1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/txb_rdopt.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
void av1_subtract_block(BitDepthInfo bd_info, int rows, int cols, int16_t *diff,
ptrdiff_t diff_stride, const uint8_t *src8,
ptrdiff_t src_stride, const uint8_t *pred8,
ptrdiff_t pred_stride) {
assert(rows >= 4 && cols >= 4);
#if CONFIG_AV1_HIGHBITDEPTH
if (bd_info.use_highbitdepth_buf) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride);
return;
}
#endif
(void)bd_info;
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2];
av1_subtract_block(bd_info, tx1d_height, tx1d_width, src_diff, diff_stride,
src, src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE plane_bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
assert(plane_bsize < BLOCK_SIZES_ALL);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
const BitDepthInfo bd_info = get_bit_depth_info(xd);
av1_subtract_block(bd_info, bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride);
}
int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, TX_SIZE tx_size, TX_TYPE tx_type,
const TXB_CTX *const txb_ctx, int *rate_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const int eob = p->eobs[block];
const int segment_id = xd->mi[0]->segment_id;
if (eob == 0 || !cpi->optimize_seg_arr[segment_id] ||
xd->lossless[segment_id]) {
*rate_cost = av1_cost_skip_txb(&x->coeff_costs, txb_ctx, plane, tx_size);
return eob;
}
return av1_optimize_txb(cpi, x, plane, block, tx_size, tx_type, txb_ctx,
rate_cost, cpi->oxcf.algo_cfg.sharpness);
}
// Hyper-parameters for dropout optimization, based on following logics.
// TODO(yjshen): These settings are tuned by experiments. They may still be
// optimized for better performance.
// (1) Coefficients which are large enough will ALWAYS be kept.
const tran_low_t DROPOUT_COEFF_MAX = 2; // Max dropout-able coefficient.
// (2) Continuous coefficients will ALWAYS be kept. Here rigorous continuity is
// NOT required. For example, `5 0 0 0 7` is treated as two continuous
// coefficients if three zeros do not fulfill the dropout condition.
const int DROPOUT_CONTINUITY_MAX = 2; // Max dropout-able continuous coeff.
// (3) Dropout operation is NOT applicable to blocks with large or small
// quantization index.
const int DROPOUT_Q_MAX = 128;
const int DROPOUT_Q_MIN = 16;
// (4) Recall that dropout optimization will forcibly set some quantized
// coefficients to zero. The key logic on determining whether a coefficient
// should be dropped is to check the number of continuous zeros before AND
// after this coefficient. The exact number of zeros for judgement depends
// on block size and quantization index. More concretely, block size
// determines the base number of zeros, while quantization index determines
// the multiplier. Intuitively, larger block requires more zeros and larger
// quantization index also requires more zeros (more information is lost
// when using larger quantization index).
const int DROPOUT_BEFORE_BASE_MAX = 32; // Max base number for leading zeros.
const int DROPOUT_BEFORE_BASE_MIN = 16; // Min base number for leading zeros.
const int DROPOUT_AFTER_BASE_MAX = 32; // Max base number for trailing zeros.
const int DROPOUT_AFTER_BASE_MIN = 16; // Min base number for trailing zeros.
const int DROPOUT_MULTIPLIER_MAX = 8; // Max multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_MIN = 2; // Min multiplier on number of zeros.
const int DROPOUT_MULTIPLIER_Q_BASE = 32; // Base Q to compute multiplier.
void av1_dropout_qcoeff(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
TX_TYPE tx_type, int qindex) {
const int tx_width = tx_size_wide[tx_size];
const int tx_height = tx_size_high[tx_size];
// Early return if `qindex` is out of range.
if (qindex > DROPOUT_Q_MAX || qindex < DROPOUT_Q_MIN) {
return;
}
// Compute number of zeros used for dropout judgement.
