summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/encodeframe.c
blob: 07382eb6cc2b2afcf6e6398c9b708991b80b9f07 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <limits.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_util/aom_pthread.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif  // CONFIG_MISMATCH_DEBUG

#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"

#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/global_motion_facade.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_strategy.h"
#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/partition_model_weights.h"
#endif
#include "av1/encoder/partition_search.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/var_based_part.h"

#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif

/*!\cond */
// This is used as a reference when computing the source variance for the
//  purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
//  which will be faster.
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128
};

#if CONFIG_AV1_HIGHBITDEPTH
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128
};

static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
  128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
};

static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
  128 * 16, 128 * 16
};
#endif  // CONFIG_AV1_HIGHBITDEPTH
/*!\endcond */

// For the given bit depth, returns a constant array used to assist the
// calculation of source block variance, which will then be used to decide
// adaptive quantizers.
static const uint8_t *get_var_offs(int use_hbd, int bd) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd) {
    assert(bd == 8 || bd == 10 || bd == 12);
    const int off_index = (bd - 8) >> 1;
    static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8,
                                                AV1_HIGH_VAR_OFFS_10,
                                                AV1_HIGH_VAR_OFFS_12 };
    return CONVERT_TO_BYTEPTR(high_var_offs[off_index]);
  }
#else
  (void)use_hbd;
  (void)bd;
  assert(!use_hbd);
#endif
  assert(bd == 8);
  return AV1_VAR_OFFS;
}

void av1_init_rtc_counters(MACROBLOCK *const x) {
  av1_init_cyclic_refresh_counters(x);
  x->cnt_zeromv = 0;
}

void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) {
  if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ)
    av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x);
  cpi->rc.cnt_zeromv += x->cnt_zeromv;
}

unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi,
                                       const MACROBLOCKD *xd,
                                       const struct buf_2d *ref,
                                       BLOCK_SIZE bsize, int plane,
                                       int use_hbd) {
  const int subsampling_x = xd->plane[plane].subsampling_x;
  const int subsampling_y = xd->plane[plane].subsampling_y;
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(bsize, subsampling_x, subsampling_y);
  unsigned int sse;
  const unsigned int var = cpi->ppi->fn_ptr[plane_bsize].vf(
      ref->buf, ref->stride, get_var_offs(use_hbd, xd->bd), 0, &sse);
  return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]);
}

unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi,
                                              const MACROBLOCKD *xd,
                                              const struct buf_2d *ref,
                                              BLOCK_SIZE bsize, int plane) {
  const int use_hbd = is_cur_buf_hbd(xd);
  return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd);
}

void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
                          int mi_row, int mi_col, const int num_planes,
                          BLOCK_SIZE bsize) {
  // Set current frame pointer.
  x->e_mbd.cur_buf = src;

  // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
  // the static analysis warnings.
  for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) {
    const int is_uv = i > 0;
    setup_pred_plane(
        &x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv],
        src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL,
        x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y);
  }
}

#if !CONFIG_REALTIME_ONLY
/*!\brief Assigns different quantization parameters to each super
 * block based on its TPL weight.
 *
 * \ingroup tpl_modelling
 *
 * \param[in]     cpi         Top level encoder instance structure
 * \param[in,out] td          Thread data structure
 * \param[in,out] x           Macro block level data for this block.
 * \param[in]     tile_info   Tile infromation / identification
 * \param[in]     mi_row      Block row (in "MI_SIZE" units) index
 * \param[in]     mi_col      Block column (in "MI_SIZE" units) index
 * \param[out]    num_planes  Number of image planes (e.g. Y,U,V)
 *
 * \remark No return value but updates macroblock and thread data
 * related to the q / q delta to be used.
 */
static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td,
                                     MACROBLOCK *const x,
                                     const TileInfo *const tile_info,
                                     int mi_row, int mi_col, int num_planes) {
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  assert(delta_q_info->delta_q_present_flag);

  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  // Delta-q modulation based on variance
  av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);

  const int delta_q_res = delta_q_info->delta_q_res;
  int current_qindex = cm->quant_params.base_qindex;
  if (cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.qp_mode ==
                                   DUCKY_ENCODE_FRAME_MODE_QINDEX) {
    const int sb_row = mi_row >> cm->seq_params->mib_size_log2;
    const int sb_col = mi_col >> cm->seq_params->mib_size_log2;
    const int sb_cols =
        CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params->mib_size_log2);
    const int sb_index = sb_row * sb_cols + sb_col;
    current_qindex =
        cpi->ducky_encode_info.frame_info.superblock_encode_qindex[sb_index];
  } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) {
    if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
      const int block_wavelet_energy_level =
          av1_block_wavelet_energy_level(cpi, x, sb_size);
      x->sb_energy_level = block_wavelet_energy_level;
      current_qindex = av1_compute_q_from_energy_level_deltaq_mode(
          cpi, block_wavelet_energy_level);
    } else {
      const int block_var_level = av1_log_block_var(cpi, x, sb_size);
      x->sb_energy_level = block_var_level;
      current_qindex =
          av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level);
    }
  } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE &&
             cpi->oxcf.algo_cfg.enable_tpl_model) {
    // Setup deltaq based on tpl stats
    current_qindex =
        av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col);
  } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) {
    current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col);
  } else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) {
    current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col);
  } else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) {
    current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col);
  }

  x->rdmult_cur_qindex = current_qindex;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int adjusted_qindex = av1_adjust_q_from_delta_q_res(
      delta_q_res, xd->current_base_qindex, current_qindex);
  if (cpi->use_ducky_encode) {
    assert(adjusted_qindex == current_qindex);
  }
  current_qindex = adjusted_qindex;

  x->delta_qindex = current_qindex - cm->quant_params.base_qindex;
  x->rdmult_delta_qindex = x->delta_qindex;

  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
  xd->mi[0]->current_qindex = current_qindex;
  av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0);

  // keep track of any non-zero delta-q used
  td->deltaq_used |= (x->delta_qindex != 0);

  if (cpi->oxcf.tool_cfg.enable_deltalf_mode) {
    const int delta_lf_res = delta_q_info->delta_lf_res;
    const int lfmask = ~(delta_lf_res - 1);
    const int delta_lf_from_base =
        ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask);
    const int8_t delta_lf =
        (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
    const int frame_lf_count =
        av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
    const int mib_size = cm->seq_params->mib_size;

    // pre-set the delta lf for loop filter. Note that this value is set
    // before mi is assigned for each block in current superblock
    for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) {
      for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) {
        const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k);
        mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf;
        for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
          mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf;
        }
      }
    }
  }
}

static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row,
                                 int mi_col) {
  const AV1_COMMON *cm = &cpi->common;
  const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  MACROBLOCK *x = &td->mb;
  const int frame_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;

  av1_zero(x->tpl_keep_ref_frame);

  if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return;
  if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
  if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;

  const int is_overlay =
      cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE;
  if (is_overlay) {
    memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame));
    return;
  }

  TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
  TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  const int tpl_stride = tpl_frame->stride;
  int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 };
  const int step = 1 << block_mis_log2;
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;

  const int mi_row_end =
      AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size],
                                  cm->superres_scale_denominator),
             mi_cols_sr);
  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < mi_row_end; row += row_step) {
    for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
      const TplDepStats *this_stats =
          &tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
      int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 };
      // Find the winner ref frame idx for the current block
      int64_t best_inter_cost = this_stats->pred_error[0];
      int best_rf_idx = 0;
      for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) {
        if ((this_stats->pred_error[idx] < best_inter_cost) &&
            (this_stats->pred_error[idx] != 0)) {
          best_inter_cost = this_stats->pred_error[idx];
          best_rf_idx = idx;
        }
      }
      // tpl_pred_error is the pred_error reduction of best_ref w.r.t.
      // LAST_FRAME.
      tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] -
                                    this_stats->pred_error[LAST_FRAME - 1];

      for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx)
        inter_cost[rf_idx] += tpl_pred_error[rf_idx];
    }
  }

  int rank_index[INTER_REFS_PER_FRAME - 1];
  for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
    rank_index[idx] = idx + 1;
    for (int i = idx; i > 0; --i) {
      if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) {
        const int tmp = rank_index[i - 1];
        rank_index[i - 1] = rank_index[i];
        rank_index[i] = tmp;
      }
    }
  }

  x->tpl_keep_ref_frame[INTRA_FRAME] = 1;
  x->tpl_keep_ref_frame[LAST_FRAME] = 1;

  int cutoff_ref = 0;
  for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
    x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1;
    if (idx > 2) {
      if (!cutoff_ref) {
        // If the predictive coding gains are smaller than the previous more
        // relevant frame over certain amount, discard this frame and all the
        // frames afterwards.
        if (llabs(inter_cost[rank_index[idx]]) <
                llabs(inter_cost[rank_index[idx - 1]]) / 8 ||
            inter_cost[rank_index[idx]] == 0)
          cutoff_ref = 1;
      }

      if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0;
    }
  }
}

static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x,
                                               int mi_row, int mi_col) {
  const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
  const int orig_rdmult = cpi->rd.RDMULT;

