summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/pickrst_neon.c
blob: 2e4761f9a4dab8ffeaa7e0ea547b5eea9f461ae8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <arm_neon.h>

#include "config/aom_config.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/arm/sum_neon.h"
#include "av1/common/restoration.h"
#include "av1/encoder/arm/neon/pickrst_neon.h"
#include "av1/encoder/pickrst.h"

int64_t av1_lowbd_pixel_proj_error_neon(
    const uint8_t *src, int width, int height, int src_stride,
    const uint8_t *dat, int dat_stride, int32_t *flt0, int flt0_stride,
    int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
  int64_t sse = 0;
  int64x2_t sse_s64 = vdupq_n_s64(0);

  if (params->r[0] > 0 && params->r[1] > 0) {
    int32x2_t xq_v = vld1_s32(xq);
    int32x2_t xq_sum_v = vshl_n_s32(vpadd_s32(xq_v, xq_v), SGRPROJ_RST_BITS);

    do {
      int j = 0;
      int32x4_t sse_s32 = vdupq_n_s32(0);

      do {
        const uint8x8_t d = vld1_u8(&dat[j]);
        const uint8x8_t s = vld1_u8(&src[j]);
        int32x4_t flt0_0 = vld1q_s32(&flt0[j]);
        int32x4_t flt0_1 = vld1q_s32(&flt0[j + 4]);
        int32x4_t flt1_0 = vld1q_s32(&flt1[j]);
        int32x4_t flt1_1 = vld1q_s32(&flt1[j + 4]);

        int32x4_t offset =
            vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1));
        int32x4_t v0 = vmlaq_lane_s32(offset, flt0_0, xq_v, 0);
        int32x4_t v1 = vmlaq_lane_s32(offset, flt0_1, xq_v, 0);

        v0 = vmlaq_lane_s32(v0, flt1_0, xq_v, 1);
        v1 = vmlaq_lane_s32(v1, flt1_1, xq_v, 1);

        int16x8_t d_s16 = vreinterpretq_s16_u16(vmovl_u8(d));
        v0 = vmlsl_lane_s16(v0, vget_low_s16(d_s16),
                            vreinterpret_s16_s32(xq_sum_v), 0);
        v1 = vmlsl_lane_s16(v1, vget_high_s16(d_s16),
                            vreinterpret_s16_s32(xq_sum_v), 0);

        int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
        int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);

        int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(d, s));
        int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1), diff);
        int16x4_t e_lo = vget_low_s16(e);
        int16x4_t e_hi = vget_high_s16(e);

        sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
        sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);

        j += 8;
      } while (j <= width - 8);

      for (int k = j; k < width; ++k) {
        int32_t u = (dat[k] << SGRPROJ_RST_BITS);
        int32_t v = (1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1)) +
                    xq[0] * flt0[k] + xq[1] * flt1[k] - u * (xq[0] + xq[1]);
        int32_t e =
            (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + dat[k] - src[k];
        sse += e * e;
      }

      sse_s64 = vpadalq_s32(sse_s64, sse_s32);

      dat += dat_stride;
      src += src_stride;
      flt0 += flt0_stride;
      flt1 += flt1_stride;
    } while (--height != 0);
  } else if (params->r[0] > 0 || params->r[1] > 0) {
    int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
    int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
    int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
    int32x2_t xq_v = vdup_n_s32(xq_active);

    do {
      int32x4_t sse_s32 = vdupq_n_s32(0);
      int j = 0;

      do {
        const uint8x8_t d = vld1_u8(&dat[j]);
        const uint8x8_t s = vld1_u8(&src[j]);
        int32x4_t flt_0 = vld1q_s32(&flt[j]);
        int32x4_t flt_1 = vld1q_s32(&flt[j + 4]);
        int16x8_t d_s16 =
            vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));

        int32x4_t sub_0 = vsubw_s16(flt_0, vget_low_s16(d_s16));
        int32x4_t sub_1 = vsubw_s16(flt_1, vget_high_s16(d_s16));

        int32x4_t offset =
            vdupq_n_s32(1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1));
        int32x4_t v0 = vmlaq_lane_s32(offset, sub_0, xq_v, 0);
        int32x4_t v1 = vmlaq_lane_s32(offset, sub_1, xq_v, 0);

        int16x4_t vr0 = vshrn_n_s32(v0, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);
        int16x4_t vr1 = vshrn_n_s32(v1, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS);

        int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(d, s));
        int16x8_t e = vaddq_s16(vcombine_s16(vr0, vr1), diff);
        int16x4_t e_lo = vget_low_s16(e);
        int16x4_t e_hi = vget_high_s16(e);

        sse_s32 = vmlal_s16(sse_s32, e_lo, e_lo);
        sse_s32 = vmlal_s16(sse_s32, e_hi, e_hi);

        j += 8;
      } while (j <= width - 8);

      for (int k = j; k < width; ++k) {
        int32_t u = dat[k] << SGRPROJ_RST_BITS;
        int32_t v = xq_active * (flt[k] - u);
        int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) +
                    dat[k] - src[k];
        sse += e * e;
      }

      sse_s64 = vpadalq_s32(sse_s64, sse_s32);

      dat += dat_stride;
      src += src_stride;
      flt += flt_stride;
    } while (--height != 0);
  } else {
    uint32x4_t sse_s32 = vdupq_n_u32(0);

    do {
      int j = 0;

      do {
        const uint8x16_t d = vld1q_u8(&dat[j]);
        const uint8x16_t s = vld1q_u8(&src[j]);

        uint8x16_t diff = vabdq_u8(d, s);
        uint8x8_t diff_lo = vget_low_u8(diff);
        uint8x8_t diff_hi = vget_high_u8(diff);

        sse_s32 = vpadalq_u16(sse_s32, vmull_u8(diff_lo, diff_lo));
        sse_s32 = vpadalq_u16(sse_s32, vmull_u8(diff_hi, diff_hi));

        j += 16;
      } while (j <= width - 16);

      for (int k = j; k < width; ++k) {
        int32_t e = dat[k] - src[k];
        sse += e * e;
      }

      dat += dat_stride;
      src += src_stride;
    } while (--height != 0);

    sse_s64 = vreinterpretq_s64_u64(vpaddlq_u32(sse_s32));
  }

  sse += horizontal_add_s64x2(sse_s64);
  return sse;
}

// We can accumulate up to 65536 8-bit multiplication results in 32-bit. We are
// processing 2 pixels at a time, so the accumulator max can be as high as 32768
// for the compute stats.
#define STAT_ACCUMULATOR_MAX 32768

