summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/firstpass.c
blob: e20b6c177e36abc9066f126881cc4c9fa0c16b05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <limits.h>
#include <math.h>
#include <stdio.h>

#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/variance.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_scale/aom_scale.h"
#include "aom_scale/yv12config.h"

#include "av1/common/entropymv.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"  // av1_setup_dst_planes()
#include "av1/common/reconintra.h"
#include "av1/common/txb_common.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/dwt.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/encode_strategy.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/reconinter_enc.h"

#define OUTPUT_FPF 0

#define FIRST_PASS_Q 10.0
#define INTRA_MODE_PENALTY 1024
#define NEW_MV_MODE_PENALTY 32
#define DARK_THRESH 64

#define NCOUNT_INTRA_THRESH 8192
#define NCOUNT_INTRA_FACTOR 3

#define INVALID_FP_STATS_TO_PREDICT_FLAT_GOP -1

static AOM_INLINE void output_stats(FIRSTPASS_STATS *stats,
                                    struct aom_codec_pkt_list *pktlist) {
  struct aom_codec_cx_pkt pkt;
  pkt.kind = AOM_CODEC_STATS_PKT;
  pkt.data.twopass_stats.buf = stats;
  pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
  if (pktlist != NULL) aom_codec_pkt_list_add(pktlist, &pkt);

// TEMP debug code
#if OUTPUT_FPF
  {
    FILE *fpfile;
    fpfile = fopen("firstpass.stt", "a");

    fprintf(fpfile,
            "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
            "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
            "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
            stats->frame, stats->weight, stats->intra_error, stats->coded_error,
            stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
            stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
            stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
            stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
            stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
            stats->count, stats->duration);
    fclose(fpfile);
  }
#endif
}

void av1_twopass_zero_stats(FIRSTPASS_STATS *section) {
  section->frame = 0.0;
  section->weight = 0.0;
  section->intra_error = 0.0;
  section->frame_avg_wavelet_energy = 0.0;
  section->coded_error = 0.0;
  section->log_intra_error = 0.0;
  section->log_coded_error = 0.0;
  section->sr_coded_error = 0.0;
  section->pcnt_inter = 0.0;
  section->pcnt_motion = 0.0;
  section->pcnt_second_ref = 0.0;
  section->pcnt_neutral = 0.0;
  section->intra_skip_pct = 0.0;
  section->inactive_zone_rows = 0.0;
  section->inactive_zone_cols = 0.0;
  section->MVr = 0.0;
  section->mvr_abs = 0.0;
  section->MVc = 0.0;
  section->mvc_abs = 0.0;
  section->MVrv = 0.0;
  section->MVcv = 0.0;
  section->mv_in_out_count = 0.0;
  section->new_mv_count = 0.0;
  section->count = 0.0;
  section->duration = 1.0;
  section->is_flash = 0;
  section->noise_var = 0;
  section->cor_coeff = 1.0;
}

void av1_accumulate_stats(FIRSTPASS_STATS *section,
                          const FIRSTPASS_STATS *frame) {
  section->frame += frame->frame;
  section->weight += frame->weight;
  section->intra_error += frame->intra_error;
  section->log_intra_error += log1p(frame->intra_error);
  section->log_coded_error += log1p(frame->coded_error);
  section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
  section->coded_error += frame->coded_error;
  section->sr_coded_error += frame->sr_coded_error;
  section->pcnt_inter += frame->pcnt_inter;
  section->pcnt_motion += frame->pcnt_motion;
  section->pcnt_second_ref += frame->pcnt_second_ref;
  section->pcnt_neutral += frame->pcnt_neutral;
  section->intra_skip_pct += frame->intra_skip_pct;
  section->inactive_zone_rows += frame->inactive_zone_rows;
  section->inactive_zone_cols += frame->inactive_zone_cols;
  section->MVr += frame->MVr;
  section->mvr_abs += frame->mvr_abs;
  section->MVc += frame->MVc;
  section->mvc_abs += frame->mvc_abs;
  section->MVrv += frame->MVrv;
  section->MVcv += frame->MVcv;
  section->mv_in_out_count += frame->mv_in_out_count;
  section->new_mv_count += frame->new_mv_count;
  section->count += frame->count;
  section->duration += frame->duration;
}

static int get_unit_rows(const BLOCK_SIZE fp_block_size, const int mb_rows) {
  const int height_mi_log2 = mi_size_high_log2[fp_block_size];
  const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
  if (height_mi_log2 > mb_height_mi_log2) {
    return mb_rows >> (height_mi_log2 - mb_height_mi_log2);
  }