  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int gf_group_index = cpi->gf_frame_index;
  if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
      cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 &&
      cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) {
    const int dr =
        av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult);
    x->rdmult = dr;
  }
}
#endif  // !CONFIG_REALTIME_ONLY

#if CONFIG_RT_ML_PARTITIONING
// Get a prediction(stored in x->est_pred) for the whole superblock.
static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile,
                               MACROBLOCK *x, int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  const int is_key_frame = frame_is_intra_only(cm);
  MACROBLOCKD *xd = &x->e_mbd;

  // TODO(kyslov) Extend to 128x128
  assert(cm->seq_params->sb_size == BLOCK_64X64);

  av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);

  if (!is_key_frame) {
    MB_MODE_INFO *mi = xd->mi[0];
    const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);

    assert(yv12 != NULL);

    av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
                         get_ref_scale_factors(cm, LAST_FRAME), 1);
    mi->ref_frame[0] = LAST_FRAME;
    mi->ref_frame[1] = NONE;
    mi->bsize = BLOCK_64X64;
    mi->mv[0].as_int = 0;
    mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);

    set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);

    xd->plane[0].dst.buf = x->est_pred;
    xd->plane[0].dst.stride = 64;
    av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
  } else {
#if CONFIG_AV1_HIGHBITDEPTH
    switch (xd->bd) {
      case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
      case 10:
        memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
        break;
      case 12:
        memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
        break;
    }
#else
    memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
#endif  // CONFIG_VP9_HIGHBITDEPTH
  }
}
#endif  // CONFIG_RT_ML_PARTITIONING

#define AVG_CDF_WEIGHT_LEFT 3
#define AVG_CDF_WEIGHT_TOP_RIGHT 1

/*!\brief Encode a superblock (minimal RD search involved)
 *
 * \ingroup partition_search
 * Encodes the superblock by a pre-determined partition pattern, only minor
 * rd-based searches are allowed to adjust the initial pattern. It is only used
 * by realtime encoding.
 */
static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td,
                                       TileDataEnc *tile_data, TokenExtra **tp,
                                       const int mi_row, const int mi_col,
                                       const int seg_skip) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  const SPEED_FEATURES *const sf = &cpi->sf;
  const TileInfo *const tile_info = &tile_data->tile_info;
  MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
                      get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  PC_TREE *const pc_root = td->pc_root;

#if CONFIG_RT_ML_PARTITIONING
  if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) {
    RD_STATS dummy_rdc;
    get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
    av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
                             BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root);
    return;
  }
#endif
  // Set the partition
  if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip ||
      (sf->rt_sf.use_fast_fixed_part && x->sb_force_fixed_part == 1 &&
       (!frame_is_intra_only(cm) &&
        (!cpi->ppi->use_svc ||
         !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)))) {
    // set a fixed-size partition
    av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
    BLOCK_SIZE bsize_select = sf->part_sf.fixed_partition_size;
    if (sf->rt_sf.use_fast_fixed_part &&
        x->content_state_sb.source_sad_nonrd < kLowSad) {
      bsize_select = BLOCK_64X64;
    }
    const BLOCK_SIZE bsize = seg_skip ? sb_size : bsize_select;
    av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
  } else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
    // set a variance-based partition
    av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
    av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);
  }
  assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip ||
         sf->part_sf.partition_search_type == VAR_BASED_PARTITION);
  set_cb_offsets(td->mb.cb_offset, 0, 0);

  // Initialize the flag to skip cdef to 1.
  if (sf->rt_sf.skip_cdef_sb) {
    const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1;
    // If 128x128 block is used, we need to set the flag for all 4 64x64 sub
    // "blocks".
    for (int r = 0; r < block64_in_sb; ++r) {
      for (int c = 0; c < block64_in_sb; ++c) {
        const int idx_in_sb =
            r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64;
        if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1;
      }
    }
  }

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, nonrd_use_partition_time);
#endif
  av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
                          pc_root);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, nonrd_use_partition_time);
#endif
}

// This function initializes the stats for encode_rd_sb.
static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
                                     const TileDataEnc *tile_data,
                                     SIMPLE_MOTION_DATA_TREE *sms_root,
                                     RD_STATS *rd_cost, int mi_row, int mi_col,
                                     int gather_tpl_data) {
  const AV1_COMMON *cm = &cpi->common;
  const TileInfo *tile_info = &tile_data->tile_info;
  MACROBLOCK *x = &td->mb;

  const SPEED_FEATURES *sf = &cpi->sf;
  const int use_simple_motion_search =
      (sf->part_sf.simple_motion_search_split ||
       sf->part_sf.simple_motion_search_prune_rect ||
       sf->part_sf.simple_motion_search_early_term_none ||
       sf->part_sf.ml_early_term_after_part_split_level) &&
      !frame_is_intra_only(cm);
  if (use_simple_motion_search) {
    av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root,
                                             mi_row, mi_col);
  }

#if !CONFIG_REALTIME_ONLY
  if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME &&
        cpi->oxcf.gf_cfg.lag_in_frames == 0)) {
    init_ref_frame_space(cpi, td, mi_row, mi_col);
    x->sb_energy_level = 0;
    x->part_search_info.cnn_output_valid = 0;
    if (gather_tpl_data) {
      if (cm->delta_q_info.delta_q_present_flag) {
        const int num_planes = av1_num_planes(cm);
        const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
        setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes);
        av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col);
      }

      // TODO(jingning): revisit this function.
      if (cpi->oxcf.algo_cfg.enable_tpl_model && (0)) {
        adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col);
      }
    }
  }
#else
  (void)tile_info;
  (void)mi_row;
  (void)mi_col;
  (void)gather_tpl_data;
#endif

  x->reuse_inter_pred = false;
  x->txfm_search_params.mode_eval_type = DEFAULT_EVAL;
  reset_mb_rd_record(x->txfm_search_info.mb_rd_record);
  av1_zero(x->picked_ref_frames_mask);
  av1_invalid_rd_stats(rd_cost);
}

#if !CONFIG_REALTIME_ONLY
static void sb_qp_sweep_init_quantizers(AV1_COMP *cpi, ThreadData *td,
                                        const TileDataEnc *tile_data,
                                        SIMPLE_MOTION_DATA_TREE *sms_tree,
                                        RD_STATS *rd_cost, int mi_row,
                                        int mi_col, int delta_qp_ofs) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  const TileInfo *tile_info = &tile_data->tile_info;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
  assert(delta_q_info->delta_q_present_flag);
  const int delta_q_res = delta_q_info->delta_q_res;

  const SPEED_FEATURES *sf = &cpi->sf;
  const int use_simple_motion_search =
      (sf->part_sf.simple_motion_search_split ||
       sf->part_sf.simple_motion_search_prune_rect ||
       sf->part_sf.simple_motion_search_early_term_none ||
       sf->part_sf.ml_early_term_after_part_split_level) &&
      !frame_is_intra_only(cm);
  if (use_simple_motion_search) {
    av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_tree,
                                             mi_row, mi_col);
  }

  int current_qindex = x->rdmult_cur_qindex + delta_qp_ofs;

  MACROBLOCKD *const xd = &x->e_mbd;
  current_qindex = av1_adjust_q_from_delta_q_res(
      delta_q_res, xd->current_base_qindex, current_qindex);

  x->delta_qindex = current_qindex - cm->quant_params.base_qindex;

  av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
  xd->mi[0]->current_qindex = current_qindex;
  av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0);

  // keep track of any non-zero delta-q used
  td->deltaq_used |= (x->delta_qindex != 0);

  if (cpi->oxcf.tool_cfg.enable_deltalf_mode) {
    const int delta_lf_res = delta_q_info->delta_lf_res;
    const int lfmask = ~(delta_lf_res - 1);
    const int delta_lf_from_base =
        ((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask);
    const int8_t delta_lf =
        (int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
    const int frame_lf_count =
        av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
    const int mib_size = cm->seq_params->mib_size;