static INLINE uint8x8_t tbl2(uint8x16_t a, uint8x16_t b, uint8x8_t idx) {
#if AOM_ARCH_AARCH64
  uint8x16x2_t table = { { a, b } };
  return vqtbl2_u8(table, idx);
#else
  uint8x8x4_t table = { { vget_low_u8(a), vget_high_u8(a), vget_low_u8(b),
                          vget_high_u8(b) } };
  return vtbl4_u8(table, idx);
#endif
}

static INLINE uint8x16_t tbl2q(uint8x16_t a, uint8x16_t b, uint8x16_t idx) {
#if AOM_ARCH_AARCH64
  uint8x16x2_t table = { { a, b } };
  return vqtbl2q_u8(table, idx);
#else
  uint8x8x4_t table = { { vget_low_u8(a), vget_high_u8(a), vget_low_u8(b),
                          vget_high_u8(b) } };
  return vcombine_u8(vtbl4_u8(table, vget_low_u8(idx)),
                     vtbl4_u8(table, vget_high_u8(idx)));
#endif
}

// The M matrix is accumulated in STAT_ACCUMULATOR_MAX steps to speed-up the
// computation. This function computes the final M from the accumulated
// (src_s64) and the residual parts (src_s32). It also transposes the result as
// the output needs to be column-major.
static INLINE void acc_transpose_M(int64_t *dst, const int64_t *src_s64,
                                   const int32_t *src_s32, const int wiener_win,
                                   int scale) {
  for (int i = 0; i < wiener_win; ++i) {
    for (int j = 0; j < wiener_win; ++j) {
      int tr_idx = j * wiener_win + i;
      *dst++ += (int64_t)(src_s64[tr_idx] + src_s32[tr_idx]) * scale;
    }
  }
}

// The resulting H is a column-major matrix accumulated from the transposed
// (column-major) samples of the filter kernel (5x5 or 7x7) viewed as a single
// vector. For the 7x7 filter case: H(49x49) = [49 x 1] x [1 x 49]. This
// function transforms back to the originally expected format (double
// transpose). The H matrix is accumulated in STAT_ACCUMULATOR_MAX steps to
// speed-up the computation. This function computes the final H from the
// accumulated (src_s64) and the residual parts (src_s32). The computed H is
// only an upper triangle matrix, this function also fills the lower triangle of
// the resulting matrix.
static void update_H(int64_t *dst, const int64_t *src_s64,
                     const int32_t *src_s32, const int wiener_win, int stride,
                     int scale) {
  // For a simplified theoretical 3x3 case where `wiener_win` is 3 and
  // `wiener_win2` is 9, the M matrix is 3x3:
  // 0, 3, 6
  // 1, 4, 7
  // 2, 5, 8
  //
  // This is viewed as a vector to compute H (9x9) by vector outer product:
  // 0, 3, 6, 1, 4, 7, 2, 5, 8
  //
  // Double transpose and upper triangle remapping for 3x3 -> 9x9 case:
  // 0,    3,    6,    1,    4,    7,    2,    5,    8,
  // 3,   30,   33,   12,   31,   34,   21,   32,   35,
  // 6,   33,   60,   15,   42,   61,   24,   51,   62,
  // 1,   12,   15,   10,   13,   16,   11,   14,   17,
  // 4,   31,   42,   13,   40,   43,   22,   41,   44,
  // 7,   34,   61,   16,   43,   70,   25,   52,   71,
  // 2,   21,   24,   11,   22,   25,   20,   23,   26,
  // 5,   32,   51,   14,   41,   52,   23,   50,   53,
  // 8,   35,   62,   17,   44,   71,   26,   53,   80,
  const int wiener_win2 = wiener_win * wiener_win;

  // Loop through the indices according to the remapping above, along the
  // columns:
  // 0, wiener_win, 2 * wiener_win, ..., 1, 1 + 2 * wiener_win, ...,
  // wiener_win - 1, wiener_win - 1 + wiener_win, ...
  // For the 3x3 case `j` will be: 0, 3, 6, 1, 4, 7, 2, 5, 8.
  for (int i = 0; i < wiener_win; ++i) {
    for (int j = i; j < wiener_win2; j += wiener_win) {
      // These two inner loops are the same as the two outer loops, but running
      // along rows instead of columns. For the 3x3 case `l` will be:
      // 0, 3, 6, 1, 4, 7, 2, 5, 8.
      for (int k = 0; k < wiener_win; ++k) {
        for (int l = k; l < wiener_win2; l += wiener_win) {
          // The nominal double transpose indexing would be:
          // int idx = stride * j + l;
          // However we need the upper-triangle indices, it is easy with some
          // min/max operations.
          int tr_idx = stride * AOMMIN(j, l) + AOMMAX(j, l);

          // Resulting matrix is filled by combining the 64-bit and the residual
          // 32-bit matrices together with scaling.
          *dst++ += (int64_t)(src_s64[tr_idx] + src_s32[tr_idx]) * scale;
        }
      }
    }
  }
}

// Load 7x7 matrix into 3 and a half 128-bit vectors from consecutive rows, the
// last load address is offset to prevent out-of-bounds access.
static INLINE void load_and_pack_u8_8x7(uint8x16_t dst[4], const uint8_t *src,
                                        ptrdiff_t stride) {
  dst[0] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
  src += 2 * stride;
  dst[1] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
  src += 2 * stride;
  dst[2] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
  src += 2 * stride;
  dst[3] = vcombine_u8(vld1_u8(src - 1), vdup_n_u8(0));
}

static INLINE void compute_stats_win7_neon(const uint8_t *dgd,
                                           const uint8_t *src, int width,
                                           int height, int dgd_stride,
                                           int src_stride, int avg, int64_t *M,
                                           int64_t *H, int downsample_factor) {
  // Matrix names are capitalized to help readability.
  DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_ALIGN3]);
  DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_ALIGN3]);
  DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_ALIGN3]);
  DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_ALIGN3]);
  DECLARE_ALIGNED(64, int32_t, H_s32[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);
  DECLARE_ALIGNED(64, int64_t, H_s64[WIENER_WIN2 * WIENER_WIN2_ALIGN2]);

  memset(M_s32, 0, sizeof(M_s32));
  memset(M_s64, 0, sizeof(M_s64));
  memset(H_s32, 0, sizeof(H_s32));
  memset(H_s64, 0, sizeof(H_s64));