const int base_size = AOMMAX(tx_width, tx_height);
const int multiplier = CLIP(qindex / DROPOUT_MULTIPLIER_Q_BASE,
DROPOUT_MULTIPLIER_MIN, DROPOUT_MULTIPLIER_MAX);
const int dropout_num_before =
multiplier *
CLIP(base_size, DROPOUT_BEFORE_BASE_MIN, DROPOUT_BEFORE_BASE_MAX);
const int dropout_num_after =
multiplier *
CLIP(base_size, DROPOUT_AFTER_BASE_MIN, DROPOUT_AFTER_BASE_MAX);
av1_dropout_qcoeff_num(mb, plane, block, tx_size, tx_type, dropout_num_before,
dropout_num_after);
}
void av1_dropout_qcoeff_num(MACROBLOCK *mb, int plane, int block,
TX_SIZE tx_size, TX_TYPE tx_type,
int dropout_num_before, int dropout_num_after) {
const struct macroblock_plane *const p = &mb->plane[plane];
tran_low_t *const qcoeff = p->qcoeff + BLOCK_OFFSET(block);
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
const int max_eob = av1_get_max_eob(tx_size);
const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type);
// Early return if there are not enough non-zero coefficients.
if (p->eobs[block] == 0 || p->eobs[block] <= dropout_num_before ||
max_eob <= dropout_num_before + dropout_num_after) {
return;
}
int count_zeros_before = 0;
int count_zeros_after = 0;
int count_nonzeros = 0;
// Index of the first non-zero coefficient after sufficient number of
// continuous zeros. If equals to `-1`, it means number of leading zeros
// hasn't reach `dropout_num_before`.
int idx = -1;
int eob = 0; // New end of block.
for (int i = 0; i < p->eobs[block]; ++i) {
const int scan_idx = scan_order->scan[i];
if (abs(qcoeff[scan_idx]) > DROPOUT_COEFF_MAX) {
// Keep large coefficients.
count_zeros_before = 0;
count_zeros_after = 0;
idx = -1;
eob = i + 1;
} else if (qcoeff[scan_idx] == 0) { // Count zeros.
if (idx == -1) {
++count_zeros_before;
} else {
++count_zeros_after;
}
} else { // Count non-zeros.
if (count_zeros_before >= dropout_num_before) {
idx = (idx == -1) ? i : idx;
++count_nonzeros;
} else {
count_zeros_before = 0;
eob = i + 1;
}
}
// Handle continuity.
if (count_nonzeros > DROPOUT_CONTINUITY_MAX) {
count_zeros_before = 0;
count_zeros_after = 0;
count_nonzeros = 0;
idx = -1;
eob = i + 1;
}
// Handle the trailing zeros after original end of block.
if (idx != -1 && i == p->eobs[block] - 1) {
count_zeros_after += (max_eob - p->eobs[block]);
}
// Set redundant coefficients to zeros if needed.
if (count_zeros_after >= dropout_num_after) {
for (int j = idx; j <= i; ++j) {
qcoeff[scan_order->scan[j]] = 0;
dqcoeff[scan_order->scan[j]] = 0;
}
count_zeros_before += (i - idx + 1);
count_zeros_after = 0;
count_nonzeros = 0;
} else if (i == p->eobs[block] - 1) {
eob = i + 1;
}
}
if (eob != p->eobs[block]) {
p->eobs[block] = eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, eob);
}
}
// Settings for optimization type. NOTE: To set optimization type for all intra
// frames, both `KEY_BLOCK_OPT_TYPE` and `INTRA_BLOCK_OPT_TYPE` should be set.
// TODO(yjshen): These settings are hard-coded and look okay for now. They
// should be made configurable later.
// Blocks of key frames ONLY.
const OPT_TYPE KEY_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of intra frames (key frames EXCLUSIVE).
const OPT_TYPE INTRA_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
// Blocks of inter frames. (NOTE: Dropout optimization is DISABLED by default
// if trellis optimization is on for inter frames.)