    // pre-set the delta lf for loop filter. Note that this value is set
    // before mi is assigned for each block in current superblock
    for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) {
      for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) {
        const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k);
        mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf;
        for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
          mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf;
        }
      }
    }
  }

  x->reuse_inter_pred = false;
  x->txfm_search_params.mode_eval_type = DEFAULT_EVAL;
  reset_mb_rd_record(x->txfm_search_info.mb_rd_record);
  av1_zero(x->picked_ref_frames_mask);
  av1_invalid_rd_stats(rd_cost);
}

static int sb_qp_sweep(AV1_COMP *const cpi, ThreadData *td,
                       TileDataEnc *tile_data, TokenExtra **tp, int mi_row,
                       int mi_col, BLOCK_SIZE bsize,
                       SIMPLE_MOTION_DATA_TREE *sms_tree,
                       SB_FIRST_PASS_STATS *sb_org_stats) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  RD_STATS rdc_winner, cur_rdc;
  av1_invalid_rd_stats(&rdc_winner);

  int best_qindex = td->mb.rdmult_delta_qindex;
  const int start = cm->current_frame.frame_type == KEY_FRAME ? -20 : -12;
  const int end = cm->current_frame.frame_type == KEY_FRAME ? 20 : 12;
  const int step = cm->delta_q_info.delta_q_res;

  for (int sweep_qp_delta = start; sweep_qp_delta <= end;
       sweep_qp_delta += step) {
    sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_tree, &cur_rdc, mi_row,
                                mi_col, sweep_qp_delta);

    const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
    const int backup_current_qindex =
        cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;

    av1_reset_mbmi(&cm->mi_params, bsize, mi_row, mi_col);
    av1_restore_sb_state(sb_org_stats, cpi, td, tile_data, mi_row, mi_col);
    cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex = backup_current_qindex;

    td->pc_root = av1_alloc_pc_tree_node(bsize);
    if (!td->pc_root)
      aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize,
                          &cur_rdc, cur_rdc, td->pc_root, sms_tree, NULL,
                          SB_DRY_PASS, NULL);

    if ((rdc_winner.rdcost > cur_rdc.rdcost) ||
        (abs(sweep_qp_delta) < abs(best_qindex - x->rdmult_delta_qindex) &&
         rdc_winner.rdcost == cur_rdc.rdcost)) {
      rdc_winner = cur_rdc;
      best_qindex = x->rdmult_delta_qindex + sweep_qp_delta;
    }
  }

  return best_qindex;
}
#endif  //! CONFIG_REALTIME_ONLY

/*!\brief Encode a superblock (RD-search-based)
 *
 * \ingroup partition_search
 * Conducts partition search for a superblock, based on rate-distortion costs,
 * from scratch or adjusting from a pre-calculated partition pattern.
 */
static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
                                    TileDataEnc *tile_data, TokenExtra **tp,
                                    const int mi_row, const int mi_col,
                                    const int seg_skip) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const SPEED_FEATURES *const sf = &cpi->sf;
  const TileInfo *const tile_info = &tile_data->tile_info;
  MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
                      get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  const int num_planes = av1_num_planes(cm);
  int dummy_rate;
  int64_t dummy_dist;
  RD_STATS dummy_rdc;
  SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root;

#if CONFIG_REALTIME_ONLY
  (void)seg_skip;
#endif  // CONFIG_REALTIME_ONLY

  init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col,
                    1);

  // Encode the superblock
  if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
    // partition search starting from a variance-based partition
    av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
    av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);

#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, rd_use_partition_time);
#endif
    td->pc_root = av1_alloc_pc_tree_node(sb_size);
    if (!td->pc_root)
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
                         &dummy_rate, &dummy_dist, 1, td->pc_root);
    av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0,
                               sf->part_sf.partition_search_type);
    td->pc_root = NULL;
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, rd_use_partition_time);
#endif
  }
#if !CONFIG_REALTIME_ONLY
  else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) {
    // partition search by adjusting a fixed-size partition
    av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
    const BLOCK_SIZE bsize =
        seg_skip ? sb_size : sf->part_sf.fixed_partition_size;
    av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
    td->pc_root = av1_alloc_pc_tree_node(sb_size);
    if (!td->pc_root)
      aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate PC_TREE");
    av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
                         &dummy_rate, &dummy_dist, 1, td->pc_root);
    av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0,
                               sf->part_sf.partition_search_type);
    td->pc_root = NULL;
  } else {
    // The most exhaustive recursive partition search
    SuperBlockEnc *sb_enc = &x->sb_enc;
    // No stats for overlay frames. Exclude key frame.
    av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc);

    // Reset the tree for simple motion search data
    av1_reset_simple_motion_tree_partition(sms_root, sb_size);

#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, rd_pick_partition_time);
#endif

    // Estimate the maximum square partition block size, which will be used
    // as the starting block size for partitioning the sb
    set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col);

    // The superblock can be searched only once, or twice consecutively for
    // better quality. Note that the meaning of passes here is different from
    // the general concept of 1-pass/2-pass encoders.
    const int num_passes =
        cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1;

    if (cpi->oxcf.sb_qp_sweep &&
        !(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME &&
          cpi->oxcf.gf_cfg.lag_in_frames == 0) &&
        cm->delta_q_info.delta_q_present_flag) {
      AOM_CHECK_MEM_ERROR(
          x->e_mbd.error_info, td->mb.sb_stats_cache,
          (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_stats_cache)));
      av1_backup_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row,
                          mi_col);
      assert(x->rdmult_delta_qindex == x->delta_qindex);

      const int best_qp_diff =
          sb_qp_sweep(cpi, td, tile_data, tp, mi_row, mi_col, sb_size, sms_root,
                      td->mb.sb_stats_cache) -
          x->rdmult_delta_qindex;

      sb_qp_sweep_init_quantizers(cpi, td, tile_data, sms_root, &dummy_rdc,
                                  mi_row, mi_col, best_qp_diff);

      const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
      const int backup_current_qindex =
          cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;

      av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col);
      av1_restore_sb_state(td->mb.sb_stats_cache, cpi, td, tile_data, mi_row,
                           mi_col);

      cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
          backup_current_qindex;
      aom_free(td->mb.sb_stats_cache);
      td->mb.sb_stats_cache = NULL;
    }
    if (num_passes == 1) {
#if CONFIG_PARTITION_SEARCH_ORDER
      if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) {
        av1_reset_part_sf(&cpi->sf.part_sf);
        av1_reset_sf_for_ext_part(cpi);
        RD_STATS this_rdc;
        av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row,
                                mi_col, sb_size, &this_rdc);
      } else {
        td->pc_root = av1_alloc_pc_tree_node(sb_size);
        if (!td->pc_root)
          aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                             "Failed to allocate PC_TREE");
        av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
                              &dummy_rdc, dummy_rdc, td->pc_root, sms_root,
                              NULL, SB_SINGLE_PASS, NULL);
      }
#else
      td->pc_root = av1_alloc_pc_tree_node(sb_size);
      if (!td->pc_root)
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate PC_TREE");
      av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
                            &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL,
                            SB_SINGLE_PASS, NULL);
#endif  // CONFIG_PARTITION_SEARCH_ORDER
    } else {
      // First pass
      AOM_CHECK_MEM_ERROR(
          x->e_mbd.error_info, td->mb.sb_fp_stats,
          (SB_FIRST_PASS_STATS *)aom_malloc(sizeof(*td->mb.sb_fp_stats)));
      av1_backup_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row,
                          mi_col);
      td->pc_root = av1_alloc_pc_tree_node(sb_size);
      if (!td->pc_root)
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate PC_TREE");
      av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
                            &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL,
                            SB_DRY_PASS, NULL);

      // Second pass
      init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row,
                        mi_col, 0);
      av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col);
      av1_reset_simple_motion_tree_partition(sms_root, sb_size);

      av1_restore_sb_state(td->mb.sb_fp_stats, cpi, td, tile_data, mi_row,
                           mi_col);

      td->pc_root = av1_alloc_pc_tree_node(sb_size);
      if (!td->pc_root)
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Failed to allocate PC_TREE");
      av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
                            &dummy_rdc, dummy_rdc, td->pc_root, sms_root, NULL,
                            SB_WET_PASS, NULL);
      aom_free(td->mb.sb_fp_stats);
      td->mb.sb_fp_stats = NULL;
    }

    // Reset to 0 so that it wouldn't be used elsewhere mistakenly.
    sb_enc->tpl_data_count = 0;
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, rd_pick_partition_time);
#endif
  }
#endif  // !CONFIG_REALTIME_ONLY

  // Update the inter rd model
  // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile.
  if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
      cm->tiles.cols == 1 && cm->tiles.rows == 1) {
    av1_inter_mode_data_fit(tile_data, x->rdmult);
  }
}

// Check if the cost update of symbols mode, coeff and dv are tile or off.
static AOM_INLINE int is_mode_coeff_dv_upd_freq_tile_or_off(
    const AV1_COMP *const cpi) {
  const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf;

  return (inter_sf->coeff_cost_upd_level <= INTERNAL_COST_UPD_TILE &&
          inter_sf->mode_cost_upd_level <= INTERNAL_COST_UPD_TILE &&
          cpi->sf.intra_sf.dv_cost_upd_level <= INTERNAL_COST_UPD_TILE);
}

// When row-mt is enabled and cost update frequencies are set to off/tile,
// processing of current SB can start even before processing of top-right SB
// is finished. This function checks if it is sufficient to wait for top SB
// to finish processing before current SB starts processing.
static AOM_INLINE int delay_wait_for_top_right_sb(const AV1_COMP *const cpi) {
  const MODE mode = cpi->oxcf.mode;
  if (mode == GOOD) return 0;

  if (mode == ALLINTRA)
    return is_mode_coeff_dv_upd_freq_tile_or_off(cpi);
  else if (mode == REALTIME)
    return (is_mode_coeff_dv_upd_freq_tile_or_off(cpi) &&
            cpi->sf.inter_sf.mv_cost_upd_level <= INTERNAL_COST_UPD_TILE);
  else
    return 0;
}

