summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/arm/neon/wedge_utils_neon.c
blob: 1b35269b3371cd1f9b3a4feeef274647f8bd39f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
 * Copyright (c) 2022, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <arm_neon.h>
#include <assert.h>

#include "aom_dsp/arm/sum_neon.h"
#include "av1/common/reconinter.h"

#define MAX_MASK_VALUE (1 << WEDGE_WEIGHT_BITS)

/**
 * See av1_wedge_sse_from_residuals_c for details of the parameters and
 * computation.
 */
uint64_t av1_wedge_sse_from_residuals_neon(const int16_t *r1, const int16_t *d,
                                           const uint8_t *m, int N) {
  assert(N % 64 == 0);

  uint64x2_t v_csse[2] = { vdupq_n_u64(0), vdupq_n_u64(0) };

  int i = 0;
  do {
    int32x4_t sum[4];
    int32x4_t sse[2];
    int16x4_t sum_s16[4];

    const int16x8_t r1_l = vld1q_s16(r1 + i);
    const int16x8_t r1_h = vld1q_s16(r1 + i + 8);
    const int16x8_t d_l = vld1q_s16(d + i);
    const int16x8_t d_h = vld1q_s16(d + i + 8);
    // The following three lines are a bit inelegant compared to using a pair
    // of vmovl_u8()... but it forces the compiler to emit a ZIP1, ZIP2 pair -
    // which can be executed in parallel with the subsequent SSHL instructions.
    // (SSHL can only be executed on half of the Neon pipes in modern Arm
    // cores, whereas ZIP1/2 can be executed on all of them.)
    const uint8x16x2_t m_u16 = vzipq_u8(vld1q_u8(m + i), vdupq_n_u8(0));
    const int16x8_t m_l = vreinterpretq_s16_u8(m_u16.val[0]);
    const int16x8_t m_h = vreinterpretq_s16_u8(m_u16.val[1]);

    sum[0] = vshll_n_s16(vget_low_s16(r1_l), WEDGE_WEIGHT_BITS);
    sum[1] = vshll_n_s16(vget_high_s16(r1_l), WEDGE_WEIGHT_BITS);
    sum[2] = vshll_n_s16(vget_low_s16(r1_h), WEDGE_WEIGHT_BITS);
    sum[3] = vshll_n_s16(vget_high_s16(r1_h), WEDGE_WEIGHT_BITS);

    sum[0] = vmlal_s16(sum[0], vget_low_s16(m_l), vget_low_s16(d_l));
    sum[1] = vmlal_s16(sum[1], vget_high_s16(m_l), vget_high_s16(d_l));
    sum[2] = vmlal_s16(sum[2], vget_low_s16(m_h), vget_low_s16(d_h));
    sum[3] = vmlal_s16(sum[3], vget_high_s16(m_h), vget_high_s16(d_h));

    sum_s16[0] = vqmovn_s32(sum[0]);
    sum_s16[1] = vqmovn_s32(sum[1]);
    sum_s16[2] = vqmovn_s32(sum[2]);
    sum_s16[3] = vqmovn_s32(sum[3]);

    sse[0] = vmull_s16(sum_s16[0], sum_s16[0]);
    sse[1] = vmull_s16(sum_s16[2], sum_s16[2]);
    sse[0] = vmlal_s16(sse[0], sum_s16[1], sum_s16[1]);
    sse[1] = vmlal_s16(sse[1], sum_s16[3], sum_s16[3]);

    v_csse[0] = vpadalq_u32(v_csse[0], vreinterpretq_u32_s32(sse[0]));
    v_csse[1] = vpadalq_u32(v_csse[1], vreinterpretq_u32_s32(sse[1]));

    i += 16;
  } while (i < N);

  uint64_t csse = horizontal_add_u64x2(vaddq_u64(v_csse[0], v_csse[1]));
  return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS);
}

int8_t av1_wedge_sign_from_residuals_neon(const int16_t *ds, const uint8_t *m,
                                          int N, int64_t limit) {
  int32x4_t acc[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0),
                       vdupq_n_s32(0) };

  do {
    int16x8_t ds_l = vld1q_s16(ds);
    int16x8_t ds_h = vld1q_s16(ds + 8);

    int8x16_t m_s8 = vreinterpretq_s8_u8(vld1q_u8(m));
    int16x8_t m_l = vmovl_s8(vget_low_s8(m_s8));
    int16x8_t m_h = vmovl_s8(vget_high_s8(m_s8));

    acc[0] = vmlal_s16(acc[0], vget_low_s16(ds_l), vget_low_s16(m_l));
    acc[1] = vmlal_s16(acc[1], vget_high_s16(ds_l), vget_high_s16(m_l));
    acc[2] = vmlal_s16(acc[2], vget_low_s16(ds_h), vget_low_s16(m_h));
    acc[3] = vmlal_s16(acc[3], vget_high_s16(ds_h), vget_high_s16(m_h));

    ds += 16;
    m += 16;
    N -= 16;
  } while (N != 0);

  int64x2_t sum = vpaddlq_s32(acc[0]);
  sum = vpadalq_s32(sum, acc[1]);
  sum = vpadalq_s32(sum, acc[2]);
  sum = vpadalq_s32(sum, acc[3]);

  return (horizontal_add_s64x2(sum) > limit);
}

void av1_wedge_compute_delta_squares_neon(int16_t *d_ptr, const int16_t *a_ptr,
                                          const int16_t *b_ptr, int N) {
  do {
    int16x8_t a = vld1q_s16(a_ptr);
    int16x8_t b = vld1q_s16(b_ptr);

    int32x4_t sq_lo = vmull_s16(vget_low_s16(a), vget_low_s16(a));
    int32x4_t sq_hi = vmull_s16(vget_high_s16(a), vget_high_s16(a));

    sq_lo = vmlsl_s16(sq_lo, vget_low_s16(b), vget_low_s16(b));
    sq_hi = vmlsl_s16(sq_hi, vget_high_s16(b), vget_high_s16(b));

    int16x8_t res = vcombine_s16(vqmovn_s32(sq_lo), vqmovn_s32(sq_hi));

    vst1q_s16(d_ptr, res);

    d_ptr += 8;
    a_ptr += 8;
    b_ptr += 8;
    N -= 8;
  } while (N != 0);
}