summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/ml_neon.c
blob: be6ddfd7635ad785dd338043c9636cd39418c5d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdbool.h>
#include <assert.h>
#include <arm_neon.h>

#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/encoder/ml.h"

static void nn_activate8(float32x4_t *out_h, float32x4_t *out_l,
                         const float32x4_t *zero) {
  *out_h = vmaxq_f32(*out_h, *zero);
  *out_l = vmaxq_f32(*out_l, *zero);
}

static void nn_activate4(float32x4_t *x, const float32x4_t *zero) {
  *x = vmaxq_f32(*x, *zero);
}

#define CLAMP_0(x) (x = x > 0 ? x : 0)

static void nn_propagate_8to1(int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes, bool output_layer) {
  const float32x4_t zero = vdupq_n_f32(0);
  float32x4_t vadd = zero;
  float total = *layer_bias;

  for (int in = 0; in < num_inputs; in += 8) {
    const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]);
    const float32x4_t inputs_l = vld1q_f32(&inputs[in]);

    const float32x4_t weights_h = vld1q_f32(&weights[in + 4]);
    const float32x4_t weights_l = vld1q_f32(&weights[in]);

    vadd = vmlaq_f32(vadd, inputs_h, weights_h);
    vadd = vmlaq_f32(vadd, inputs_l, weights_l);
  }
#if AOM_ARCH_AARCH64
  total += vaddvq_f32(vadd);
#else
  float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd));
  vadd_lo = vpadd_f32(vadd_lo, vadd_lo);
  total += vget_lane_f32(vadd_lo, 0);
#endif

  if (!output_layer) CLAMP_0(total);
  *output_nodes = total;
}

static void nn_propagate_xto1(int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes) {
  float32x4_t vadd = vdupq_n_f32(0);

  float total = *layer_bias;
  int j = num_inputs;
  int in = 0;
  while (j > 7) {
    const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]);
    const float32x4_t inputs_l = vld1q_f32(&inputs[in]);

    const float32x4_t weights_h = vld1q_f32(&weights[in + 4]);
    const float32x4_t weights_l = vld1q_f32(&weights[in]);

    vadd = vmlaq_f32(vadd, inputs_h, weights_h);
    vadd = vmlaq_f32(vadd, inputs_l, weights_l);
    in += 8;
    j -= 8;
  }

#if AOM_ARCH_AARCH64
  total += vaddvq_f32(vadd);

#else
  float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd));
  vadd_lo = vpadd_f32(vadd_lo, vadd_lo);
  total += vget_lane_f32(vadd_lo, 0);
#endif
  for (; in < num_inputs; in++) total += weights[in] * inputs[in];

  *output_nodes = CLAMP_0(total);
}

static void nn_propagate_xsto1(int num_inputs, const float *const inputs,
                               const float *const weights,
                               const float *layer_bias,
                               float *const output_nodes) {
  float total = *layer_bias;
#if AOM_ARCH_AARCH64
  const float32x4_t v_inputs = vld1q_f32(inputs);
  const float32x4_t v_weights = vld1q_f32(weights);
  const float32x4_t vadd = vmulq_f32(v_inputs, v_weights);
  total += vaddvq_f32(vadd);
  int in = 4;
#else
  int in = 0;
#endif
  for (; in < num_inputs; in++) total += weights[in] * inputs[in];

  *output_nodes = CLAMP_0(total);
}

static void nn_propagate_4to1(int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes, bool output_layer) {
  const float32x4_t zero = vdupq_n_f32(0);
  float32x4_t vadd = zero;
  float total = *layer_bias;

  for (int in = 0; in < num_inputs; in += 4) {
    const float32x4_t v_inputs = vld1q_f32(&inputs[in]);
    const float32x4_t v_weights = vld1q_f32(&weights[in]);
    vadd = vmlaq_f32(vadd, v_inputs, v_weights);
  }