/*!\brief Calculate source SAD at superblock level using 64x64 block source SAD
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 */
static AOM_INLINE uint64_t get_sb_source_sad(const AV1_COMP *cpi, int mi_row,
                                             int mi_col) {
  if (cpi->src_sad_blk_64x64 == NULL) return UINT64_MAX;

  const AV1_COMMON *const cm = &cpi->common;
  const int blk_64x64_in_mis = (cm->seq_params->sb_size == BLOCK_128X128)
                                   ? (cm->seq_params->mib_size >> 1)
                                   : cm->seq_params->mib_size;
  const int num_blk_64x64_cols =
      (cm->mi_params.mi_cols + blk_64x64_in_mis - 1) / blk_64x64_in_mis;
  const int num_blk_64x64_rows =
      (cm->mi_params.mi_rows + blk_64x64_in_mis - 1) / blk_64x64_in_mis;
  const int blk_64x64_col_index = mi_col / blk_64x64_in_mis;
  const int blk_64x64_row_index = mi_row / blk_64x64_in_mis;
  uint64_t curr_sb_sad = UINT64_MAX;
  const uint64_t *const src_sad_blk_64x64_data =
      &cpi->src_sad_blk_64x64[blk_64x64_col_index +
                              blk_64x64_row_index * num_blk_64x64_cols];
  if (cm->seq_params->sb_size == BLOCK_128X128 &&
      blk_64x64_col_index + 1 < num_blk_64x64_cols &&
      blk_64x64_row_index + 1 < num_blk_64x64_rows) {
    // Calculate SB source SAD by accumulating source SAD of 64x64 blocks in the
    // superblock
    curr_sb_sad = src_sad_blk_64x64_data[0] + src_sad_blk_64x64_data[1] +
                  src_sad_blk_64x64_data[num_blk_64x64_cols] +
                  src_sad_blk_64x64_data[num_blk_64x64_cols + 1];
  } else if (cm->seq_params->sb_size == BLOCK_64X64) {
    curr_sb_sad = src_sad_blk_64x64_data[0];
  }
  return curr_sb_sad;
}

/*!\brief Determine whether grading content can be skipped based on sad stat
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 */
static AOM_INLINE bool is_calc_src_content_needed(AV1_COMP *cpi,
                                                  MACROBLOCK *const x,
                                                  int mi_row, int mi_col) {
  if (cpi->svc.spatial_layer_id < cpi->svc.number_spatial_layers - 1)
    return true;
  const uint64_t curr_sb_sad = get_sb_source_sad(cpi, mi_row, mi_col);
  if (curr_sb_sad == UINT64_MAX) return true;
  if (curr_sb_sad == 0) {
    x->content_state_sb.source_sad_nonrd = kZeroSad;
    return false;
  }
  AV1_COMMON *const cm = &cpi->common;
  bool do_calc_src_content = true;

  if (cpi->oxcf.speed < 9) return do_calc_src_content;

  // TODO(yunqing): Tune/validate the thresholds for 128x128 SB size.
  if (AOMMIN(cm->width, cm->height) < 360) {
    // Derive Average 64x64 block source SAD from SB source SAD
    const uint64_t avg_64x64_blk_sad =
        (cm->seq_params->sb_size == BLOCK_128X128) ? ((curr_sb_sad + 2) >> 2)
                                                   : curr_sb_sad;

    // The threshold is determined based on kLowSad and kHighSad threshold and
    // test results.
    uint64_t thresh_low = 15000;
    uint64_t thresh_high = 40000;

    if (cpi->sf.rt_sf.increase_source_sad_thresh) {
      thresh_low = thresh_low << 1;
      thresh_high = thresh_high << 1;
    }

    if (avg_64x64_blk_sad > thresh_low && avg_64x64_blk_sad < thresh_high) {
      do_calc_src_content = false;
      // Note: set x->content_state_sb.source_sad_rd as well if this is extended
      // to RTC rd path.
      x->content_state_sb.source_sad_nonrd = kMedSad;
    }
  }

  return do_calc_src_content;
}

/*!\brief Determine whether grading content is needed based on sf and frame stat
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 */
// TODO(any): consolidate sfs to make interface cleaner
static AOM_INLINE void grade_source_content_sb(AV1_COMP *cpi,
                                               MACROBLOCK *const x,
                                               TileDataEnc *tile_data,
                                               int mi_row, int mi_col) {
  AV1_COMMON *const cm = &cpi->common;
  if (cm->current_frame.frame_type == KEY_FRAME ||
      (cpi->ppi->use_svc &&
       cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)) {
    assert(x->content_state_sb.source_sad_nonrd == kMedSad);
    assert(x->content_state_sb.source_sad_rd == kMedSad);
    return;
  }
  bool calc_src_content = false;

  if (cpi->sf.rt_sf.source_metrics_sb_nonrd) {
    if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) {
      calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col);
    } else {
      x->content_state_sb.source_sad_nonrd = kZeroSad;
    }
  } else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) &&
             (cm->width * cm->height <= 352 * 288)) {
    if (cpi->rc.frame_source_sad > 0)
      calc_src_content = true;
    else
      x->content_state_sb.source_sad_rd = kZeroSad;
  }
  if (calc_src_content)
    av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col);
}

/*!\brief Encode a superblock row by breaking it into superblocks
 *
 * \ingroup partition_search
 * \callgraph
 * \callergraph
 * Do partition and mode search for an sb row: one row of superblocks filling up
 * the width of the current tile.
 */
static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
                                     TileDataEnc *tile_data, int mi_row,
                                     TokenExtra **tp) {
  AV1_COMMON *const cm = &cpi->common;
  const TileInfo *const tile_info = &tile_data->tile_info;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
  AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
  bool row_mt_enabled = mt_info->row_mt_enabled;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  const int mib_size = cm->seq_params->mib_size;
  const int mib_size_log2 = cm->seq_params->mib_size_log2;
  const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
  const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, encode_sb_row_time);
#endif

  // Initialize the left context for the new SB row
  av1_zero_left_context(xd);

  // Reset delta for quantizer and loof filters at the beginning of every tile
  if (mi_row == tile_info->mi_row_start || row_mt_enabled) {
    if (cm->delta_q_info.delta_q_present_flag)
      xd->current_base_qindex = cm->quant_params.base_qindex;
    if (cm->delta_q_info.delta_lf_present_flag) {
      av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
    }
  }

  reset_thresh_freq_fact(x);

  // Code each SB in the row
  for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0;
       mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) {
    // In realtime/allintra mode and when frequency of cost updates is off/tile,
    // wait for the top superblock to finish encoding. Otherwise, wait for the
    // top-right superblock to finish encoding.
    enc_row_mt->sync_read_ptr(
        row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi));

#if CONFIG_MULTITHREAD
    if (row_mt_enabled) {
      pthread_mutex_lock(enc_row_mt->mutex_);
      const bool row_mt_exit = enc_row_mt->row_mt_exit;
      pthread_mutex_unlock(enc_row_mt->mutex_);
      // Exit in case any worker has encountered an error.
      if (row_mt_exit) return;
    }
#endif

    const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled;
    if (update_cdf && (tile_info->mi_row_start != mi_row)) {
      if ((tile_info->mi_col_start == mi_col)) {
        // restore frame context at the 1st column sb
        memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx));
      } else {
        // update context
        int wt_left = AVG_CDF_WEIGHT_LEFT;
        int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT;
        if (tile_info->mi_col_end > (mi_col + mib_size))
          av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile,
                              wt_left, wt_tr);
        else
          av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1,
                              wt_left, wt_tr);
      }
    }

    // Update the rate cost tables for some symbols
    av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col);

    // Reset color coding related parameters
    av1_zero(x->color_sensitivity_sb);
    av1_zero(x->color_sensitivity_sb_g);
    av1_zero(x->color_sensitivity_sb_alt);
    av1_zero(x->color_sensitivity);
    x->content_state_sb.source_sad_nonrd = kMedSad;
    x->content_state_sb.source_sad_rd = kMedSad;
    x->content_state_sb.lighting_change = 0;
    x->content_state_sb.low_sumdiff = 0;
    x->force_zeromv_skip_for_sb = 0;
    x->sb_me_block = 0;
    x->sb_me_partition = 0;
    x->sb_me_mv.as_int = 0;
    x->sb_force_fixed_part = 1;

    if (cpi->oxcf.mode == ALLINTRA) {
      x->intra_sb_rdmult_modifier = 128;
    }

    xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv;
    x->source_variance = UINT_MAX;
    td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);

    // Get segment id and skip flag
    const struct segmentation *const seg = &cm->seg;
    int seg_skip = 0;
    if (seg->enabled) {
      const uint8_t *const map =
          seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
      const uint8_t segment_id =
          map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col)
              : 0;
      seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
    }

    produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col);

    init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks,
                                        sb_size);

    // Grade the temporal variation of the sb, the grade will be used to decide
    // fast mode search strategy for coding blocks
    if (!seg_skip) grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col);

    // encode the superblock
    if (use_nonrd_mode) {
      encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip);
    } else {
      encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip);
    }

    // Update the top-right context in row_mt coding
    if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) {
      if (sb_cols_in_tile == 1)
        memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx));
      else if (sb_col_in_tile >= 1)
        memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx,
               sizeof(*xd->tile_ctx));
    }
    enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile,
                               sb_cols_in_tile);
  }