  // Look-up tables to create 8x6 matrix with consecutive elements from two 7x7
  // matrices.
  // clang-format off
  DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats7[96]) = {
    0,  1,  2,  3,  4,  5,  6,  8,  9, 10, 11, 12, 13, 14, 16, 17,
    2,  3,  4,  5,  6,  8,  9, 10, 11, 12, 13, 14, 16, 17, 18, 19,
    4,  5,  6,  8,  9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22,
    1,  2,  3,  4,  5,  6,  7,  9, 10, 11, 12, 13, 14, 15, 17, 18,
    3,  4,  5,  6,  7,  9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20,
    5,  6,  7,  9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23,
  };
  // clang-format on

  const uint8x16_t lut0 = vld1q_u8(shuffle_stats7 + 0);
  const uint8x16_t lut1 = vld1q_u8(shuffle_stats7 + 16);
  const uint8x16_t lut2 = vld1q_u8(shuffle_stats7 + 32);
  const uint8x16_t lut3 = vld1q_u8(shuffle_stats7 + 48);
  const uint8x16_t lut4 = vld1q_u8(shuffle_stats7 + 64);
  const uint8x16_t lut5 = vld1q_u8(shuffle_stats7 + 80);

  int acc_cnt = STAT_ACCUMULATOR_MAX;
  const int src_next = downsample_factor * src_stride - width;
  const int dgd_next = downsample_factor * dgd_stride - width;
  const uint8x8_t avg_u8 = vdup_n_u8(avg);

  do {
    int j = width;
    while (j >= 2) {
      // Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
      // middle 6x7 elements being shared.
      uint8x16_t dgd_rows[4];
      load_and_pack_u8_8x7(dgd_rows, dgd, dgd_stride);

      const uint8_t *dgd_ptr = dgd + dgd_stride * 6;
      dgd += 2;

      // Re-arrange (and widen) the combined 8x7 matrix to have the 2 whole 7x7
      // matrices (1 for each of the 2 pixels) separated into distinct
      // int16x8_t[6] arrays. These arrays contain 48 elements of the 49 (7x7).
      // Compute `dgd - avg` for both buffers. Each DGD_AVG buffer contains 49
      // consecutive elements.
      int16x8_t dgd_avg0[6];
      int16x8_t dgd_avg1[6];
      uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
      uint8x16_t dgd_shuf3 = tbl2q(dgd_rows[0], dgd_rows[1], lut3);

      dgd_avg0[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
      dgd_avg0[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
      dgd_avg1[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf3), avg_u8));
      dgd_avg1[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf3), avg_u8));

      vst1q_s16(DGD_AVG0, dgd_avg0[0]);
      vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
      vst1q_s16(DGD_AVG1, dgd_avg1[0]);
      vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);

      uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[1], dgd_rows[2], lut1);
      uint8x16_t dgd_shuf4 = tbl2q(dgd_rows[1], dgd_rows[2], lut4);

      dgd_avg0[2] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
      dgd_avg0[3] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
      dgd_avg1[2] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf4), avg_u8));
      dgd_avg1[3] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf4), avg_u8));

      vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
      vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);
      vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);
      vst1q_s16(DGD_AVG1 + 24, dgd_avg1[3]);

      uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[2], dgd_rows[3], lut2);
      uint8x16_t dgd_shuf5 = tbl2q(dgd_rows[2], dgd_rows[3], lut5);

      dgd_avg0[4] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
      dgd_avg0[5] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));
      dgd_avg1[4] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf5), avg_u8));
      dgd_avg1[5] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf5), avg_u8));

      vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
      vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);
      vst1q_s16(DGD_AVG1 + 32, dgd_avg1[4]);
      vst1q_s16(DGD_AVG1 + 40, dgd_avg1[5]);

      // The remaining last (49th) elements of `dgd - avg`.
      DGD_AVG0[48] = dgd_ptr[6] - avg;
      DGD_AVG1[48] = dgd_ptr[7] - avg;

      // Accumulate into row-major variant of matrix M (cross-correlation) for 2
      // output pixels at a time. M is of size 7 * 7. It needs to be filled such
      // that multiplying one element from src with each element of a row of the
      // wiener window will fill one column of M. However this is not very
      // convenient in terms of memory access, as it means we do contiguous
      // loads of dgd but strided stores to M. As a result, we use an
      // intermediate matrix M_s32 which is instead filled such that one row of
      // the wiener window gives one row of M_s32. Once fully computed, M_s32 is
      // then transposed to return M.
      int src_avg0 = *src++ - avg;
      int src_avg1 = *src++ - avg;
      int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
      int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
      update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
                       dgd_avg1[0]);
      update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
                       dgd_avg1[1]);
      update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
                       dgd_avg1[2]);
      update_M_2pixels(M_s32 + 24, src_avg0_s16, src_avg1_s16, dgd_avg0[3],
                       dgd_avg1[3]);
      update_M_2pixels(M_s32 + 32, src_avg0_s16, src_avg1_s16, dgd_avg0[4],
                       dgd_avg1[4]);
      update_M_2pixels(M_s32 + 40, src_avg0_s16, src_avg1_s16, dgd_avg0[5],
                       dgd_avg1[5]);

      // Last (49th) element of M_s32 can be computed as scalar more efficiently
      // for 2 output pixels.
      M_s32[48] += DGD_AVG0[48] * src_avg0 + DGD_AVG1[48] * src_avg1;

      // Start accumulating into row-major version of matrix H
      // (auto-covariance), it expects the DGD_AVG[01] matrices to also be
      // row-major. H is of size 49 * 49. It is filled by multiplying every pair
      // of elements of the wiener window together (vector outer product). Since
      // it is a symmetric matrix, we only compute the upper-right triangle, and
      // then copy it down to the lower-left later. The upper triangle is
      // covered by 4x4 tiles. The original algorithm assumes the M matrix is
      // column-major and the resulting H matrix is also expected to be
      // column-major. It is not efficient to work with column-major matrices,
      // so we accumulate into a row-major matrix H_s32. At the end of the
      // algorithm a double transpose transformation will convert H_s32 back to
      // the expected output layout.
      update_H_7x7_2pixels(H_s32, DGD_AVG0, DGD_AVG1);

      // The last element of the triangle of H_s32 matrix can be computed as a
      // scalar more efficiently.
      H_s32[48 * WIENER_WIN2_ALIGN2 + 48] +=
          DGD_AVG0[48] * DGD_AVG0[48] + DGD_AVG1[48] * DGD_AVG1[48];

      // Accumulate into 64-bit after STAT_ACCUMULATOR_MAX iterations to prevent
      // overflow.
      if (--acc_cnt == 0) {
        acc_cnt = STAT_ACCUMULATOR_MAX;

        accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_ALIGN2);