const OPT_TYPE INTER_BLOCK_OPT_TYPE = TRELLIS_DROPOUT_OPT;
enum {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} UENUM1BYTE(QUANT_FUNC);
#if CONFIG_AV1_HIGHBITDEPTH
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
{ NULL, NULL }
};
#else
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES] = {
av1_quantize_fp_facade, av1_quantize_b_facade, av1_quantize_dc_facade, NULL
};
#endif
// Computes the transform for DC only blocks
void av1_xform_dc_only(MACROBLOCK *x, int plane, int block,
TxfmParam *txfm_param, int64_t per_px_mean) {
assert(per_px_mean != INT64_MAX);
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
memset(coeff, 0, sizeof(*coeff) * n_coeffs);
coeff[0] =
(tran_low_t)((per_px_mean * dc_coeff_scale[txfm_param->tx_size]) >> 12);
}
void av1_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize, TxfmParam *txfm_param,
const QUANT_PARAM *qparam) {
av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, txfm_param);
av1_quant(x, plane, block, txfm_param, qparam);
}
void av1_xform(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TxfmParam *txfm_param) {
const struct macroblock_plane *const p = &x->plane[plane];
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
const int diff_stride = block_size_wide[plane_bsize];
const int src_offset = (blk_row * diff_stride + blk_col);
const int16_t *src_diff = &p->src_diff[src_offset << MI_SIZE_LOG2];
av1_fwd_txfm(src_diff, coeff, diff_stride, txfm_param);
}
void av1_quant(MACROBLOCK *x, int plane, int block, TxfmParam *txfm_param,
const QUANT_PARAM *qparam) {
const struct macroblock_plane *const p = &x->plane[plane];
const SCAN_ORDER *const scan_order =
get_scan(txfm_param->tx_size, txfm_param->tx_type);
const int block_offset = BLOCK_OFFSET(block);
tran_low_t *const coeff = p->coeff + block_offset;
tran_low_t *const qcoeff = p->qcoeff + block_offset;
tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
uint16_t *const eob = &p->eobs[block];
if (qparam->xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
const int n_coeffs = av1_get_max_eob(txfm_param->tx_size);
if (LIKELY(!x->seg_skip_block)) {
#if CONFIG_AV1_HIGHBITDEPTH
quant_func_list[qparam->xform_quant_idx][txfm_param->is_hbd](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
#else
quant_func_list[qparam->xform_quant_idx](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, qparam);
#endif
} else {
av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
}
}
// use_optimize_b is true means av1_optimze_b will be called,
// thus cannot update entropy ctx now (performed in optimize_b)
if (qparam->use_optimize_b) {
p->txb_entropy_ctx[block] = 0;
} else {
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
}
}
void av1_setup_xform(const AV1_COMMON *cm, MACROBLOCK *x, TX_SIZE tx_size,
TX_TYPE tx_type, TxfmParam *txfm_param) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
txfm_param->tx_type = tx_type;
txfm_param->tx_size = tx_size;
txfm_param->lossless = xd->lossless[mbmi->segment_id];
txfm_param->tx_set_type = av1_get_ext_tx_set_type(
tx_size, is_inter_block(mbmi), cm->features.reduced_tx_set_used);
txfm_param->bd = xd->bd;
txfm_param->is_hbd = is_cur_buf_hbd(xd);
}
void av1_setup_quant(TX_SIZE tx_size, int use_optimize_b, int xform_quant_idx,
int use_quant_b_adapt, QUANT_PARAM *qparam) {
qparam->log_scale = av1_get_tx_scale(tx_size);
qparam->tx_size = tx_size;
qparam->use_quant_b_adapt = use_quant_b_adapt;
// TODO(bohanli): optimize_b and quantization idx has relationship,
// but is kind of buried and complicated in different encoding stages.
// Should have a unified function to derive quant_idx, rather than
// determine and pass in the quant_idx
qparam->use_optimize_b = use_optimize_b;
qparam->xform_quant_idx = xform_quant_idx;
qparam->qmatrix = NULL;
qparam->iqmatrix = NULL;
}
void av1_setup_qmatrix(const CommonQuantParams *quant_params,
const MACROBLOCKD *xd, int plane, TX_SIZE tx_size,
TX_TYPE tx_type, QUANT_PARAM *qparam) {
qparam->qmatrix = av1_get_qmatrix(quant_params, xd, plane, tx_size, tx_type);
qparam->iqmatrix =
av1_get_iqmatrix(quant_params, xd, plane, tx_size, tx_type);
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
RUN_TYPE dry_run) {
(void)dry_run;
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
int dummy_rate_cost = 0;
const int bw = mi_size_wide[plane_bsize];
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
TX_TYPE tx_type = DCT_DCT;
const int blk_skip_idx = blk_row * bw + blk_col;
if (!is_blk_skip(x->txfm_search_info.blk_skip, plane, blk_skip_idx) &&
!mbmi->skip_mode) {
tx_type = av1_get_tx_type(xd, pd->plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int use_trellis = is_trellis_used(args->enable_optimize_b, dry_run);
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
// Whether trellis or dropout optimization is required for inter frames.
const bool do_trellis = INTER_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
const bool do_dropout = INTER_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTER_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT;
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
}
if (!quant_param.use_optimize_b && do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
} else {
p->eobs[block] = 0;
p->txb_entropy_ctx[block] = 0;
}
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) {
// As long as any YUV plane has non-zero quantized transform coefficients,
// mbmi->skip_txfm flag is set to 0.