#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, encode_sb_row_time);
#endif
}

static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCK *const x = &cpi->td.mb;
  MACROBLOCKD *const xd = &x->e_mbd;

  // Copy data over into macro block data structures.
  av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
                       cm->seq_params->sb_size);

  av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
                         cm->seq_params->subsampling_y, num_planes);
}

void av1_alloc_tile_data(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;

  av1_row_mt_mem_dealloc(cpi);

  aom_free(cpi->tile_data);
  cpi->allocated_tiles = 0;
  enc_row_mt->allocated_tile_cols = 0;
  enc_row_mt->allocated_tile_rows = 0;

  CHECK_MEM_ERROR(
      cm, cpi->tile_data,
      aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));

  cpi->allocated_tiles = tile_cols * tile_rows;
  enc_row_mt->allocated_tile_cols = tile_cols;
  enc_row_mt->allocated_tile_rows = tile_rows;
  for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
    for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
      const int tile_index = tile_row * tile_cols + tile_col;
      TileDataEnc *const this_tile = &cpi->tile_data[tile_index];
      av1_zero(this_tile->row_mt_sync);
      this_tile->row_ctx = NULL;
    }
  }
}

void av1_init_tile_data(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int tile_col, tile_row;
  TokenInfo *const token_info = &cpi->token_info;
  TokenExtra *pre_tok = token_info->tile_tok[0][0];
  TokenList *tplist = token_info->tplist[0][0];
  unsigned int tile_tok = 0;
  int tplist_count = 0;

  if (!is_stat_generation_stage(cpi) &&
      cm->features.allow_screen_content_tools) {
    // Number of tokens for which token info needs to be allocated.
    unsigned int tokens_required =
        get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols,
                        MAX_SB_SIZE_LOG2, num_planes);
    // Allocate/reallocate memory for token related info if the number of tokens
    // required is more than the number of tokens already allocated. This could
    // occur in case of the following:
    // 1) If the memory is not yet allocated
    // 2) If the frame dimensions have changed
    const bool realloc_tokens = tokens_required > token_info->tokens_allocated;
    if (realloc_tokens) {
      free_token_info(token_info);
      alloc_token_info(cm, token_info, tokens_required);
      pre_tok = token_info->tile_tok[0][0];
      tplist = token_info->tplist[0][0];
    }
  }

  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
    for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
      TileDataEnc *const tile_data =
          &cpi->tile_data[tile_row * tile_cols + tile_col];
      TileInfo *const tile_info = &tile_data->tile_info;
      av1_tile_init(tile_info, cm, tile_row, tile_col);
      tile_data->firstpass_top_mv = kZeroMv;
      tile_data->abs_sum_level = 0;

      if (is_token_info_allocated(token_info)) {
        token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
        pre_tok = token_info->tile_tok[tile_row][tile_col];
        tile_tok = allocated_tokens(
            tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2,
            num_planes);
        token_info->tplist[tile_row][tile_col] = tplist + tplist_count;
        tplist = token_info->tplist[tile_row][tile_col];
        tplist_count = av1_get_sb_rows_in_tile(cm, tile_info);
      }
      tile_data->allow_update_cdf = !cm->tiles.large_scale;
      tile_data->allow_update_cdf = tile_data->allow_update_cdf &&
                                    !cm->features.disable_cdf_update &&
                                    !delay_wait_for_top_right_sb(cpi);
      tile_data->tctx = *cm->fc;
    }
  }
}

// Populate the start palette token info prior to encoding an SB row.
static AOM_INLINE void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info,
                                       int tile_row, int tile_col, int mi_row,
                                       TokenExtra **tp) {
  const TokenInfo *token_info = &cpi->token_info;
  if (!is_token_info_allocated(token_info)) return;

  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col];
  const int sb_row_in_tile =
      (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;

  get_start_tok(cpi, tile_row, tile_col, mi_row, tp,
                cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes);
  assert(tplist != NULL);
  tplist[sb_row_in_tile].start = *tp;
}

// Populate the token count after encoding an SB row.
static AOM_INLINE void populate_token_count(AV1_COMP *cpi,
                                            const TileInfo *tile_info,
                                            int tile_row, int tile_col,
                                            int mi_row, TokenExtra *tok) {
  const TokenInfo *token_info = &cpi->token_info;
  if (!is_token_info_allocated(token_info)) return;

  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  TokenList *const tplist = token_info->tplist[tile_row][tile_col];
  const int sb_row_in_tile =
      (mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
  const int tile_mb_cols =
      (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
  const int num_mb_rows_in_sb =
      ((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4;
  tplist[sb_row_in_tile].count =
      (unsigned int)(tok - tplist[sb_row_in_tile].start);

  assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <=
         get_token_alloc(num_mb_rows_in_sb, tile_mb_cols,
                         cm->seq_params->mib_size_log2 + MI_SIZE_LOG2,
                         num_planes));

  (void)num_planes;
  (void)tile_mb_cols;
  (void)num_mb_rows_in_sb;
}

/*!\brief Encode a superblock row
 *
 * \ingroup partition_search
 */
void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row,
                       int tile_col, int mi_row) {
  AV1_COMMON *const cm = &cpi->common;
  const int tile_cols = cm->tiles.cols;
  TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
  const TileInfo *const tile_info = &this_tile->tile_info;
  TokenExtra *tok = NULL;

  get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok);

  encode_sb_row(cpi, td, this_tile, mi_row, &tok);

  populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok);
}

/*!\brief Encode a tile
 *
 * \ingroup partition_search
 */
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
                     int tile_col) {
  AV1_COMMON *const cm = &cpi->common;
  TileDataEnc *const this_tile =
      &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
  const TileInfo *const tile_info = &this_tile->tile_info;

  if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile);

  av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start,
                         tile_info->mi_col_end, tile_row);
  av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
                         &td->mb.e_mbd);

  if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra)
    cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);

  if (td->mb.txfm_search_info.mb_rd_record != NULL) {
    av1_crc32c_calculator_init(
        &td->mb.txfm_search_info.mb_rd_record->crc_calculator);
  }

  for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
       mi_row += cm->seq_params->mib_size) {
    av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
  }
  this_tile->abs_sum_level = td->abs_sum_level;
}

/*!\brief Break one frame into tiles and encode the tiles
 *
 * \ingroup partition_search
 *
 * \param[in]    cpi    Top-level encoder structure
 */
static AOM_INLINE void encode_tiles(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  int tile_col, tile_row;

  MACROBLOCK *const mb = &cpi->td.mb;
  assert(IMPLIES(cpi->tile_data == NULL,
                 cpi->allocated_tiles < tile_cols * tile_rows));
  if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);

  av1_init_tile_data(cpi);
  av1_alloc_mb_data(cpi, mb);

  for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
    for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
      TileDataEnc *const this_tile =
          &cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
      cpi->td.intrabc_used = 0;
      cpi->td.deltaq_used = 0;
      cpi->td.abs_sum_level = 0;
      cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0;
      cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0;
      cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
      cpi->td.mb.tile_pb_ctx = &this_tile->tctx;
      av1_init_rtc_counters(&cpi->td.mb);
      cpi->td.mb.palette_pixels = 0;
      av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
      if (!frame_is_intra_only(&cpi->common))
        av1_accumulate_rtc_counters(cpi, &cpi->td.mb);
      cpi->palette_pixel_num += cpi->td.mb.palette_pixels;
      cpi->intrabc_used |= cpi->td.intrabc_used;
      cpi->deltaq_used |= cpi->td.deltaq_used;
    }
  }

  av1_dealloc_mb_data(mb, av1_num_planes(cm));
}

// Set the relative distance of a reference frame w.r.t. current frame
static AOM_INLINE void set_rel_frame_dist(
    const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info,
    const int ref_frame_flags) {
  MV_REFERENCE_FRAME ref_frame;
  int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX;
  ref_frame_dist_info->nearest_past_ref = NONE_FRAME;
  ref_frame_dist_info->nearest_future_ref = NONE_FRAME;
  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0;
    if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
      int dist = av1_encoder_get_relative_dist(
          cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME],
          cm->current_frame.display_order_hint);
      ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist;
      // Get the nearest ref_frame in the past
      if (abs(dist) < min_past_dist && dist < 0) {
        ref_frame_dist_info->nearest_past_ref = ref_frame;
        min_past_dist = abs(dist);
      }
      // Get the nearest ref_frame in the future
      if (dist < min_future_dist && dist > 0) {
        ref_frame_dist_info->nearest_future_ref = ref_frame;
        min_future_dist = dist;
      }
    }
  }
}

static INLINE int refs_are_one_sided(const AV1_COMMON *cm) {
  assert(!frame_is_intra_only(cm));

  int one_sided_refs = 1;
  const int cur_display_order_hint = cm->current_frame.display_order_hint;
  for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
    const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
    if (buf == NULL) continue;
    if (av1_encoder_get_relative_dist(buf->display_order_hint,
                                      cur_display_order_hint) > 0) {
      one_sided_refs = 0;  // bwd reference
      break;
    }
  }
  return one_sided_refs;
}

static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm,
                                             int ref_order_hint[2]) {
  const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
  ref_order_hint[0] = ref_order_hint[1] = 0;
  if (!skip_mode_info->skip_mode_allowed) return;

  const RefCntBuffer *const buf_0 =
      get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0);
  const RefCntBuffer *const buf_1 =
      get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1);
  assert(buf_0 != NULL && buf_1 != NULL);

  ref_order_hint[0] = buf_0->order_hint;
  ref_order_hint[1] = buf_1->order_hint;
}

static int check_skip_mode_enabled(AV1_COMP *const cpi) {
  AV1_COMMON *const cm = &cpi->common;

  av1_setup_skip_mode_allowed(cm);
  if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0;