        // The widening accumulation is only needed for the upper triangle part
        // of the matrix.
        int64_t *lh = H_s64;
        int32_t *lh32 = H_s32;
        for (int k = 0; k < WIENER_WIN2; ++k) {
          // The widening accumulation is only run for the relevant parts
          // (upper-right triangle) in a row 4-element aligned.
          int k4 = k / 4 * 4;
          accumulate_and_clear(lh + k4, lh32 + k4, 48 - k4);

          // Last element of the row is computed separately.
          lh[48] += lh32[48];
          lh32[48] = 0;

          lh += WIENER_WIN2_ALIGN2;
          lh32 += WIENER_WIN2_ALIGN2;
        }
      }

      j -= 2;
    }

    // Computations for odd pixel in the row.
    if (width & 1) {
      // Load two adjacent, overlapping 7x7 matrices: a 8x7 matrix with the
      // middle 6x7 elements being shared.
      uint8x16_t dgd_rows[4];
      load_and_pack_u8_8x7(dgd_rows, dgd, dgd_stride);

      const uint8_t *dgd_ptr = dgd + dgd_stride * 6;
      ++dgd;

      // Re-arrange (and widen) the combined 8x7 matrix to have a whole 7x7
      // matrix tightly packed into a int16x8_t[6] array. This array contains
      // 48 elements of the 49 (7x7). Compute `dgd - avg` for the whole buffer.
      // The DGD_AVG buffer contains 49 consecutive elements.
      int16x8_t dgd_avg0[6];
      uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
      dgd_avg0[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
      dgd_avg0[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
      vst1q_s16(DGD_AVG0, dgd_avg0[0]);
      vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);

      uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[1], dgd_rows[2], lut1);
      dgd_avg0[2] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
      dgd_avg0[3] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
      vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
      vst1q_s16(DGD_AVG0 + 24, dgd_avg0[3]);

      uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[2], dgd_rows[3], lut2);
      dgd_avg0[4] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
      dgd_avg0[5] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));
      vst1q_s16(DGD_AVG0 + 32, dgd_avg0[4]);
      vst1q_s16(DGD_AVG0 + 40, dgd_avg0[5]);

      // The remaining last (49th) element of `dgd - avg`.
      DGD_AVG0[48] = dgd_ptr[6] - avg;

      // Accumulate into row-major order variant of matrix M (cross-correlation)
      // for 1 output pixel at a time. M is of size 7 * 7. It needs to be filled
      // such that multiplying one element from src with each element of a row
      // of the wiener window will fill one column of M. However this is not
      // very convenient in terms of memory access, as it means we do
      // contiguous loads of dgd but strided stores to M. As a result, we use an
      // intermediate matrix M_s32 which is instead filled such that one row of
      // the wiener window gives one row of M_s32. Once fully computed, M_s32 is
      // then transposed to return M.
      int src_avg0 = *src++ - avg;
      int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
      update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
      update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
      update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);
      update_M_1pixel(M_s32 + 24, src_avg0_s16, dgd_avg0[3]);
      update_M_1pixel(M_s32 + 32, src_avg0_s16, dgd_avg0[4]);
      update_M_1pixel(M_s32 + 40, src_avg0_s16, dgd_avg0[5]);

      // Last (49th) element of M_s32 can be computed as scalar more efficiently
      // for 1 output pixel.
      M_s32[48] += DGD_AVG0[48] * src_avg0;

      // Start accumulating into row-major order version of matrix H
      // (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
      // H is of size 49 * 49. It is filled by multiplying every pair of
      // elements of the wiener window together (vector outer product). Since it
      // is a symmetric matrix, we only compute the upper-right triangle, and
      // then copy it down to the lower-left later. The upper triangle is
      // covered by 4x4 tiles. The original algorithm assumes the M matrix is
      // column-major and the resulting H matrix is also expected to be
      // column-major. It is not efficient to work column-major matrices, so we
      // accumulate into a row-major matrix H_s32. At the end of the algorithm a
      // double transpose transformation will convert H_s32 back to the expected
      // output layout.
      update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_ALIGN2, 48);

      // The last element of the triangle of H_s32 matrix can be computed as
      // scalar more efficiently.
      H_s32[48 * WIENER_WIN2_ALIGN2 + 48] += DGD_AVG0[48] * DGD_AVG0[48];
    }

    src += src_next;
    dgd += dgd_next;
  } while (--height != 0);

  acc_transpose_M(M, M_s64, M_s32, WIENER_WIN, downsample_factor);

  update_H(H, H_s64, H_s32, WIENER_WIN, WIENER_WIN2_ALIGN2, downsample_factor);
}

// Load 5x5 matrix into 2 and a half 128-bit vectors from consecutive rows, the
// last load address is offset to prevent out-of-bounds access.
static INLINE void load_and_pack_u8_6x5(uint8x16_t dst[3], const uint8_t *src,
                                        ptrdiff_t stride) {
  dst[0] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
  src += 2 * stride;
  dst[1] = vcombine_u8(vld1_u8(src), vld1_u8(src + stride));
  src += 2 * stride;
  dst[2] = vcombine_u8(vld1_u8(src - 3), vdup_n_u8(0));
}

static INLINE void compute_stats_win5_neon(const uint8_t *dgd,
                                           const uint8_t *src, int width,
                                           int height, int dgd_stride,
                                           int src_stride, int avg, int64_t *M,
                                           int64_t *H, int downsample_factor) {
  // Matrix names are capitalized to help readability.
  DECLARE_ALIGNED(64, int16_t, DGD_AVG0[WIENER_WIN2_REDUCED_ALIGN3]);
  DECLARE_ALIGNED(64, int16_t, DGD_AVG1[WIENER_WIN2_REDUCED_ALIGN3]);
  DECLARE_ALIGNED(64, int32_t, M_s32[WIENER_WIN2_REDUCED_ALIGN3]);
  DECLARE_ALIGNED(64, int64_t, M_s64[WIENER_WIN2_REDUCED_ALIGN3]);
  DECLARE_ALIGNED(64, int32_t,
                  H_s32[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);
  DECLARE_ALIGNED(64, int64_t,
                  H_s64[WIENER_WIN2_REDUCED * WIENER_WIN2_REDUCED_ALIGN2]);

  memset(M_s32, 0, sizeof(M_s32));
  memset(M_s64, 0, sizeof(M_s64));
  memset(H_s32, 0, sizeof(H_s32));
  memset(H_s64, 0, sizeof(H_s64));