mbmi->skip_txfm = 0;
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block],
cm->features.reduced_tx_set_used);
} else {
// Only when YUV planes all have zero quantized transform coefficients,
// mbmi->skip_txfm flag is set to 1.
mbmi->skip_txfm &= 1;
}
// TODO(debargha, jingning): Temporarily disable txk_type check for eob=0
// case. It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (p->eobs[block] == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
// TODO(jingning,angiebird,huisu@google.com): enable txk_check when
// enable_optimize_b is true to detect potential RD bug.
const uint8_t disable_txk_check = args->enable_optimize_b;
if (!disable_txk_check) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, blk_col,
blk_row, pd->subsampling_x, pd->subsampling_y);
mismatch_record_block_tx(dst, pd->dst.stride, cm->current_frame.order_hint,
plane, pixel_c, pixel_r, blk_w, blk_h,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
#endif
}
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg, RUN_TYPE dry_run) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (!plane) {
assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] &&
tx_size_high[tx_size] >= tx_size_high[plane_tx_size]);
}
if (tx_size == plane_tx_size || plane) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
dry_run);
} else {
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
// This is the square transform block partition entry point.
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
const int row_end =
AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row);
const int col_end =
AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col);
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < row_end; row += bsh) {
const int offsetr = blk_row + row;
for (int col = 0; col < col_end; col += bsw) {
const int offsetc = blk_col + col;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg, dry_run);
block += step;
}
}
}
}
void av1_foreach_transformed_block_in_plane(
const MACROBLOCKD *const xd, BLOCK_SIZE plane_bsize, int plane,
foreach_transformed_block_visitor visit, void *arg) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
// block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
// 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
// transform size varies per plane, look it up in a common way.
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
// Call visit() directly with zero offsets if the current block size is the
// same as the transform block size.
if (plane_bsize == tx_bsize) {
visit(plane, 0, 0, 0, plane_bsize, tx_size, arg);
return;
}
const uint8_t txw_unit = tx_size_wide_unit[tx_size];
const uint8_t txh_unit = tx_size_high_unit[tx_size];
const int step = txw_unit * txh_unit;
// If mb_to_right_edge is < 0 we are in a situation in which
// the current block size extends into the UMV and we won't
// visit the sub blocks that are wholly within the UMV.
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y);
const int mu_blocks_wide =
AOMMIN(mi_size_wide[max_unit_bsize], max_blocks_wide);
const int mu_blocks_high =
AOMMIN(mi_size_high[max_unit_bsize], max_blocks_high);
// Keep track of the row and column of the blocks we use so that we know
// if we are in the unrestricted motion border.
int i = 0;
for (int r = 0; r < max_blocks_high; r += mu_blocks_high) {
const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high);
// Skip visiting the sub blocks that are wholly within the UMV.
for (int c = 0; c < max_blocks_wide; c += mu_blocks_wide) {
const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide);
for (int blk_row = r; blk_row < unit_height; blk_row += txh_unit) {
for (int blk_col = c; blk_col < unit_width; blk_col += txw_unit) {
visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg);
i += step;
}
}
}
}
// Check if visit() is invoked at least once.
assert(i >= 1);
}
typedef struct encode_block_pass1_args {
AV1_COMP *cpi;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMP *cpi = args->cpi;
AV1_COMMON *cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
uint8_t *dst;
dst = &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2];
TxfmParam txfm_param;
QUANT_PARAM quant_param;
av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param);
av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt,
&quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, DCT_DCT,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
if (p->eobs[block] > 0) {
txfm_param.eob = p->eobs[block];
if (txfm_param.is_hbd) {
av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
return;
}
av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
}
}
void av1_encode_sby_pass1(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cpi, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
RUN_TYPE dry_run) {
assert(bsize < BLOCK_SIZES_ALL);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
// In the current encoder implementation, for inter blocks,
// only when YUV planes all have zero quantized transform coefficients,
// mbmi->skip_txfm flag is set to 1.
// For intra blocks, this flag is set to 0 since skipped blocks are so rare
// that transmitting skip_txfm = 1 is very expensive.