  // Turn off skip mode if the temporal distances of the reference pair to the
  // current frame are different by more than 1 frame.
  const int cur_offset = (int)cm->current_frame.order_hint;
  int ref_offset[2];
  get_skip_mode_ref_offsets(cm, ref_offset);
  const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info,
                                            cur_offset, ref_offset[0]);
  const int cur_to_ref1 = abs(get_relative_dist(
      &cm->seq_params->order_hint_info, cur_offset, ref_offset[1]));
  if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0;

  // High Latency: Turn off skip mode if all refs are fwd.
  if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0;

  const int ref_frame[2] = {
    cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME,
    cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME
  };
  if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[0]]) ||
      !(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[1]]))
    return 0;

  return 1;
}

static AOM_INLINE void set_default_interp_skip_flags(
    const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) {
  const int num_planes = av1_num_planes(cm);
  interp_search_flags->default_interp_skip_flags =
      (num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA
                        : INTERP_SKIP_LUMA_SKIP_CHROMA;
}

static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) {
  if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
       cpi->sf.inter_sf.disable_onesided_comp) &&
      cpi->all_one_sided_refs) {
    // Disable all compound references
    cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES);
  } else if (!cpi->sf.rt_sf.use_nonrd_pick_mode &&
             cpi->sf.inter_sf.selective_ref_frame >= 2) {
    AV1_COMMON *const cm = &cpi->common;
    const int cur_frame_display_order_hint =
        cm->current_frame.display_order_hint;
    unsigned int *ref_display_order_hint =
        cm->cur_frame->ref_display_order_hint;
    const int arf2_dist = av1_encoder_get_relative_dist(
        ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME],
        cur_frame_display_order_hint);
    const int bwd_dist = av1_encoder_get_relative_dist(
        ref_display_order_hint[BWDREF_FRAME - LAST_FRAME],
        cur_frame_display_order_hint);

    for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) {
      MV_REFERENCE_FRAME rf[2];
      av1_set_ref_frame(rf, ref_idx);
      if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) ||
          !(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) {
        continue;
      }

      if (!cpi->all_one_sided_refs) {
        int ref_dist[2];
        for (int i = 0; i < 2; ++i) {
          ref_dist[i] = av1_encoder_get_relative_dist(
              ref_display_order_hint[rf[i] - LAST_FRAME],
              cur_frame_display_order_hint);
        }

        // One-sided compound is used only when all reference frames are
        // one-sided.
        if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) {
          cpi->prune_ref_frame_mask |= 1 << ref_idx;
        }
      }

      if (cpi->sf.inter_sf.selective_ref_frame >= 4 &&
          (rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) &&
          (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) {
        // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references.
        if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) {
          // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer
          // reference to the current frame than ALTREF2_FRAME
          cpi->prune_ref_frame_mask |= 1 << ref_idx;
        }
      }
    }
  }
}

static int allow_deltaq_mode(AV1_COMP *cpi) {
#if !CONFIG_REALTIME_ONLY
  AV1_COMMON *const cm = &cpi->common;
  BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  int sbs_wide = mi_size_wide[sb_size];
  int sbs_high = mi_size_high[sb_size];

  int64_t delta_rdcost = 0;
  for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) {
    for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) {
      int64_t this_delta_rdcost = 0;
      av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size,
                                     mi_row, mi_col);
      delta_rdcost += this_delta_rdcost;
    }
  }
  return delta_rdcost < 0;
#else
  (void)cpi;
  return 1;
#endif  // !CONFIG_REALTIME_ONLY
}

#define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000
#define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4

// Populates block level thresholds for force zeromv-skip decision
static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) {
  if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return;

  // Threshold for forcing zeromv-skip decision is as below:
  // For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103.
  // For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221
  // allowing slightly higher error for smaller blocks.
  // Per Pixel Threshold of 64x64 block        Area of 64x64 block         1  1
  // ------------------------------------=sqrt(---------------------)=sqrt(-)=-
  // Per Pixel Threshold of 128x128 block      Area of 128x128 block       4  2
  // Thus, per pixel thresholds for blocks of size 32x32, 16x16,...  can be
  // chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for
  // small blocks, the same is clipped to 4.
  const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF;
  const int num_128x128_pix =
      block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128];

  for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) {
    const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize];

    // Calculate the threshold for zeromv-skip decision based on area of the
    // partition
    unsigned int thresh_exit_part_blk =
        (unsigned int)(thresh_exit_128x128_part *
                           sqrt((double)num_block_pix / num_128x128_pix) +
                       0.5);
    thresh_exit_part_blk = AOMMIN(
        thresh_exit_part_blk,
        (unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix));
    cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk;
  }
}

static void free_block_hash_buffers(uint32_t *block_hash_values[2][2],
                                    int8_t *is_block_same[2][3]) {
  for (int k = 0; k < 2; ++k) {
    for (int j = 0; j < 2; ++j) {
      aom_free(block_hash_values[k][j]);
    }

    for (int j = 0; j < 3; ++j) {
      aom_free(is_block_same[k][j]);
    }
  }
}

/*!\brief Encoder setup(only for the current frame), encoding, and recontruction
 * for a single frame
 *
 * \ingroup high_level_algo
 */
static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) {
  ThreadData *const td = &cpi->td;
  MACROBLOCK *const x = &td->mb;
  AV1_COMMON *const cm = &cpi->common;
  CommonModeInfoParams *const mi_params = &cm->mi_params;
  FeatureFlags *const features = &cm->features;
  MACROBLOCKD *const xd = &x->e_mbd;
  RD_COUNTS *const rdc = &cpi->td.rd_counts;
#if CONFIG_FPMT_TEST
  FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs;
  FrameProbInfo *const temp_frame_probs_simulation =
      &cpi->ppi->temp_frame_probs_simulation;
#endif
  FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs;
  IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info;
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
  const AV1EncoderConfig *const oxcf = &cpi->oxcf;
  const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode;
  int i;

  if (!cpi->sf.rt_sf.use_nonrd_pick_mode) {
    mi_params->setup_mi(mi_params);
  }

  set_mi_offsets(mi_params, xd, 0, 0);

  av1_zero(*td->counts);
  av1_zero(rdc->tx_type_used);
  av1_zero(rdc->obmc_used);
  av1_zero(rdc->warped_used);
  av1_zero(rdc->seg_tmp_pred_cost);

  // Reset the flag.
  cpi->intrabc_used = 0;
  // Need to disable intrabc when superres is selected
  if (av1_superres_scaled(cm)) {
    features->allow_intrabc = 0;
  }

  features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc);

  if (features->allow_warped_motion &&
      cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    int warped_probability =
#if CONFIG_FPMT_TEST
        cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE
            ? temp_frame_probs->warped_probs[update_type]
            :
#endif  // CONFIG_FPMT_TEST
            frame_probs->warped_probs[update_type];
    if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh)
      features->allow_warped_motion = 0;
  }

  int hash_table_created = 0;
  if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) &&
      !cpi->sf.rt_sf.use_nonrd_pick_mode) {
    // TODO(any): move this outside of the recoding loop to avoid recalculating
    // the hash table.
    // add to hash table
    const int pic_width = cpi->source->y_crop_width;
    const int pic_height = cpi->source->y_crop_height;
    uint32_t *block_hash_values[2][2] = { { NULL } };
    int8_t *is_block_same[2][3] = { { NULL } };
    int k, j;
    bool error = false;

    for (k = 0; k < 2 && !error; ++k) {
      for (j = 0; j < 2; ++j) {
        block_hash_values[k][j] = (uint32_t *)aom_malloc(
            sizeof(*block_hash_values[0][0]) * pic_width * pic_height);
        if (!block_hash_values[k][j]) {
          error = true;
          break;
        }
      }

      for (j = 0; j < 3 && !error; ++j) {
        is_block_same[k][j] = (int8_t *)aom_malloc(
            sizeof(*is_block_same[0][0]) * pic_width * pic_height);
        if (!is_block_same[k][j]) error = true;
      }
    }

    av1_hash_table_init(intrabc_hash_info);
    if (error ||
        !av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) {
      free_block_hash_buffers(block_hash_values, is_block_same);
      aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                         "Error allocating intrabc_hash_table and buffers");
    }
    hash_table_created = 1;
    av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source,
                                      block_hash_values[0], is_block_same[0]);
    // Hash data generated for screen contents is used for intraBC ME
    const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize];
    const int max_sb_size =
        (1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2));
    int src_idx = 0;
    for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) {
      const int dst_idx = !src_idx;
      av1_generate_block_hash_value(
          intrabc_hash_info, cpi->source, size, block_hash_values[src_idx],
          block_hash_values[dst_idx], is_block_same[src_idx],
          is_block_same[dst_idx]);
      if (size >= min_alloc_size) {
        if (!av1_add_to_hash_map_by_row_with_precal_data(
                &intrabc_hash_info->intrabc_hash_table,
                block_hash_values[dst_idx], is_block_same[dst_idx][2],
                pic_width, pic_height, size)) {
          error = true;
          break;
        }
      }
    }

    free_block_hash_buffers(block_hash_values, is_block_same);

    if (error) {
      aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                         "Error adding data to intrabc_hash_table");
    }
  }

  const CommonQuantParams *quant_params = &cm->quant_params;
  for (i = 0; i < MAX_SEGMENTS; ++i) {
    const int qindex =
        cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex)
                        : quant_params->base_qindex;
    xd->lossless[i] =
        qindex == 0 && quant_params->y_dc_delta_q == 0 &&
        quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
        quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
    if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1;
    xd->qindex[i] = qindex;
    if (xd->lossless[i]) {
      cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT;
    } else {
      cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients;
    }
  }
  features->coded_lossless = is_coded_lossless(cm, xd);
  features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);