#if AOM_ARCH_AARCH64
  total += vaddvq_f32(vadd);
#else
  float32x2_t vadd_lo = vadd_f32(vget_low_f32(vadd), vget_high_f32(vadd));
  vadd_lo = vpadd_f32(vadd_lo, vadd_lo);
  total += vget_lane_f32(vadd_lo, 0);
#endif

  if (!output_layer) CLAMP_0(total);
  *output_nodes = total;
}

static void nn_propagate_4to4(int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes, bool output_layer) {
  float32x4_t outputs = vld1q_f32(layer_bias);
  const float32x4_t zero = vdupq_n_f32(0);

  float32x4_t mul0[2] = { zero, zero };
  float32x4_t mul1[2] = { zero, zero };
  for (int in = 0; in < num_inputs; in += 4) {
    const float32x4_t v_input = vld1q_f32(&inputs[in]);

    for (int i = 0; i < 2; i++) {
      const float32x4_t weight0 = vld1q_f32(&weights[in + 2 * i * num_inputs]);
      mul0[i] = vmlaq_f32(mul0[i], weight0, v_input);
      const float32x4_t weight1 =
          vld1q_f32(&weights[in + (2 * i + 1) * num_inputs]);
      mul1[i] = vmlaq_f32(mul1[i], weight1, v_input);
    }
  }
  for (int i = 0; i < 2; i++)
#if AOM_ARCH_AARCH64
    mul0[i] = vpaddq_f32(mul0[i], mul1[i]);
  const float32x4_t hh = vpaddq_f32(mul0[0], mul0[1]);
#else
    mul0[i] =
        vcombine_f32(vpadd_f32(vget_low_f32(mul0[i]), vget_high_f32(mul0[i])),
                     vpadd_f32(vget_low_f32(mul1[i]), vget_high_f32(mul1[i])));
  const float32x4_t hh =
      vcombine_f32(vpadd_f32(vget_low_f32(mul0[0]), vget_high_f32(mul0[0])),
                   vpadd_f32(vget_low_f32(mul0[1]), vget_high_f32(mul0[1])));
#endif

  outputs = vaddq_f32(outputs, hh);
  if (!output_layer) nn_activate4(&outputs, &zero);
  vst1q_f32(output_nodes, outputs);
}

static void nn_propagate_4to8(const int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes, bool output_layer) {
  float32x4_t out_h = vld1q_f32(&layer_bias[4]);
  float32x4_t out_l = vld1q_f32(layer_bias);
  const float32x4_t zero = vdupq_n_f32(0);
  float32x4_t mul0[4] = { zero, zero, zero, zero };
  float32x4_t mul1[4] = { zero, zero, zero, zero };

  for (int in = 0; in < num_inputs; in += 4) {
    const float32x4_t v_input = vld1q_f32(&inputs[in]);
    for (int i = 0; i < 4; i++) {
      const float32x4_t weight0 = vld1q_f32(&weights[in + 2 * i * num_inputs]);
      const float32x4_t weight1 =
          vld1q_f32(&weights[in + (2 * i + 1) * num_inputs]);
      mul0[i] = vmlaq_f32(mul0[i], v_input, weight0);
      mul1[i] = vmlaq_f32(mul1[i], v_input, weight1);
    }
  }
  for (int i = 0; i < 4; i++)
#if AOM_ARCH_AARCH64
    mul0[i] = vpaddq_f32(mul0[i], mul1[i]);
  const float32x4_t hh0 = vpaddq_f32(mul0[0], mul0[1]);
  const float32x4_t hh1 = vpaddq_f32(mul0[2], mul0[3]);
#else
    mul0[i] =
        vcombine_f32(vpadd_f32(vget_low_f32(mul0[i]), vget_high_f32(mul0[i])),
                     vpadd_f32(vget_low_f32(mul1[i]), vget_high_f32(mul1[i])));
  const float32x4_t hh0 =
      vcombine_f32(vpadd_f32(vget_low_f32(mul0[0]), vget_high_f32(mul0[0])),
                   vpadd_f32(vget_low_f32(mul0[1]), vget_high_f32(mul0[1])));
  const float32x4_t hh1 =
      vcombine_f32(vpadd_f32(vget_low_f32(mul0[2]), vget_high_f32(mul0[2])),
                   vpadd_f32(vget_low_f32(mul0[3]), vget_high_f32(mul0[3])));
#endif

  out_h = vaddq_f32(out_h, hh1);
  out_l = vaddq_f32(out_l, hh0);

  if (!output_layer) nn_activate8(&out_h, &out_l, &zero);
  vst1q_f32(&output_nodes[4], out_h);
  vst1q_f32(output_nodes, out_l);
}

static void nn_propagate_8to4(const int num_inputs, const float *const inputs,
                              const float *const weights,
                              const float *layer_bias,
                              float *const output_nodes, bool output_layer) {
  float32x4_t outputs = vld1q_f32(layer_bias);
  const float32x4_t zero = vdupq_n_f32(0);
  float32x4_t add[4] = { zero, zero, zero, zero };
  for (int in = 0; in < num_inputs; in += 8) {
    const float32x4_t inputs_l = vld1q_f32(&inputs[in]);
    const float32x4_t inputs_h = vld1q_f32(&inputs[in + 4]);