  return mb_rows << (mb_height_mi_log2 - height_mi_log2);
}

static int get_unit_cols(const BLOCK_SIZE fp_block_size, const int mb_cols) {
  const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
  const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
  if (width_mi_log2 > mb_width_mi_log2) {
    return mb_cols >> (width_mi_log2 - mb_width_mi_log2);
  }

  return mb_cols << (mb_width_mi_log2 - width_mi_log2);
}

// TODO(chengchen): can we simplify it even if resize has to be considered?
static int get_num_mbs(const BLOCK_SIZE fp_block_size,
                       const int num_mbs_16X16) {
  const int width_mi_log2 = mi_size_wide_log2[fp_block_size];
  const int height_mi_log2 = mi_size_high_log2[fp_block_size];
  const int mb_width_mi_log2 = mi_size_wide_log2[BLOCK_16X16];
  const int mb_height_mi_log2 = mi_size_high_log2[BLOCK_16X16];
  // TODO(chengchen): Now this function assumes a square block is used.
  // It does not support rectangular block sizes.
  assert(width_mi_log2 == height_mi_log2);
  if (width_mi_log2 > mb_width_mi_log2) {
    return num_mbs_16X16 >> ((width_mi_log2 - mb_width_mi_log2) +
                             (height_mi_log2 - mb_height_mi_log2));
  }

  return num_mbs_16X16 << ((mb_width_mi_log2 - width_mi_log2) +
                           (mb_height_mi_log2 - height_mi_log2));
}

void av1_end_first_pass(AV1_COMP *cpi) {
  if (cpi->ppi->twopass.stats_buf_ctx->total_stats && !cpi->ppi->lap_enabled)
    output_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats,
                 cpi->ppi->output_pkt_list);
}

static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
  switch (bsize) {
    case BLOCK_8X8: return aom_mse8x8;
    case BLOCK_16X8: return aom_mse16x8;
    case BLOCK_8X16: return aom_mse8x16;
    default: return aom_mse16x16;
  }
}

static unsigned int get_prediction_error(BLOCK_SIZE bsize,
                                         const struct buf_2d *src,
                                         const struct buf_2d *ref) {
  unsigned int sse;
  const aom_variance_fn_t fn = get_block_variance_fn(bsize);
  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
  return sse;
}

#if CONFIG_AV1_HIGHBITDEPTH
static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
                                                      int bd) {
  switch (bd) {
    default:
      switch (bsize) {
        case BLOCK_8X8: return aom_highbd_8_mse8x8;
        case BLOCK_16X8: return aom_highbd_8_mse16x8;
        case BLOCK_8X16: return aom_highbd_8_mse8x16;
        default: return aom_highbd_8_mse16x16;
      }
    case 10:
      switch (bsize) {
        case BLOCK_8X8: return aom_highbd_10_mse8x8;
        case BLOCK_16X8: return aom_highbd_10_mse16x8;
        case BLOCK_8X16: return aom_highbd_10_mse8x16;
        default: return aom_highbd_10_mse16x16;
      }
    case 12:
      switch (bsize) {
        case BLOCK_8X8: return aom_highbd_12_mse8x8;
        case BLOCK_16X8: return aom_highbd_12_mse16x8;
        case BLOCK_8X16: return aom_highbd_12_mse8x16;
        default: return aom_highbd_12_mse16x16;
      }
  }
}

static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
                                                const struct buf_2d *src,
                                                const struct buf_2d *ref,
                                                int bd) {
  unsigned int sse;
  const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
  return sse;
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

// Refine the motion search range according to the frame dimension
// for first pass test.
static int get_search_range(int width, int height) {
  int sr = 0;
  const int dim = AOMMIN(width, height);

  while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
  return sr;
}

static AOM_INLINE const search_site_config *
av1_get_first_pass_search_site_config(const AV1_COMP *cpi, MACROBLOCK *x,
                                      SEARCH_METHODS search_method) {
  const int ref_stride = x->e_mbd.plane[0].pre[0].stride;

  // For AVIF applications, even the source frames can have changing resolution,
  // so we need to manually check for the strides :(
  // AV1_COMP::mv_search_params.search_site_config is a compressor level cache
  // that's shared by multiple threads. In most cases where all frames have the
  // same resolution, the cache contains the search site config that we need.
  const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params;
  if (ref_stride == mv_search_params->search_site_cfg[SS_CFG_FPF]->stride) {
    return mv_search_params->search_site_cfg[SS_CFG_FPF];
  }