  // Fix delta q resolution for the moment

  cm->delta_q_info.delta_q_res = 0;
  if (cpi->use_ducky_encode) {
    cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_DUCKY_ENCODE;
  } else if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ) {
    if (deltaq_mode == DELTA_Q_OBJECTIVE)
      cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE;
    else if (deltaq_mode == DELTA_Q_PERCEPTUAL)
      cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
    else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI)
      cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
    else if (deltaq_mode == DELTA_Q_USER_RATING_BASED)
      cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
    else if (deltaq_mode == DELTA_Q_HDR)
      cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
    // Set delta_q_present_flag before it is used for the first time
    cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES;
    cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q;

    // Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q
    // is used for ineligible frames. That effectively will turn off row_mt
    // usage. Note objective delta_q and tpl eligible frames are only altref
    // frames currently.
    const GF_GROUP *gf_group = &cpi->ppi->gf_group;
    if (cm->delta_q_info.delta_q_present_flag) {
      if (deltaq_mode == DELTA_Q_OBJECTIVE &&
          gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE)
        cm->delta_q_info.delta_q_present_flag = 0;

      if (deltaq_mode == DELTA_Q_OBJECTIVE &&
          cm->delta_q_info.delta_q_present_flag) {
        cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi);
      }
    }

    // Reset delta_q_used flag
    cpi->deltaq_used = 0;

    cm->delta_q_info.delta_lf_present_flag =
        cm->delta_q_info.delta_q_present_flag &&
        oxcf->tool_cfg.enable_deltalf_mode;
    cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI;

    // update delta_q_present_flag and delta_lf_present_flag based on
    // base_qindex
    cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0;
    cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0;
  } else if (cpi->cyclic_refresh->apply_cyclic_refresh ||
             cpi->svc.number_temporal_layers == 1) {
    cpi->cyclic_refresh->actual_num_seg1_blocks = 0;
    cpi->cyclic_refresh->actual_num_seg2_blocks = 0;
  }
  cpi->rc.cnt_zeromv = 0;

  av1_frame_init_quantizer(cpi);
  init_encode_frame_mb_context(cpi);
  set_default_interp_skip_flags(cm, &cpi->interp_search_flags);

  if (cm->prev_frame && cm->prev_frame->seg.enabled)
    cm->last_frame_seg_map = cm->prev_frame->seg_map;
  else
    cm->last_frame_seg_map = NULL;
  if (features->allow_intrabc || features->coded_lossless) {
    av1_set_default_ref_deltas(cm->lf.ref_deltas);
    av1_set_default_mode_deltas(cm->lf.mode_deltas);
  } else if (cm->prev_frame) {
    memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
    memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
  }
  memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES);
  memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS);

  cpi->all_one_sided_refs =
      frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm);

  cpi->prune_ref_frame_mask = 0;
  // Figure out which ref frames can be skipped at frame level.
  setup_prune_ref_frame_mask(cpi);

  x->txfm_search_info.txb_split_count = 0;
#if CONFIG_SPEED_STATS
  x->txfm_search_info.tx_search_count = 0;
#endif  // CONFIG_SPEED_STATS

#if !CONFIG_REALTIME_ONLY
#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, av1_compute_global_motion_time);
#endif
  av1_compute_global_motion_facade(cpi);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, av1_compute_global_motion_time);
#endif
#endif  // !CONFIG_REALTIME_ONLY

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, av1_setup_motion_field_time);
#endif
  av1_calculate_ref_frame_side(cm);
  if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, av1_setup_motion_field_time);
#endif

  cm->current_frame.skip_mode_info.skip_mode_flag =
      check_skip_mode_enabled(cpi);

  // Initialization of skip mode cost depends on the value of
  // 'skip_mode_flag'. This initialization happens in the function
  // av1_fill_mode_rates(), which is in turn called in
  // av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts()
  // has to be called after 'skip_mode_flag' is initialized.
  av1_initialize_rd_consts(cpi);
  av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex);
  populate_thresh_to_force_zeromv_skip(cpi);

  enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy;
  enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy;
  mt_info->row_mt_enabled = 0;
  mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS],
                                       cm->tiles.cols * cm->tiles.rows) > 1;

  if (oxcf->row_mt && (mt_info->num_workers > 1)) {
    mt_info->row_mt_enabled = 1;
    enc_row_mt->sync_read_ptr = av1_row_mt_sync_read;
    enc_row_mt->sync_write_ptr = av1_row_mt_sync_write;
    av1_encode_tiles_row_mt(cpi);
  } else {
    if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) {
      av1_encode_tiles_mt(cpi);
    } else {
      // Preallocate the pc_tree for realtime coding to reduce the cost of
      // memory allocation.
      const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
      if (use_nonrd_mode) {
        td->pc_root = av1_alloc_pc_tree_node(cm->seq_params->sb_size);
        if (!td->pc_root)
          aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                             "Failed to allocate PC_TREE");
      } else {
        td->pc_root = NULL;
      }

      encode_tiles(cpi);
      av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0,
                                 cpi->sf.part_sf.partition_search_type);
      td->pc_root = NULL;
    }
  }

  // If intrabc is allowed but never selected, reset the allow_intrabc flag.
  if (features->allow_intrabc && !cpi->intrabc_used) {
    features->allow_intrabc = 0;
  }
  if (features->allow_intrabc) {
    cm->delta_q_info.delta_lf_present_flag = 0;
  }

  if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
    cm->delta_q_info.delta_q_present_flag = 0;
  }

  // Set the transform size appropriately before bitstream creation
  const MODE_EVAL_TYPE eval_type =
      cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch
          ? WINNER_MODE_EVAL
          : DEFAULT_EVAL;
  const TX_SIZE_SEARCH_METHOD tx_search_type =
      cpi->winner_mode_params.tx_size_search_methods[eval_type];
  assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL);
  features->tx_mode = select_tx_mode(cm, tx_search_type);

  // Retain the frame level probability update conditions for parallel frames.
  // These conditions will be consumed during postencode stage to update the
  // probability.
  if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
    cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] =
        cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats;
    cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] =
        (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
         cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX);
    cpi->do_update_frame_probs_warp[cpi->num_frame_recode] =
        (features->allow_warped_motion &&
         cpi->sf.inter_sf.prune_warped_prob_thresh > 0);
    cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] =
        (cm->current_frame.frame_type != KEY_FRAME &&
         cpi->sf.interp_sf.adaptive_interp_filter_search == 2 &&
         features->interp_filter == SWITCHABLE);
  }

  if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats ||
      ((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh !=
        INT_MAX) &&
       (cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    for (i = 0; i < TX_SIZES_ALL; i++) {
      int sum = 0;
      int j;
      int left = MAX_TX_TYPE_PROB;

      for (j = 0; j < TX_TYPES; j++)
        sum += cpi->td.rd_counts.tx_type_used[i][j];

      for (j = TX_TYPES - 1; j >= 0; j--) {
        int update_txtype_frameprobs = 1;
        const int new_prob =
            sum ? MAX_TX_TYPE_PROB * cpi->td.rd_counts.tx_type_used[i][j] / sum
                : (j ? 0 : MAX_TX_TYPE_PROB);
#if CONFIG_FPMT_TEST
        if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
          if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] ==
              0) {
            int prob =
                (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] +
                 new_prob) >>
                1;
            left -= prob;
            if (j == 0) prob += left;
            temp_frame_probs_simulation->tx_type_probs[update_type][i][j] =
                prob;
            // Copy temp_frame_probs_simulation to temp_frame_probs
            for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
                 update_type_idx++) {
              temp_frame_probs->tx_type_probs[update_type_idx][i][j] =
                  temp_frame_probs_simulation
                      ->tx_type_probs[update_type_idx][i][j];
            }
          }
          update_txtype_frameprobs = 0;
        }
#endif  // CONFIG_FPMT_TEST
        // Track the frame probabilities of parallel encode frames to update
        // during postencode stage.
        if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
          update_txtype_frameprobs = 0;
          cpi->frame_new_probs[cpi->num_frame_recode]
              .tx_type_probs[update_type][i][j] = new_prob;
        }
        if (update_txtype_frameprobs) {
          int prob =
              (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1;
          left -= prob;
          if (j == 0) prob += left;
          frame_probs->tx_type_probs[update_type][i][j] = prob;
        }
      }
    }
  }