    for (int i = 0; i < 4; i++) {
      const float32x4_t weight_l = vld1q_f32(&weights[in + i * num_inputs]);
      const float32x4_t weight_h = vld1q_f32(&weights[in + i * num_inputs + 4]);
      add[i] = vmlaq_f32(add[i], inputs_l, weight_l);
      add[i] = vmlaq_f32(add[i], inputs_h, weight_h);
    }
  }
#if AOM_ARCH_AARCH64
  const float32x4_t hadd_h = vpaddq_f32(add[2], add[3]);
  const float32x4_t hadd_l = vpaddq_f32(add[0], add[1]);
  const float32x4_t haddhadd = vpaddq_f32(hadd_l, hadd_h);
#else
  const float32x4_t hadd_h =
      vcombine_f32(vpadd_f32(vget_low_f32(add[2]), vget_high_f32(add[2])),
                   vpadd_f32(vget_low_f32(add[3]), vget_high_f32(add[3])));
  const float32x4_t hadd_l =
      vcombine_f32(vpadd_f32(vget_low_f32(add[0]), vget_high_f32(add[0])),
                   vpadd_f32(vget_low_f32(add[1]), vget_high_f32(add[1])));
  const float32x4_t haddhadd =
      vcombine_f32(vpadd_f32(vget_low_f32(hadd_l), vget_high_f32(hadd_l)),
                   vpadd_f32(vget_low_f32(hadd_h), vget_high_f32(hadd_h)));
#endif

  outputs = vaddq_f32(outputs, haddhadd);
  if (!output_layer) nn_activate4(&outputs, &zero);
  vst1q_f32(output_nodes, outputs);
}

// Calculate prediction based on the given input features and neural net config.
// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
// layer.
void av1_nn_predict_neon(const float *input_nodes,
                         const NN_CONFIG *const nn_config, int reduce_prec,
                         float *const output) {
  float buf[2][NN_MAX_NODES_PER_LAYER];
  int buf_index = 0;
  int num_inputs = nn_config->num_inputs;
  // Hidden layers, except the final iteration is the output layer.
  for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) {
    const float *layer_weights = nn_config->weights[layer];
    const float *layer_bias = nn_config->bias[layer];
    bool output_layer = (layer == nn_config->num_hidden_layers);
    float *const output_nodes = output_layer ? output : buf[buf_index];
    const int num_outputs = output_layer ? nn_config->num_outputs
                                         : nn_config->num_hidden_nodes[layer];

    if (num_inputs % 4 == 0 && num_outputs % 8 == 0) {
      for (int out = 0; out < num_outputs; out += 8) {
        nn_propagate_4to8(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out], output_layer);
      }
    } else if (num_inputs % 8 == 0 && num_outputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out += 4) {
        nn_propagate_8to4(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out], output_layer);
      }
    } else if (num_inputs % 4 == 0 && num_outputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out += 4) {
        nn_propagate_4to4(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out], output_layer);
      }
    } else if (num_inputs % 8 == 0) {
      for (int out = 0; out < num_outputs; out++) {
        nn_propagate_8to1(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out], output_layer);
      }
    } else if (num_inputs % 4 == 0) {
      for (int out = 0; out < num_outputs; out++) {
        nn_propagate_4to1(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out], output_layer);
      }
    } else if (num_inputs > 8) {
      for (int out = 0; out < num_outputs; out++) {
        nn_propagate_xto1(num_inputs, input_nodes,
                          &layer_weights[out * num_inputs], &layer_bias[out],
                          &output_nodes[out]);
      }
    } else if (num_inputs >= 4) {
      for (int out = 0; out < num_outputs; out++) {
        nn_propagate_xsto1(num_inputs, input_nodes,
                           &layer_weights[out * num_inputs], &layer_bias[out],
                           &output_nodes[out]);
      }
    } else {
      for (int node = 0; node < num_outputs; ++node) {
        float val = layer_bias[node];
        for (int i = 0; i < num_inputs; ++i)
          val += layer_weights[node * num_inputs + i] * input_nodes[i];
        // ReLU as activation function.
        val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX().
        output_nodes[node] = val;
      }
    }
    input_nodes = output_nodes;
    num_inputs = num_outputs;
    buf_index = 1 - buf_index;
  }
  if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
}