  // Look-up tables to create 8x3 matrix with consecutive elements from two 5x5
  // matrices.
  // clang-format off
  DECLARE_ALIGNED(16, static const uint8_t, shuffle_stats5[48]) = {
    0,  1,  2,  3,  4,  8,  9, 10, 11, 12, 16, 17, 18, 19, 20, 24,
    1,  2,  3,  4,  5,  9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 25,
    9, 10, 11, 12, 19, 20, 21, 22, 10, 11, 12, 13, 20, 21, 22, 23,
  };
  // clang-format on

  const uint8x16_t lut0 = vld1q_u8(shuffle_stats5 + 0);
  const uint8x16_t lut1 = vld1q_u8(shuffle_stats5 + 16);
  const uint8x16_t lut2 = vld1q_u8(shuffle_stats5 + 32);

  int acc_cnt = STAT_ACCUMULATOR_MAX;
  const int src_next = downsample_factor * src_stride - width;
  const int dgd_next = downsample_factor * dgd_stride - width;
  const uint8x8_t avg_u8 = vdup_n_u8(avg);

  do {
    int j = width;
    while (j >= 2) {
      // Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
      // middle 4x5 elements being shared.
      uint8x16_t dgd_rows[3];
      load_and_pack_u8_6x5(dgd_rows, dgd, dgd_stride);

      const uint8_t *dgd_ptr = dgd + dgd_stride * 4;
      dgd += 2;

      // Re-arrange (and widen) the combined 6x5 matrix to have the 2 whole 5x5
      // matrices (1 for each of the 2 pixels) separated into distinct
      // int16x8_t[3] arrays. These arrays contain 24 elements of the 25 (5x5).
      // Compute `dgd - avg` for both buffers. Each DGD_AVG buffer contains 25
      // consecutive elements.
      int16x8_t dgd_avg0[3];
      int16x8_t dgd_avg1[3];
      uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
      uint8x16_t dgd_shuf1 = tbl2q(dgd_rows[0], dgd_rows[1], lut1);
      uint8x16_t dgd_shuf2 = tbl2q(dgd_rows[1], dgd_rows[2], lut2);

      dgd_avg0[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
      dgd_avg0[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
      dgd_avg0[2] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf2), avg_u8));
      dgd_avg1[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf1), avg_u8));
      dgd_avg1[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf1), avg_u8));
      dgd_avg1[2] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf2), avg_u8));

      vst1q_s16(DGD_AVG0 + 0, dgd_avg0[0]);
      vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
      vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);
      vst1q_s16(DGD_AVG1 + 0, dgd_avg1[0]);
      vst1q_s16(DGD_AVG1 + 8, dgd_avg1[1]);
      vst1q_s16(DGD_AVG1 + 16, dgd_avg1[2]);

      // The remaining last (25th) elements of `dgd - avg`.
      DGD_AVG0[24] = dgd_ptr[4] - avg;
      DGD_AVG1[24] = dgd_ptr[5] - avg;

      // Accumulate into row-major variant of matrix M (cross-correlation) for 2
      // output pixels at a time. M is of size 5 * 5. It needs to be filled such
      // that multiplying one element from src with each element of a row of the
      // wiener window will fill one column of M. However this is not very
      // convenient in terms of memory access, as it means we do contiguous
      // loads of dgd but strided stores to M. As a result, we use an
      // intermediate matrix M_s32 which is instead filled such that one row of
      // the wiener window gives one row of M_s32. Once fully computed, M_s32 is
      // then transposed to return M.
      int src_avg0 = *src++ - avg;
      int src_avg1 = *src++ - avg;
      int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
      int16x4_t src_avg1_s16 = vdup_n_s16(src_avg1);
      update_M_2pixels(M_s32 + 0, src_avg0_s16, src_avg1_s16, dgd_avg0[0],
                       dgd_avg1[0]);
      update_M_2pixels(M_s32 + 8, src_avg0_s16, src_avg1_s16, dgd_avg0[1],
                       dgd_avg1[1]);
      update_M_2pixels(M_s32 + 16, src_avg0_s16, src_avg1_s16, dgd_avg0[2],
                       dgd_avg1[2]);

      // Last (25th) element of M_s32 can be computed as scalar more efficiently
      // for 2 output pixels.
      M_s32[24] += DGD_AVG0[24] * src_avg0 + DGD_AVG1[24] * src_avg1;

      // Start accumulating into row-major version of matrix H
      // (auto-covariance), it expects the DGD_AVG[01] matrices to also be
      // row-major. H is of size 25 * 25. It is filled by multiplying every pair
      // of elements of the wiener window together (vector outer product). Since
      // it is a symmetric matrix, we only compute the upper-right triangle, and
      // then copy it down to the lower-left later. The upper triangle is
      // covered by 4x4 tiles. The original algorithm assumes the M matrix is
      // column-major and the resulting H matrix is also expected to be
      // column-major. It is not efficient to work with column-major matrices,
      // so we accumulate into a row-major matrix H_s32. At the end of the
      // algorithm a double transpose transformation will convert H_s32 back to
      // the expected output layout.
      update_H_5x5_2pixels(H_s32, DGD_AVG0, DGD_AVG1);

      // The last element of the triangle of H_s32 matrix can be computed as a
      // scalar more efficiently.
      H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
          DGD_AVG0[24] * DGD_AVG0[24] + DGD_AVG1[24] * DGD_AVG1[24];

      // Accumulate into 64-bit after STAT_ACCUMULATOR_MAX iterations to prevent
      // overflow.
      if (--acc_cnt == 0) {
        acc_cnt = STAT_ACCUMULATOR_MAX;

        accumulate_and_clear(M_s64, M_s32, WIENER_WIN2_REDUCED_ALIGN2);

        // The widening accumulation is only needed for the upper triangle part
        // of the matrix.
        int64_t *lh = H_s64;
        int32_t *lh32 = H_s32;
        for (int k = 0; k < WIENER_WIN2_REDUCED; ++k) {
          // The widening accumulation is only run for the relevant parts
          // (upper-right triangle) in a row 4-element aligned.
          int k4 = k / 4 * 4;
          accumulate_and_clear(lh + k4, lh32 + k4, 24 - k4);

          // Last element of the row is computed separately.
          lh[24] += lh32[24];
          lh32[24] = 0;

          lh += WIENER_WIN2_REDUCED_ALIGN2;
          lh32 += WIENER_WIN2_REDUCED_ALIGN2;
        }
      }

      j -= 2;
    }

    // Computations for odd pixel in the row.
    if (width & 1) {
      // Load two adjacent, overlapping 5x5 matrices: a 6x5 matrix with the
      // middle 4x5 elements being shared.
      uint8x16_t dgd_rows[3];
      load_and_pack_u8_6x5(dgd_rows, dgd, dgd_stride);

      const uint8_t *dgd_ptr = dgd + dgd_stride * 4;
      ++dgd;

