summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/temporal_filter_neon_dotprod.c
blob: 919521fec7b6c36f6915ccded28e4c7651dab61c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * Copyright (c) 2023, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <arm_neon.h>

#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/temporal_filter.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/sum_neon.h"

// For the squared error buffer, add padding for 4 samples.
#define SSE_STRIDE (BW + 4)

// clang-format off
// Table used to pad the first and last columns and apply the sliding window.
DECLARE_ALIGNED(16, static const uint8_t, kLoadPad[4][16]) = {
  {   2,   2, 2, 3, 4, 255, 255, 255, 255,   2,   2, 3, 4, 5, 255, 255 },
  { 255, 255, 2, 3, 4,   5,   6, 255, 255, 255, 255, 3, 4, 5,   6,   7 },
  {   0,   1, 2, 3, 4, 255, 255, 255, 255,   1,   2, 3, 4, 5, 255, 255 },
  { 255, 255, 2, 3, 4,   5,   5, 255, 255, 255, 255, 3, 4, 5,   5,   5 }
};

// For columns that don't need to be padded it's just a simple mask.
DECLARE_ALIGNED(16, static const uint8_t, kSlidingWindowMask[]) = {
  0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
  0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00,
  0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
  0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

// clang-format on

static INLINE void get_abs_diff(const uint8_t *frame1, const uint32_t stride1,
                                const uint8_t *frame2, const uint32_t stride2,
                                const uint32_t block_width,
                                const uint32_t block_height,
                                uint8_t *frame_abs_diff,
                                const unsigned int dst_stride) {
  uint8_t *dst = frame_abs_diff;

  uint32_t i = 0;
  do {
    uint32_t j = 0;
    do {
      uint8x16_t s = vld1q_u8(frame1 + i * stride1 + j);
      uint8x16_t r = vld1q_u8(frame2 + i * stride2 + j);
      uint8x16_t abs_diff = vabdq_u8(s, r);
      vst1q_u8(dst + j + 2, abs_diff);
      j += 16;
    } while (j < block_width);

    dst += dst_stride;
  } while (++i < block_height);
}

static void apply_temporal_filter(
    const uint8_t *frame, const unsigned int stride, const uint32_t block_width,
    const uint32_t block_height, const int *subblock_mses,
    unsigned int *accumulator, uint16_t *count, const uint8_t *frame_abs_diff,
    const uint32_t *luma_sse_sum, const double inv_num_ref_pixels,
    const double decay_factor, const double inv_factor,
    const double weight_factor, const double *d_factor, int tf_wgt_calc_lvl) {
  assert(((block_width == 16) || (block_width == 32)) &&
         ((block_height == 16) || (block_height == 32)));

  uint32_t acc_5x5_neon[BH][BW];
  const uint8x16x2_t vmask = vld1q_u8_x2(kSlidingWindowMask);
  const uint8x16_t pad_tbl0 = vld1q_u8(kLoadPad[0]);
  const uint8x16_t pad_tbl1 = vld1q_u8(kLoadPad[1]);
  const uint8x16_t pad_tbl2 = vld1q_u8(kLoadPad[2]);
  const uint8x16_t pad_tbl3 = vld1q_u8(kLoadPad[3]);

  // Traverse 4 columns at a time - first and last two columns need padding.
  for (uint32_t col = 0; col < block_width; col += 4) {
    uint8x16_t vsrc[5][2];
    const uint8_t *src = frame_abs_diff + col;

    // Load, pad (for first and last two columns) and mask 3 rows from the top.
    for (int i = 2; i < 5; i++) {
      uint8x8_t s = vld1_u8(src);
      uint8x16_t s_dup = vcombine_u8(s, s);
      if (col == 0) {
        vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl0);
        vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl1);
      } else if (col >= block_width - 4) {
        vsrc[i][0] = vqtbl1q_u8(s_dup, pad_tbl2);
        vsrc[i][1] = vqtbl1q_u8(s_dup, pad_tbl3);
      } else {
        vsrc[i][0] = vandq_u8(s_dup, vmask.val[0]);
        vsrc[i][1] = vandq_u8(s_dup, vmask.val[1]);
      }
      src += SSE_STRIDE;
    }