// mbmi->skip_txfm is init to 1, and will be modified in encode_block() based
// on transform, quantization, and (if exists) trellis optimization.
mbmi->skip_txfm = 1;
if (x->txfm_search_info.skip_txfm) return;
struct optimize_ctx ctx;
struct encode_b_args arg = {
cpi, x, &ctx, NULL, NULL, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]
};
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int subsampling_x = pd->subsampling_x;
const int subsampling_y = pd->subsampling_y;
if (plane && !xd->is_chroma_ref) break;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, subsampling_x, subsampling_y);
assert(plane_bsize < BLOCK_SIZES_ALL);
const int mi_width = mi_size_wide[plane_bsize];
const int mi_height = mi_size_high[plane_bsize];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = mi_size_wide[txb_size];
const int bh = mi_size_high[txb_size];
int block = 0;
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(plane_bsize, pd, ctx.ta[plane], ctx.tl[plane]);
av1_subtract_plane(x, plane_bsize, plane);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
const BLOCK_SIZE max_unit_bsize =
get_plane_block_size(BLOCK_64X64, subsampling_x, subsampling_y);
int mu_blocks_wide = mi_size_wide[max_unit_bsize];
int mu_blocks_high = mi_size_high[max_unit_bsize];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (int idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) {
int blk_row, blk_col;
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
max_tx_size, &arg, dry_run);
block += step;
}
}
}
}
}
}
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
const AV1_COMP *const cpi = args->cpi;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block);
PLANE_TYPE plane_type = get_plane_type(plane);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
int dummy_rate_cost = 0;
av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
TX_TYPE tx_type = DCT_DCT;
const int bw = mi_size_wide[plane_bsize];
if (plane == 0 && is_blk_skip(x->txfm_search_info.blk_skip, plane,
blk_row * bw + blk_col)) {
*eob = 0;
p->txb_entropy_ctx[block] = 0;
} else {
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size,
cm->features.reduced_tx_set_used);
TxfmParam txfm_param;
QUANT_PARAM quant_param;
const int use_trellis =
is_trellis_used(args->enable_optimize_b, args->dry_run);
int quant_idx;
if (use_trellis)
quant_idx = AV1_XFORM_QUANT_FP;
else
quant_idx =
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP;
av1_setup_xform(cm, x, tx_size, tx_type, &txfm_param);
av1_setup_quant(tx_size, use_trellis, quant_idx,
cpi->oxcf.q_cfg.quant_b_adapt, &quant_param);
av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type,
&quant_param);
av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param,
&quant_param);
// Whether trellis or dropout optimization is required for key frames and
// intra frames.
const bool do_trellis = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == TRELLIS_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == TRELLIS_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
const bool do_dropout = (frame_is_intra_only(cm) &&
(KEY_BLOCK_OPT_TYPE == DROPOUT_OPT ||
KEY_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT)) ||
(!frame_is_intra_only(cm) &&
(INTRA_BLOCK_OPT_TYPE == DROPOUT_OPT ||
INTRA_BLOCK_OPT_TYPE == TRELLIS_DROPOUT_OPT));
if (quant_param.use_optimize_b && do_trellis) {
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx,
&dummy_rate_cost);
}
if (do_dropout) {
av1_dropout_qcoeff(x, plane, block, tx_size, tx_type,
cm->quant_params.base_qindex);
}
}
if (*eob) {
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
dst_stride, *eob,
cm->features.reduced_tx_set_used);
}
// TODO(jingning): Temporarily disable txk_type check for eob=0 case.
// It is possible that certain collision in hash index would cause
// the assertion failure. To further optimize the rate-distortion
// performance, we need to re-visit this part and enable this assert
// again.
if (*eob == 0 && plane == 0) {
#if 0
if (args->cpi->oxcf.q_cfg.aq_mode == NO_AQ
&& args->cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q) {
assert(xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col)] ==
DCT_DCT);
}
#endif
update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT);
}
// For intra mode, skipped blocks are so rare that transmitting
// skip_txfm = 1 is very expensive.
mbmi->skip_txfm = 0;
if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
}
}
void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane, RUN_TYPE dry_run,
TRELLIS_OPT_TYPE enable_optimize_b) {
assert(bsize < BLOCK_SIZES_ALL);
const MACROBLOCKD *const xd = &x->e_mbd;
if (plane && !xd->is_chroma_ref) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = {
cpi, x, NULL, ta, tl, dry_run, enable_optimize_b
};
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
if (enable_optimize_b) {
av1_get_entropy_contexts(plane_bsize, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, plane_bsize, plane, encode_block_intra_and_set_context, &arg);
}
|