      // Re-arrange (and widen) the combined 6x5 matrix to have a whole 5x5
      // matrix tightly packed into a int16x8_t[3] array. This array contains
      // 24 elements of the 25 (5x5). Compute `dgd - avg` for the whole buffer.
      // The DGD_AVG buffer contains 25 consecutive elements.
      int16x8_t dgd_avg0[3];
      uint8x16_t dgd_shuf0 = tbl2q(dgd_rows[0], dgd_rows[1], lut0);
      uint8x8_t dgd_shuf1 = tbl2(dgd_rows[1], dgd_rows[2], vget_low_u8(lut2));

      dgd_avg0[0] =
          vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(dgd_shuf0), avg_u8));
      dgd_avg0[1] =
          vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(dgd_shuf0), avg_u8));
      dgd_avg0[2] = vreinterpretq_s16_u16(vsubl_u8(dgd_shuf1, avg_u8));

      vst1q_s16(DGD_AVG0 + 0, dgd_avg0[0]);
      vst1q_s16(DGD_AVG0 + 8, dgd_avg0[1]);
      vst1q_s16(DGD_AVG0 + 16, dgd_avg0[2]);

      // The remaining last (25th) element of `dgd - avg`.
      DGD_AVG0[24] = dgd_ptr[4] - avg;

      // Accumulate into row-major order variant of matrix M (cross-correlation)
      // for 1 output pixel at a time. M is of size 5 * 5. It needs to be filled
      // such that multiplying one element from src with each element of a row
      // of the wiener window will fill one column of M. However this is not
      // very convenient in terms of memory access, as it means we do
      // contiguous loads of dgd but strided stores to M. As a result, we use an
      // intermediate matrix M_s32 which is instead filled such that one row of
      // the wiener window gives one row of M_s32. Once fully computed, M_s32 is
      // then transposed to return M.
      int src_avg0 = *src++ - avg;
      int16x4_t src_avg0_s16 = vdup_n_s16(src_avg0);
      update_M_1pixel(M_s32 + 0, src_avg0_s16, dgd_avg0[0]);
      update_M_1pixel(M_s32 + 8, src_avg0_s16, dgd_avg0[1]);
      update_M_1pixel(M_s32 + 16, src_avg0_s16, dgd_avg0[2]);

      // Last (25th) element of M_s32 can be computed as scalar more efficiently
      // for 1 output pixel.
      M_s32[24] += DGD_AVG0[24] * src_avg0;

      // Start accumulating into row-major order version of matrix H
      // (auto-covariance), it expects the DGD_AVG0 matrix to also be row-major.
      // H is of size 25 * 25. It is filled by multiplying every pair of
      // elements of the wiener window together (vector outer product). Since it
      // is a symmetric matrix, we only compute the upper-right triangle, and
      // then copy it down to the lower-left later. The upper triangle is
      // covered by 4x4 tiles. The original algorithm assumes the M matrix is
      // column-major and the resulting H matrix is also expected to be
      // column-major. It is not efficient to work column-major matrices, so we
      // accumulate into a row-major matrix H_s32. At the end of the algorithm a
      // double transpose transformation will convert H_s32 back to the expected
      // output layout.
      update_H_1pixel(H_s32, DGD_AVG0, WIENER_WIN2_REDUCED_ALIGN2, 24);

      // The last element of the triangle of H_s32 matrix can be computed as a
      // scalar more efficiently.
      H_s32[24 * WIENER_WIN2_REDUCED_ALIGN2 + 24] +=
          DGD_AVG0[24] * DGD_AVG0[24];
    }

    src += src_next;
    dgd += dgd_next;
  } while (--height != 0);

  acc_transpose_M(M, M_s64, M_s32, WIENER_WIN_REDUCED, downsample_factor);

  update_H(H, H_s64, H_s32, WIENER_WIN_REDUCED, WIENER_WIN2_REDUCED_ALIGN2,
           downsample_factor);
}

static INLINE uint8_t find_average_neon(const uint8_t *src, int src_stride,
                                        int width, int height) {
  uint64_t sum = 0;

  if (width >= 16) {
    int h = 0;
    // We can accumulate up to 257 8-bit values in a 16-bit value, given
    // that each 16-bit vector has 8 elements, that means we can process up to
    // int(257*8/width) rows before we need to widen to 32-bit vector
    // elements.
    int h_overflow = 257 * 8 / width;
    int h_limit = height > h_overflow ? h_overflow : height;
    uint32x4_t avg_u32 = vdupq_n_u32(0);
    do {
      uint16x8_t avg_u16 = vdupq_n_u16(0);
      do {
        int j = width;
        const uint8_t *src_ptr = src;
        do {
          uint8x16_t s = vld1q_u8(src_ptr);
          avg_u16 = vpadalq_u8(avg_u16, s);
          j -= 16;
          src_ptr += 16;
        } while (j >= 16);
        if (j >= 8) {
          uint8x8_t s = vld1_u8(src_ptr);
          avg_u16 = vaddw_u8(avg_u16, s);
          j -= 8;
          src_ptr += 8;
        }
        // Scalar tail case.
        while (j > 0) {
          sum += src[width - j];
          j--;
        }
        src += src_stride;
      } while (++h < h_limit);
      avg_u32 = vpadalq_u16(avg_u32, avg_u16);

      h_limit += h_overflow;
      h_limit = height > h_overflow ? h_overflow : height;
    } while (h < height);
    return (uint8_t)((horizontal_long_add_u32x4(avg_u32) + sum) /
                     (width * height));
  }
  if (width >= 8) {
    int h = 0;
    // We can accumulate up to 257 8-bit values in a 16-bit value, given
    // that each 16-bit vector has 4 elements, that means we can process up to
    // int(257*4/width) rows before we need to widen to 32-bit vector
    // elements.
    int h_overflow = 257 * 4 / width;
    int h_limit = height > h_overflow ? h_overflow : height;
    uint32x2_t avg_u32 = vdup_n_u32(0);
    do {
      uint16x4_t avg_u16 = vdup_n_u16(0);
      do {
        int j = width;
        const uint8_t *src_ptr = src;
        uint8x8_t s = vld1_u8(src_ptr);
        avg_u16 = vpadal_u8(avg_u16, s);
        j -= 8;
        src_ptr += 8;
        // Scalar tail case.
        while (j > 0) {
          sum += src[width - j];
          j--;
        }
        src += src_stride;
      } while (++h < h_limit);
      avg_u32 = vpadal_u16(avg_u32, avg_u16);