    // Pad the top 2 rows.
    vsrc[0][0] = vsrc[2][0];
    vsrc[0][1] = vsrc[2][1];
    vsrc[1][0] = vsrc[2][0];
    vsrc[1][1] = vsrc[2][1];

    for (unsigned int row = 0; row < block_height; row++) {
      uint32x4_t sum_01 = vdupq_n_u32(0);
      uint32x4_t sum_23 = vdupq_n_u32(0);

      sum_01 = vdotq_u32(sum_01, vsrc[0][0], vsrc[0][0]);
      sum_01 = vdotq_u32(sum_01, vsrc[1][0], vsrc[1][0]);
      sum_01 = vdotq_u32(sum_01, vsrc[2][0], vsrc[2][0]);
      sum_01 = vdotq_u32(sum_01, vsrc[3][0], vsrc[3][0]);
      sum_01 = vdotq_u32(sum_01, vsrc[4][0], vsrc[4][0]);

      sum_23 = vdotq_u32(sum_23, vsrc[0][1], vsrc[0][1]);
      sum_23 = vdotq_u32(sum_23, vsrc[1][1], vsrc[1][1]);
      sum_23 = vdotq_u32(sum_23, vsrc[2][1], vsrc[2][1]);
      sum_23 = vdotq_u32(sum_23, vsrc[3][1], vsrc[3][1]);
      sum_23 = vdotq_u32(sum_23, vsrc[4][1], vsrc[4][1]);

      vst1q_u32(&acc_5x5_neon[row][col], vpaddq_u32(sum_01, sum_23));

      // Push all rows in the sliding window up one.
      for (int i = 0; i < 4; i++) {
        vsrc[i][0] = vsrc[i + 1][0];
        vsrc[i][1] = vsrc[i + 1][1];
      }

      if (row <= block_height - 4) {
        // Load next row into the bottom of the sliding window.
        uint8x8_t s = vld1_u8(src);
        uint8x16_t s_dup = vcombine_u8(s, s);
        if (col == 0) {
          vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl0);
          vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl1);
        } else if (col >= block_width - 4) {
          vsrc[4][0] = vqtbl1q_u8(s_dup, pad_tbl2);
          vsrc[4][1] = vqtbl1q_u8(s_dup, pad_tbl3);
        } else {
          vsrc[4][0] = vandq_u8(s_dup, vmask.val[0]);
          vsrc[4][1] = vandq_u8(s_dup, vmask.val[1]);
        }
        src += SSE_STRIDE;
      } else {
        // Pad the bottom 2 rows.
        vsrc[4][0] = vsrc[3][0];
        vsrc[4][1] = vsrc[3][1];
      }
    }
  }

  // Perform filtering.
  if (tf_wgt_calc_lvl == 0) {
    for (unsigned int i = 0, k = 0; i < block_height; i++) {
      for (unsigned int j = 0; j < block_width; j++, k++) {
        const int pixel_value = frame[i * stride + j];
        const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];

        const double window_error = diff_sse * inv_num_ref_pixels;
        const int subblock_idx =
            (i >= block_height / 2) * 2 + (j >= block_width / 2);
        const double block_error = (double)subblock_mses[subblock_idx];
        const double combined_error =
            weight_factor * window_error + block_error * inv_factor;
        // Compute filter weight.
        double scaled_error =
            combined_error * d_factor[subblock_idx] * decay_factor;
        scaled_error = AOMMIN(scaled_error, 7);
        const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
        accumulator[k] += weight * pixel_value;
        count[k] += weight;
      }
    }
  } else {
    for (unsigned int i = 0, k = 0; i < block_height; i++) {
      for (unsigned int j = 0; j < block_width; j++, k++) {
        const int pixel_value = frame[i * stride + j];
        const uint32_t diff_sse = acc_5x5_neon[i][j] + luma_sse_sum[i * BW + j];