  // If the cache does not contain the correct stride, then we will need to rely
  // on the thread level config MACROBLOCK::search_site_cfg_buf. If even the
  // thread level config doesn't match, then we need to update it.
  search_method = search_method_lookup[search_method];
  assert(search_method_lookup[search_method] == search_method &&
         "The search_method_lookup table should be idempotent.");
  if (ref_stride != x->search_site_cfg_buf[search_method].stride) {
    av1_refresh_search_site_config(x->search_site_cfg_buf, search_method,
                                   ref_stride);
  }

  return x->search_site_cfg_buf;
}

static AOM_INLINE void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
                                                const MV *ref_mv,
                                                FULLPEL_MV *best_mv,
                                                int *best_motion_err) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
  int tmp_err;
  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
  const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
  const int sr = get_search_range(cm->width, cm->height);
  const int step_param = cpi->sf.fp_sf.reduce_mv_step_param + sr;

  const search_site_config *first_pass_search_sites =
      av1_get_first_pass_search_site_config(cpi, x, NSTEP);
  const int fine_search_interval =
      cpi->is_screen_content_type && cm->features.allow_intrabc;
  FULLPEL_MOTION_SEARCH_PARAMS ms_params;
  av1_make_default_fullpel_ms_params(&ms_params, cpi, x, bsize, ref_mv,
                                     start_mv, first_pass_search_sites, NSTEP,
                                     fine_search_interval);

  FULLPEL_MV this_best_mv;
  FULLPEL_MV_STATS best_mv_stats;
  tmp_err = av1_full_pixel_search(start_mv, &ms_params, step_param, NULL,
                                  &this_best_mv, &best_mv_stats, NULL);

  if (tmp_err < INT_MAX) {
    aom_variance_fn_ptr_t v_fn_ptr = cpi->ppi->fn_ptr[bsize];
    const MSBuffers *ms_buffers = &ms_params.ms_buffers;
    tmp_err = av1_get_mvpred_sse(&ms_params.mv_cost_params, this_best_mv,
                                 &v_fn_ptr, ms_buffers->src, ms_buffers->ref) +
              new_mv_mode_penalty;
  }

  if (tmp_err < *best_motion_err) {
    *best_motion_err = tmp_err;
    *best_mv = this_best_mv;
  }
}

static BLOCK_SIZE get_bsize(const CommonModeInfoParams *const mi_params,
                            const BLOCK_SIZE fp_block_size, const int unit_row,
                            const int unit_col) {
  const int unit_width = mi_size_wide[fp_block_size];
  const int unit_height = mi_size_high[fp_block_size];
  const int is_half_width =
      unit_width * unit_col + unit_width / 2 >= mi_params->mi_cols;
  const int is_half_height =
      unit_height * unit_row + unit_height / 2 >= mi_params->mi_rows;
  const int max_dimension =
      AOMMAX(block_size_wide[fp_block_size], block_size_high[fp_block_size]);
  int square_block_size = 0;
  // 4X4, 8X8, 16X16, 32X32, 64X64, 128X128
  switch (max_dimension) {
    case 4: square_block_size = 0; break;
    case 8: square_block_size = 1; break;
    case 16: square_block_size = 2; break;
    case 32: square_block_size = 3; break;
    case 64: square_block_size = 4; break;
    case 128: square_block_size = 5; break;
    default: assert(0 && "First pass block size is not supported!"); break;
  }
  if (is_half_width && is_half_height) {
    return subsize_lookup[PARTITION_SPLIT][square_block_size];
  } else if (is_half_width) {
    return subsize_lookup[PARTITION_VERT][square_block_size];
  } else if (is_half_height) {
    return subsize_lookup[PARTITION_HORZ][square_block_size];
  } else {
    return fp_block_size;
  }
}

static int find_fp_qindex(aom_bit_depth_t bit_depth) {
  return av1_find_qindex(FIRST_PASS_Q, bit_depth, 0, QINDEX_RANGE - 1);
}

static double raw_motion_error_stdev(int *raw_motion_err_list,
                                     int raw_motion_err_counts) {
  int64_t sum_raw_err = 0;
  double raw_err_avg = 0;
  double raw_err_stdev = 0;
  if (raw_motion_err_counts == 0) return 0;