  if (cm->seg.enabled) {
    cm->seg.temporal_update = 1;
    if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1])
      cm->seg.temporal_update = 0;
  }

  if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
      cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);

    for (i = 0; i < BLOCK_SIZES_ALL; i++) {
      int sum = 0;
      int update_obmc_frameprobs = 1;
      for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j];

      const int new_prob =
          sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0;
#if CONFIG_FPMT_TEST
      if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
        if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
          temp_frame_probs_simulation->obmc_probs[update_type][i] =
              (temp_frame_probs_simulation->obmc_probs[update_type][i] +
               new_prob) >>
              1;
          // Copy temp_frame_probs_simulation to temp_frame_probs
          for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
               update_type_idx++) {
            temp_frame_probs->obmc_probs[update_type_idx][i] =
                temp_frame_probs_simulation->obmc_probs[update_type_idx][i];
          }
        }
        update_obmc_frameprobs = 0;
      }
#endif  // CONFIG_FPMT_TEST
      // Track the frame probabilities of parallel encode frames to update
      // during postencode stage.
      if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
        update_obmc_frameprobs = 0;
        cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] =
            new_prob;
      }
      if (update_obmc_frameprobs) {
        frame_probs->obmc_probs[update_type][i] =
            (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1;
      }
    }
  }

  if (features->allow_warped_motion &&
      cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    int update_warp_frameprobs = 1;
    int sum = 0;
    for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i];
    const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0;
#if CONFIG_FPMT_TEST
    if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
      if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
        temp_frame_probs_simulation->warped_probs[update_type] =
            (temp_frame_probs_simulation->warped_probs[update_type] +
             new_prob) >>
            1;
        // Copy temp_frame_probs_simulation to temp_frame_probs
        for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
             update_type_idx++) {
          temp_frame_probs->warped_probs[update_type_idx] =
              temp_frame_probs_simulation->warped_probs[update_type_idx];
        }
      }
      update_warp_frameprobs = 0;
    }
#endif  // CONFIG_FPMT_TEST
    // Track the frame probabilities of parallel encode frames to update
    // during postencode stage.
    if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
      update_warp_frameprobs = 0;
      cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] =
          new_prob;
    }
    if (update_warp_frameprobs) {
      frame_probs->warped_probs[update_type] =
          (frame_probs->warped_probs[update_type] + new_prob) >> 1;
    }
  }

  if (cm->current_frame.frame_type != KEY_FRAME &&
      cpi->sf.interp_sf.adaptive_interp_filter_search == 2 &&
      features->interp_filter == SWITCHABLE) {
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);

    for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
      int sum = 0;
      int j;
      int left = 1536;

      for (j = 0; j < SWITCHABLE_FILTERS; j++) {
        sum += cpi->td.counts->switchable_interp[i][j];
      }

      for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) {
        int update_interpfilter_frameprobs = 1;
        const int new_prob =
            sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum
                : (j ? 0 : 1536);
#if CONFIG_FPMT_TEST
        if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
          if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] ==
              0) {
            int prob = (temp_frame_probs_simulation
                            ->switchable_interp_probs[update_type][i][j] +
                        new_prob) >>
                       1;
            left -= prob;
            if (j == 0) prob += left;
            temp_frame_probs_simulation
                ->switchable_interp_probs[update_type][i][j] = prob;
            // Copy temp_frame_probs_simulation to temp_frame_probs
            for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
                 update_type_idx++) {
              temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] =
                  temp_frame_probs_simulation
                      ->switchable_interp_probs[update_type_idx][i][j];
            }
          }
          update_interpfilter_frameprobs = 0;
        }
#endif  // CONFIG_FPMT_TEST
        // Track the frame probabilities of parallel encode frames to update
        // during postencode stage.
        if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
          update_interpfilter_frameprobs = 0;
          cpi->frame_new_probs[cpi->num_frame_recode]
              .switchable_interp_probs[update_type][i][j] = new_prob;
        }
        if (update_interpfilter_frameprobs) {
          int prob = (frame_probs->switchable_interp_probs[update_type][i][j] +
                      new_prob) >>
                     1;
          left -= prob;
          if (j == 0) prob += left;
          frame_probs->switchable_interp_probs[update_type][i][j] = prob;
        }
      }
    }
  }
  if (hash_table_created) {
    av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table);
  }
}

/*!\brief Setup reference frame buffers and encode a frame
 *
 * \ingroup high_level_algo
 * \callgraph
 * \callergraph
 *
 * \param[in]    cpi    Top-level encoder structure
 */
void av1_encode_frame(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  CurrentFrame *const current_frame = &cm->current_frame;
  FeatureFlags *const features = &cm->features;
  RD_COUNTS *const rdc = &cpi->td.rd_counts;
  const AV1EncoderConfig *const oxcf = &cpi->oxcf;
  // Indicates whether or not to use a default reduced set for ext-tx
  // rather than the potential full set of 16 transforms
  features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set;

  // Make sure segment_id is no larger than last_active_segid.
  if (cm->seg.enabled && cm->seg.update_map) {
    const int mi_rows = cm->mi_params.mi_rows;
    const int mi_cols = cm->mi_params.mi_cols;
    const int last_active_segid = cm->seg.last_active_segid;
    uint8_t *map = cpi->enc_seg.map;
    for (int mi_row = 0; mi_row < mi_rows; ++mi_row) {
      for (int mi_col = 0; mi_col < mi_cols; ++mi_col) {
        map[mi_col] = AOMMIN(map[mi_col], last_active_segid);
      }
      map += mi_cols;
    }
  }

  av1_setup_frame_buf_refs(cm);
  enforce_max_ref_frames(cpi, &cpi->ref_frame_flags,
                         cm->cur_frame->ref_display_order_hint,
                         cm->current_frame.display_order_hint);
  set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info,
                     cpi->ref_frame_flags);
  av1_setup_frame_sign_bias(cm);

  // If global motion is enabled, then every buffer which is used as either
  // a source or a ref frame should have an image pyramid allocated.
  // Check here so that issues can be caught early in debug mode
#if !defined(NDEBUG) && !CONFIG_REALTIME_ONLY
  if (cpi->alloc_pyramid) {
    assert(cpi->source->y_pyramid);
    for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
      const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
      if (buf != NULL) {
        assert(buf->buf.y_pyramid);
      }
    }
  }
#endif  // !defined(NDEBUG) && !CONFIG_REALTIME_ONLY

#if CONFIG_MISMATCH_DEBUG
  mismatch_reset_frame(av1_num_planes(cm));
#endif

  rdc->newmv_or_intra_blocks = 0;
  cpi->palette_pixel_num = 0;

  if (cpi->sf.hl_sf.frame_parameter_update ||
      cpi->sf.rt_sf.use_comp_ref_nonrd) {
    if (frame_is_intra_only(cm))
      current_frame->reference_mode = SINGLE_REFERENCE;
    else
      current_frame->reference_mode = REFERENCE_MODE_SELECT;

    features->interp_filter = SWITCHABLE;
    if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR;

    features->switchable_motion_mode = is_switchable_motion_mode_allowed(
        features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc);

    rdc->compound_ref_used_flag = 0;
    rdc->skip_mode_used_flag = 0;

    encode_frame_internal(cpi);

    if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
      // Use a flag that includes 4x4 blocks
      if (rdc->compound_ref_used_flag == 0) {
        current_frame->reference_mode = SINGLE_REFERENCE;
#if CONFIG_ENTROPY_STATS
        av1_zero(cpi->td.counts->comp_inter);
#endif  // CONFIG_ENTROPY_STATS
      }
    }
    // Re-check on the skip mode status as reference mode may have been
    // changed.
    SkipModeInfo *const skip_mode_info = &current_frame->skip_mode_info;
    if (frame_is_intra_only(cm) ||
        current_frame->reference_mode == SINGLE_REFERENCE) {
      skip_mode_info->skip_mode_allowed = 0;
      skip_mode_info->skip_mode_flag = 0;
    }
    if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0)
      skip_mode_info->skip_mode_flag = 0;

    if (!cm->tiles.large_scale) {
      if (features->tx_mode == TX_MODE_SELECT &&
          cpi->td.mb.txfm_search_info.txb_split_count == 0)
        features->tx_mode = TX_MODE_LARGEST;
    }
  } else {
    // This is needed if real-time speed setting is changed on the fly
    // from one using compound prediction to one using single reference.
    if (current_frame->reference_mode == REFERENCE_MODE_SELECT)
      current_frame->reference_mode = SINGLE_REFERENCE;
    encode_frame_internal(cpi);
  }
}