      h_limit += h_overflow;
      h_limit = height > h_overflow ? h_overflow : height;
    } while (h < height);
    return (uint8_t)((horizontal_long_add_u32x2(avg_u32) + sum) /
                     (width * height));
  }
  int i = height;
  do {
    int j = 0;
    do {
      sum += src[j];
    } while (++j < width);
    src += src_stride;
  } while (--i != 0);
  return (uint8_t)(sum / (width * height));
}

void av1_compute_stats_neon(int wiener_win, const uint8_t *dgd,
                            const uint8_t *src, int16_t *dgd_avg,
                            int16_t *src_avg, int h_start, int h_end,
                            int v_start, int v_end, int dgd_stride,
                            int src_stride, int64_t *M, int64_t *H,
                            int use_downsampled_wiener_stats) {
  assert(wiener_win == WIENER_WIN || wiener_win == WIENER_WIN_CHROMA);
  assert(WIENER_STATS_DOWNSAMPLE_FACTOR == 4);
  (void)dgd_avg;
  (void)src_avg;

  const int wiener_win2 = wiener_win * wiener_win;
  const int wiener_halfwin = wiener_win >> 1;
  const int width = h_end - h_start;
  const int height = v_end - v_start;

  const uint8_t *dgd_start = dgd + h_start + v_start * dgd_stride;
  const uint8_t *src_start = src + h_start + v_start * src_stride;

  // The wiener window will slide along the dgd frame, centered on each pixel.
  // For the top left pixel and all the pixels on the side of the frame this
  // means half of the window will be outside of the frame. As such the actual
  // buffer that we need to subtract the avg from will be 2 * wiener_halfwin
  // wider and 2 * wiener_halfwin higher than the original dgd buffer.
  const int vert_offset = v_start - wiener_halfwin;
  const int horiz_offset = h_start - wiener_halfwin;
  const uint8_t *dgd_win = dgd + horiz_offset + vert_offset * dgd_stride;

  uint8_t avg = find_average_neon(dgd_start, dgd_stride, width, height);

  // Since the height is not necessarily a multiple of the downsample factor,
  // the last line of src will be scaled according to how many rows remain.
  int downsample_factor =
      use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;

  int downsampled_height = height / downsample_factor;
  int downsample_remainder = height % downsample_factor;

  memset(M, 0, wiener_win2 * sizeof(*M));
  memset(H, 0, wiener_win2 * wiener_win2 * sizeof(*H));

  // Calculate the M and H matrices for the normal and downsampled cases.
  if (downsampled_height > 0) {
    if (wiener_win == WIENER_WIN) {
      compute_stats_win7_neon(dgd_win, src_start, width, downsampled_height,
                              dgd_stride, src_stride, avg, M, H,
                              downsample_factor);
    } else {
      compute_stats_win5_neon(dgd_win, src_start, width, downsampled_height,
                              dgd_stride, src_stride, avg, M, H,
                              downsample_factor);
    }
  }

  // Accumulate the remaining last rows in the downsampled case.
  if (downsample_remainder > 0) {
    int remainder_offset = height - downsample_remainder;
    if (wiener_win == WIENER_WIN) {
      compute_stats_win7_neon(dgd_win + remainder_offset * dgd_stride,
                              src_start + remainder_offset * src_stride, width,
                              1, dgd_stride, src_stride, avg, M, H,
                              downsample_remainder);
    } else {
      compute_stats_win5_neon(dgd_win + remainder_offset * dgd_stride,
                              src_start + remainder_offset * src_stride, width,
                              1, dgd_stride, src_stride, avg, M, H,
                              downsample_remainder);
    }
  }
}

static INLINE void calc_proj_params_r0_r1_neon(
    const uint8_t *src8, int width, int height, int src_stride,
    const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
    int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
  assert(width % 8 == 0);
  const int size = width * height;

  int64x2_t h00_lo = vdupq_n_s64(0);
  int64x2_t h00_hi = vdupq_n_s64(0);
  int64x2_t h11_lo = vdupq_n_s64(0);
  int64x2_t h11_hi = vdupq_n_s64(0);
  int64x2_t h01_lo = vdupq_n_s64(0);
  int64x2_t h01_hi = vdupq_n_s64(0);
  int64x2_t c0_lo = vdupq_n_s64(0);
  int64x2_t c0_hi = vdupq_n_s64(0);
  int64x2_t c1_lo = vdupq_n_s64(0);
  int64x2_t c1_hi = vdupq_n_s64(0);

  do {
    const uint8_t *src_ptr = src8;
    const uint8_t *dat_ptr = dat8;
    int32_t *flt0_ptr = flt0;
    int32_t *flt1_ptr = flt1;
    int w = width;

    do {
      uint8x8_t s = vld1_u8(src_ptr);
      uint8x8_t d = vld1_u8(dat_ptr);
      int32x4_t f0_lo = vld1q_s32(flt0_ptr);
      int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);
      int32x4_t f1_lo = vld1q_s32(flt1_ptr);
      int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);

      int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
      int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));

      int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
      int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
      f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
      f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));
      f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
      f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));

      h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
      h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
      h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
      h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));

      h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
      h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
      h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
      h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));

      h01_lo = vmlal_s32(h01_lo, vget_low_s32(f0_lo), vget_low_s32(f1_lo));
      h01_lo = vmlal_s32(h01_lo, vget_high_s32(f0_lo), vget_high_s32(f1_lo));
      h01_hi = vmlal_s32(h01_hi, vget_low_s32(f0_hi), vget_low_s32(f1_hi));
      h01_hi = vmlal_s32(h01_hi, vget_high_s32(f0_hi), vget_high_s32(f1_hi));

      c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
      c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
      c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
      c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));

      c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
      c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
      c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
      c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));

      src_ptr += 8;
      dat_ptr += 8;
      flt0_ptr += 8;
      flt1_ptr += 8;
      w -= 8;
    } while (w != 0);

    src8 += src_stride;
    dat8 += dat_stride;
    flt0 += flt0_stride;
    flt1 += flt1_stride;
  } while (--height != 0);