  int i;
  for (i = 0; i < raw_motion_err_counts; i++) {
    sum_raw_err += raw_motion_err_list[i];
  }
  raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
  for (i = 0; i < raw_motion_err_counts; i++) {
    raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
                     (raw_motion_err_list[i] - raw_err_avg);
  }
  // Calculate the standard deviation for the motion error of all the inter
  // blocks of the 0,0 motion using the last source
  // frame as the reference.
  raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
  return raw_err_stdev;
}

static AOM_INLINE int calc_wavelet_energy(const AV1EncoderConfig *oxcf) {
  return oxcf->q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL;
}
typedef struct intra_pred_block_pass1_args {
  const SequenceHeader *seq_params;
  MACROBLOCK *x;
} intra_pred_block_pass1_args;

static INLINE void copy_rect(uint8_t *dst, int dstride, const uint8_t *src,
                             int sstride, int width, int height, int use_hbd) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd) {
    aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(src), sstride,
                             CONVERT_TO_SHORTPTR(dst), dstride, width, height);
  } else {
    aom_convolve_copy(src, sstride, dst, dstride, width, height);
  }
#else
  (void)use_hbd;
  aom_convolve_copy(src, sstride, dst, dstride, width, height);
#endif
}

static void first_pass_intra_pred_and_calc_diff(int plane, int block,
                                                int blk_row, int blk_col,
                                                BLOCK_SIZE plane_bsize,
                                                TX_SIZE tx_size, void *arg) {
  (void)block;
  struct intra_pred_block_pass1_args *const args = arg;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
  MACROBLOCK_PLANE *const p = &x->plane[plane];
  const int dst_stride = pd->dst.stride;
  uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2];
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const SequenceHeader *seq_params = args->seq_params;
  const int src_stride = p->src.stride;
  uint8_t *src = &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2];

  av1_predict_intra_block(
      xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, pd->width,
      pd->height, tx_size, mbmi->mode, 0, 0, FILTER_INTRA_MODES, src,
      src_stride, dst, dst_stride, blk_col, blk_row, plane);

  av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
}

static void first_pass_predict_intra_block_for_luma_plane(
    const SequenceHeader *seq_params, MACROBLOCK *x, BLOCK_SIZE bsize) {
  assert(bsize < BLOCK_SIZES_ALL);
  const MACROBLOCKD *const xd = &x->e_mbd;
  const int plane = AOM_PLANE_Y;
  const MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
  const int dst_stride = pd->dst.stride;
  uint8_t *dst = pd->dst.buf;
  const MACROBLOCK_PLANE *const p = &x->plane[plane];
  const int src_stride = p->src.stride;
  const uint8_t *src = p->src.buf;

  intra_pred_block_pass1_args args = { seq_params, x };
  av1_foreach_transformed_block_in_plane(
      xd, plane_bsize, plane, first_pass_intra_pred_and_calc_diff, &args);

  // copy source data to recon buffer, as the recon buffer will be used as a
  // reference frame subsequently.
  copy_rect(dst, dst_stride, src, src_stride, block_size_wide[bsize],
            block_size_high[bsize], seq_params->use_highbitdepth);
}

#define UL_INTRA_THRESH 50
#define INVALID_ROW -1
// Computes and returns the intra pred error of a block.
// intra pred error: sum of squared error of the intra predicted residual.
// Inputs:
//   cpi: the encoder setting. Only a few params in it will be used.
//   this_frame: the current frame buffer.
//   tile: tile information (not used in first pass, already init to zero)
//   unit_row: row index in the unit of first pass block size.
//   unit_col: column index in the unit of first pass block size.
//   y_offset: the offset of y frame buffer, indicating the starting point of
//             the current block.
//   uv_offset: the offset of u and v frame buffer, indicating the starting
//              point of the current block.
//   fp_block_size: first pass block size.
//   qindex: quantization step size to encode the frame.
//   stats: frame encoding stats.
// Modifies:
//   stats->intra_skip_count
//   stats->image_data_start_row
//   stats->intra_factor
//   stats->brightness_factor
//   stats->intra_error
//   stats->frame_avg_wavelet_energy
// Returns:
//   this_intra_error.
static int firstpass_intra_prediction(
    AV1_COMP *cpi, ThreadData *td, YV12_BUFFER_CONFIG *const this_frame,
    const TileInfo *const tile, const int unit_row, const int unit_col,
    const int y_offset, const int uv_offset, const BLOCK_SIZE fp_block_size,
    const int qindex, FRAME_STATS *const stats) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const SequenceHeader *const seq_params = cm->seq_params;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int unit_scale = mi_size_wide[fp_block_size];
  const int num_planes = av1_num_planes(cm);
  const BLOCK_SIZE bsize =
      get_bsize(mi_params, fp_block_size, unit_row, unit_col);