        const double window_error = diff_sse * inv_num_ref_pixels;
        const int subblock_idx =
            (i >= block_height / 2) * 2 + (j >= block_width / 2);
        const double block_error = (double)subblock_mses[subblock_idx];
        const double combined_error =
            weight_factor * window_error + block_error * inv_factor;
        // Compute filter weight.
        double scaled_error =
            combined_error * d_factor[subblock_idx] * decay_factor;
        scaled_error = AOMMIN(scaled_error, 7);
        const float fweight =
            approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
        const int weight = iroundpf(fweight);
        accumulator[k] += weight * pixel_value;
        count[k] += weight;
      }
    }
  }
}

void av1_apply_temporal_filter_neon_dotprod(
    const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
    const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
    const int num_planes, const double *noise_levels, const MV *subblock_mvs,
    const int *subblock_mses, const int q_factor, const int filter_strength,
    int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
    uint16_t *count) {
  const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH;
  assert(block_size == BLOCK_32X32 && "Only support 32x32 block with Neon!");
  assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with Neon!");
  assert(!is_high_bitdepth && "Only support low bit-depth with Neon!");
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);
  (void)is_high_bitdepth;

  // Block information.
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  // Frame information.
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  const int min_frame_size = AOMMIN(frame_height, frame_width);
  // Variables to simplify combined error calculation.
  const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
                                   TF_SEARCH_ERROR_NORM_WEIGHT);
  const double weight_factor =
      (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
  // Adjust filtering based on q.
  // Larger q -> stronger filtering -> larger weight.
  // Smaller q -> weaker filtering -> smaller weight.
  double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
  q_decay = CLIP(q_decay, 1e-5, 1);
  if (q_factor >= TF_QINDEX_CUTOFF) {
    // Max q_factor is 255, therefore the upper bound of q_decay is 8.
    // We do not need a clip here.
    q_decay = 0.5 * pow((double)q_factor / 64, 2);
  }
  // Smaller strength -> smaller filtering weight.
  double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
  s_decay = CLIP(s_decay, 1e-5, 1);
  double d_factor[4] = { 0 };
  uint8_t frame_abs_diff[SSE_STRIDE * BH] = { 0 };
  uint32_t luma_sse_sum[BW * BH] = { 0 };

  for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
    // Larger motion vector -> smaller filtering weight.
    const MV mv = subblock_mvs[subblock_idx];
    const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
    double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
    distance_threshold = AOMMAX(distance_threshold, 1);
    d_factor[subblock_idx] = distance / distance_threshold;
    d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
  }

  // Handle planes in sequence.
  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y;
    const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x;
    const uint32_t frame_stride =
        frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
    const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;

    const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset;
    const int ss_x_shift =
        mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
    const int ss_y_shift =
        mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
    const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
                               ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
    const double inv_num_ref_pixels = 1.0 / num_ref_pixels;
    // Larger noise -> larger filtering weight.
    const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
    // Decay factors for non-local mean approach.
    const double decay_factor = 1 / (n_decay * q_decay * s_decay);

    // Filter U-plane and V-plane using Y-plane. This is because motion
    // search is only done on Y-plane, so the information from Y-plane
    // will be more accurate. The luma sse sum is reused in both chroma
    // planes.
    if (plane == AOM_PLANE_U) {
      for (unsigned int i = 0; i < plane_h; i++) {
        for (unsigned int j = 0; j < plane_w; j++) {
          for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
            for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
              const int yy = (i << ss_y_shift) + ii;  // Y-coord on Y-plane.
              const int xx = (j << ss_x_shift) + jj;  // X-coord on Y-plane.
              luma_sse_sum[i * BW + j] +=
                  (frame_abs_diff[yy * SSE_STRIDE + xx + 2] *
                   frame_abs_diff[yy * SSE_STRIDE + xx + 2]);
            }
          }
        }
      }
    }

    get_abs_diff(ref, frame_stride, pred + plane_offset, plane_w, plane_w,
                 plane_h, frame_abs_diff, SSE_STRIDE);

    apply_temporal_filter(pred + plane_offset, plane_w, plane_w, plane_h,
                          subblock_mses, accum + plane_offset,
                          count + plane_offset, frame_abs_diff, luma_sse_sum,
                          inv_num_ref_pixels, decay_factor, inv_factor,
                          weight_factor, d_factor, tf_wgt_calc_lvl);

    plane_offset += plane_h * plane_w;
  }
}