  H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
  H[0][1] = horizontal_add_s64x2(vaddq_s64(h01_lo, h01_hi)) / size;
  H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
  H[1][0] = H[0][1];
  C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
  C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}

static INLINE void calc_proj_params_r0_neon(const uint8_t *src8, int width,
                                            int height, int src_stride,
                                            const uint8_t *dat8, int dat_stride,
                                            int32_t *flt0, int flt0_stride,
                                            int64_t H[2][2], int64_t C[2]) {
  assert(width % 8 == 0);
  const int size = width * height;

  int64x2_t h00_lo = vdupq_n_s64(0);
  int64x2_t h00_hi = vdupq_n_s64(0);
  int64x2_t c0_lo = vdupq_n_s64(0);
  int64x2_t c0_hi = vdupq_n_s64(0);

  do {
    const uint8_t *src_ptr = src8;
    const uint8_t *dat_ptr = dat8;
    int32_t *flt0_ptr = flt0;
    int w = width;

    do {
      uint8x8_t s = vld1_u8(src_ptr);
      uint8x8_t d = vld1_u8(dat_ptr);
      int32x4_t f0_lo = vld1q_s32(flt0_ptr);
      int32x4_t f0_hi = vld1q_s32(flt0_ptr + 4);

      int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
      int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));

      int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
      int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
      f0_lo = vsubw_s16(f0_lo, vget_low_s16(u));
      f0_hi = vsubw_s16(f0_hi, vget_high_s16(u));

      h00_lo = vmlal_s32(h00_lo, vget_low_s32(f0_lo), vget_low_s32(f0_lo));
      h00_lo = vmlal_s32(h00_lo, vget_high_s32(f0_lo), vget_high_s32(f0_lo));
      h00_hi = vmlal_s32(h00_hi, vget_low_s32(f0_hi), vget_low_s32(f0_hi));
      h00_hi = vmlal_s32(h00_hi, vget_high_s32(f0_hi), vget_high_s32(f0_hi));

      c0_lo = vmlal_s32(c0_lo, vget_low_s32(f0_lo), vget_low_s32(s_lo));
      c0_lo = vmlal_s32(c0_lo, vget_high_s32(f0_lo), vget_high_s32(s_lo));
      c0_hi = vmlal_s32(c0_hi, vget_low_s32(f0_hi), vget_low_s32(s_hi));
      c0_hi = vmlal_s32(c0_hi, vget_high_s32(f0_hi), vget_high_s32(s_hi));

      src_ptr += 8;
      dat_ptr += 8;
      flt0_ptr += 8;
      w -= 8;
    } while (w != 0);

    src8 += src_stride;
    dat8 += dat_stride;
    flt0 += flt0_stride;
  } while (--height != 0);

  H[0][0] = horizontal_add_s64x2(vaddq_s64(h00_lo, h00_hi)) / size;
  C[0] = horizontal_add_s64x2(vaddq_s64(c0_lo, c0_hi)) / size;
}

static INLINE void calc_proj_params_r1_neon(const uint8_t *src8, int width,
                                            int height, int src_stride,
                                            const uint8_t *dat8, int dat_stride,
                                            int32_t *flt1, int flt1_stride,
                                            int64_t H[2][2], int64_t C[2]) {
  assert(width % 8 == 0);
  const int size = width * height;

  int64x2_t h11_lo = vdupq_n_s64(0);
  int64x2_t h11_hi = vdupq_n_s64(0);
  int64x2_t c1_lo = vdupq_n_s64(0);
  int64x2_t c1_hi = vdupq_n_s64(0);

  do {
    const uint8_t *src_ptr = src8;
    const uint8_t *dat_ptr = dat8;
    int32_t *flt1_ptr = flt1;
    int w = width;

    do {
      uint8x8_t s = vld1_u8(src_ptr);
      uint8x8_t d = vld1_u8(dat_ptr);
      int32x4_t f1_lo = vld1q_s32(flt1_ptr);
      int32x4_t f1_hi = vld1q_s32(flt1_ptr + 4);

      int16x8_t u = vreinterpretq_s16_u16(vshll_n_u8(d, SGRPROJ_RST_BITS));
      int16x8_t s_s16 = vreinterpretq_s16_u16(vshll_n_u8(s, SGRPROJ_RST_BITS));

      int32x4_t s_lo = vsubl_s16(vget_low_s16(s_s16), vget_low_s16(u));
      int32x4_t s_hi = vsubl_s16(vget_high_s16(s_s16), vget_high_s16(u));
      f1_lo = vsubw_s16(f1_lo, vget_low_s16(u));
      f1_hi = vsubw_s16(f1_hi, vget_high_s16(u));

      h11_lo = vmlal_s32(h11_lo, vget_low_s32(f1_lo), vget_low_s32(f1_lo));
      h11_lo = vmlal_s32(h11_lo, vget_high_s32(f1_lo), vget_high_s32(f1_lo));
      h11_hi = vmlal_s32(h11_hi, vget_low_s32(f1_hi), vget_low_s32(f1_hi));
      h11_hi = vmlal_s32(h11_hi, vget_high_s32(f1_hi), vget_high_s32(f1_hi));

      c1_lo = vmlal_s32(c1_lo, vget_low_s32(f1_lo), vget_low_s32(s_lo));
      c1_lo = vmlal_s32(c1_lo, vget_high_s32(f1_lo), vget_high_s32(s_lo));
      c1_hi = vmlal_s32(c1_hi, vget_low_s32(f1_hi), vget_low_s32(s_hi));
      c1_hi = vmlal_s32(c1_hi, vget_high_s32(f1_hi), vget_high_s32(s_hi));

      src_ptr += 8;
      dat_ptr += 8;
      flt1_ptr += 8;
      w -= 8;
    } while (w != 0);

    src8 += src_stride;
    dat8 += dat_stride;
    flt1 += flt1_stride;
  } while (--height != 0);

  H[1][1] = horizontal_add_s64x2(vaddq_s64(h11_lo, h11_hi)) / size;
  C[1] = horizontal_add_s64x2(vaddq_s64(c1_lo, c1_hi)) / size;
}

// The function calls 3 subfunctions for the following cases :
// 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements
//    of C and H need to be computed.
// 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are
//    non-zero and need to be computed.
// 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are
//    non-zero and need to be computed.
void av1_calc_proj_params_neon(const uint8_t *src8, int width, int height,
                               int src_stride, const uint8_t *dat8,
                               int dat_stride, int32_t *flt0, int flt0_stride,
                               int32_t *flt1, int flt1_stride, int64_t H[2][2],
                               int64_t C[2], const sgr_params_type *params) {
  if ((params->r[0] > 0) && (params->r[1] > 0)) {
    calc_proj_params_r0_r1_neon(src8, width, height, src_stride, dat8,
                                dat_stride, flt0, flt0_stride, flt1,
                                flt1_stride, H, C);
  } else if (params->r[0] > 0) {
    calc_proj_params_r0_neon(src8, width, height, src_stride, dat8, dat_stride,
                             flt0, flt0_stride, H, C);
  } else if (params->r[1] > 0) {
    calc_proj_params_r1_neon(src8, width, height, src_stride, dat8, dat_stride,
                             flt1, flt1_stride, H, C);
  }
}