  set_mi_offsets(mi_params, xd, unit_row * unit_scale, unit_col * unit_scale);
  xd->plane[0].dst.buf = this_frame->y_buffer + y_offset;
  if (num_planes > 1) {
    xd->plane[1].dst.buf = this_frame->u_buffer + uv_offset;
    xd->plane[2].dst.buf = this_frame->v_buffer + uv_offset;
  }
  xd->left_available = (unit_col != 0);
  xd->mi[0]->bsize = bsize;
  xd->mi[0]->ref_frame[0] = INTRA_FRAME;
  set_mi_row_col(xd, tile, unit_row * unit_scale, mi_size_high[bsize],
                 unit_col * unit_scale, mi_size_wide[bsize], mi_params->mi_rows,
                 mi_params->mi_cols);
  set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
  xd->mi[0]->segment_id = 0;
  xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
  xd->mi[0]->mode = DC_PRED;
  xd->mi[0]->tx_size = TX_4X4;

  if (cpi->sf.fp_sf.disable_recon)
    first_pass_predict_intra_block_for_luma_plane(seq_params, x, bsize);
  else
    av1_encode_intra_block_plane(cpi, x, bsize, 0, DRY_RUN_NORMAL, 0);
  int this_intra_error = aom_get_mb_ss(x->plane[0].src_diff);
  if (seq_params->use_highbitdepth) {
    switch (seq_params->bit_depth) {
      case AOM_BITS_8: break;
      case AOM_BITS_10: this_intra_error >>= 4; break;
      case AOM_BITS_12: this_intra_error >>= 8; break;
      default:
        assert(0 &&
               "seq_params->bit_depth should be AOM_BITS_8, "
               "AOM_BITS_10 or AOM_BITS_12");
        return -1;
    }
  }

  if (this_intra_error < UL_INTRA_THRESH) {
    ++stats->intra_skip_count;
  } else if ((unit_col > 0) && (stats->image_data_start_row == INVALID_ROW)) {
    stats->image_data_start_row = unit_row;
  }

  double log_intra = log1p(this_intra_error);
  if (log_intra < 10.0) {
    stats->intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
  } else {
    stats->intra_factor += 1.0;
  }

  int level_sample;
  if (seq_params->use_highbitdepth) {
    level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
  } else {
    level_sample = x->plane[0].src.buf[0];
  }

  if (seq_params->use_highbitdepth) {
    switch (seq_params->bit_depth) {
      case AOM_BITS_8: break;
      case AOM_BITS_10: level_sample >>= 2; break;
      case AOM_BITS_12: level_sample >>= 4; break;
      default:
        assert(0 &&
               "seq_params->bit_depth should be AOM_BITS_8, "
               "AOM_BITS_10 or AOM_BITS_12");
        return -1;
    }
  }
  if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
    stats->brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
  } else {
    stats->brightness_factor += 1.0;
  }

  // Intrapenalty below deals with situations where the intra and inter
  // error scores are very low (e.g. a plain black frame).
  // We do not have special cases in first pass for 0,0 and nearest etc so
  // all inter modes carry an overhead cost estimate for the mv.
  // When the error score is very low this causes us to pick all or lots of
  // INTRA modes and throw lots of key frames.
  // This penalty adds a cost matching that of a 0,0 mv to the intra case.
  this_intra_error += INTRA_MODE_PENALTY;

  // Accumulate the intra error.
  stats->intra_error += (int64_t)this_intra_error;

  // Stats based on wavelet energy is used in the following cases :
  // 1. ML model which predicts if a flat structure (golden-frame only structure
  // without ALT-REF and Internal-ARFs) is better. This ML model is enabled in
  // constant quality mode under certain conditions.
  // 2. Delta qindex mode is set as DELTA_Q_PERCEPTUAL.
  // Thus, wavelet energy calculation is enabled for the above cases.
  if (calc_wavelet_energy(&cpi->oxcf)) {
    const int hbd = is_cur_buf_hbd(xd);
    const int stride = x->plane[0].src.stride;
    const int num_8x8_rows = block_size_high[fp_block_size] / 8;
    const int num_8x8_cols = block_size_wide[fp_block_size] / 8;
    const uint8_t *buf = x->plane[0].src.buf;
    stats->frame_avg_wavelet_energy += av1_haar_ac_sad_mxn_uint8_input(
        buf, stride, hbd, num_8x8_rows, num_8x8_cols);
  } else {
    stats->frame_avg_wavelet_energy = INVALID_FP_STATS_TO_PREDICT_FLAT_GOP;
  }

