitdepth)));

      acc = vpadalq_u32(acc, v_u32);
      // Add -1 for each lane where the gradient is under the threshold.
      count = vaddw_s16(count, vreinterpret_s16_u16(thresh_u16));

      w += 4;
      src_ptr += 4;
    }

    while (w < width - 1) {
      int mat[3][3];
      mat[0][0] = *(src_ptr - stride - 1);
      mat[0][1] = *(src_ptr - stride);
      mat[0][2] = *(src_ptr - stride + 1);
      mat[1][0] = *(src_ptr - 1);
      mat[1][1] = *(src_ptr);
      mat[1][2] = *(src_ptr + 1);
      mat[2][0] = *(src_ptr + stride - 1);
      mat[2][1] = *(src_ptr + stride);
      mat[2][2] = *(src_ptr + stride + 1);

      // Compute Sobel gradients.
      const int gx = (mat[0][0] - mat[0][2]) + (mat[2][0] - mat[2][2]) +
                     2 * (mat[1][0] - mat[1][2]);
      const int gy = (mat[0][0] - mat[2][0]) + (mat[0][2] - mat[2][2]) +
                     2 * (mat[0][1] - mat[2][1]);
      const int ga = ROUND_POWER_OF_TWO(abs(gx) + abs(gy), bitdepth - 8);

      // Accumulate Laplacian.
      const int is_under = ga < edge_thresh;
      const int v = 4 * mat[1][1] -
                    2 * (mat[0][1] + mat[2][1] + mat[1][0] + mat[1][2]) +
                    (mat[0][0] + mat[0][2] + mat[2][0] + mat[2][2]);
      final_acc += ROUND_POWER_OF_TWO(abs(v), bitdepth - 8) * is_under;
      final_count += is_under;

      src_ptr++;
      w++;
    }
    src_start += stride;
  } while (++h < height - 1);

  // We counted negatively, so subtract to get the final value.
  final_count -= horizontal_add_s32x4(count);
  final_acc += horizontal_add_u64x2(acc);
  return (final_count < 16)
             ? -1.0
             : (double)final_acc / (6 * final_count) * SQRT_PI_BY_2;
}