  return this_intra_error;
}

// Returns the sum of square error between source and reference blocks.
static int get_prediction_error_bitdepth(const int is_high_bitdepth,
                                         const int bitdepth,
                                         const BLOCK_SIZE block_size,
                                         const struct buf_2d *src,
                                         const struct buf_2d *ref) {
  (void)is_high_bitdepth;
  (void)bitdepth;
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_high_bitdepth) {
    return highbd_get_prediction_error(block_size, src, ref, bitdepth);
  }
#endif  // CONFIG_AV1_HIGHBITDEPTH
  return get_prediction_error(block_size, src, ref);
}

// Accumulates motion vector stats.
// Modifies member variables of "stats".
static void accumulate_mv_stats(const MV best_mv, const FULLPEL_MV mv,
                                const int mb_row, const int mb_col,
                                const int mb_rows, const int mb_cols,
                                MV *last_non_zero_mv, FRAME_STATS *stats) {
  if (is_zero_mv(&best_mv)) return;

  ++stats->mv_count;
  // Non-zero vector, was it different from the last non zero vector?
  if (!is_equal_mv(&best_mv, last_non_zero_mv)) ++stats->new_mv_count;
  *last_non_zero_mv = best_mv;

  // Does the row vector point inwards or outwards?
  if (mb_row < mb_rows / 2) {
    if (mv.row > 0) {
      --stats->sum_in_vectors;
    } else if (mv.row < 0) {
      ++stats->sum_in_vectors;
    }
  } else if (mb_row > mb_rows / 2) {
    if (mv.row > 0) {
      ++stats->sum_in_vectors;
    } else if (mv.row < 0) {
      --stats->sum_in_vectors;
    }
  }

  // Does the col vector point inwards or outwards?
  if (mb_col < mb_cols / 2) {
    if (mv.col > 0) {
      --stats->sum_in_vectors;
    } else if (mv.col < 0) {
      ++stats->sum_in_vectors;
    }
  } else if (mb_col > mb_cols / 2) {
    if (mv.col > 0) {
      ++stats->sum_in_vectors;
    } else if (mv.col < 0) {
      --stats->sum_in_vectors;
    }
  }
}

// Computes and returns the inter prediction error from the last frame.
// Computes inter prediction errors from the golden and alt ref frams and
// Updates stats accordingly.
// Inputs:
//   cpi: the encoder setting. Only a few params in it will be used.
//   last_frame: the frame buffer of the last frame.
//   golden_frame: the frame buffer of the golden frame.
//   unit_row: row index in the unit of first pass block size.
//   unit_col: column index in the unit of first pass block size.
//   recon_yoffset: the y offset of the reconstructed  frame buffer,
//                  indicating the starting point of the current block.
//   recont_uvoffset: the u/v offset of the reconstructed frame buffer,
//                    indicating the starting point of the current block.
//   src_yoffset: the y offset of the source frame buffer.
//   fp_block_size: first pass block size.
//   this_intra_error: the intra prediction error of this block.
//   raw_motion_err_counts: the count of raw motion vectors.
//   raw_motion_err_list: the array that records the raw motion error.
//   ref_mv: the reference used to start the motion search
//   best_mv: the best mv found
//   last_non_zero_mv: the last non zero mv found in this tile row.
//   stats: frame encoding stats.
//  Modifies:
//    raw_motion_err_list
//    best_ref_mv
//    last_mv
//    stats: many member params in it.
//  Returns:
//    this_inter_error
static int firstpass_inter_prediction(
    AV1_COMP *cpi, ThreadData *td, const YV12_BUFFER_CONFIG *const last_frame,
    const YV12_BUFFER_CONFIG *const golden_frame, const int unit_row,
    const int unit_col, const int recon_yoffset, const int recon_uvoffset,
    const int src_yoffset, const BLOCK_SIZE fp_block_size,
    const int this_intra_error, const int raw_motion_err_counts,
    int *raw_motion_err_list, const MV ref_mv, MV *best_mv,
    MV *last_non_zero_mv, FRAME_STATS *stats) {
  int this_inter_error = this_intra_error;
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  CurrentFrame *const current_frame = &cm->current_frame;
  MACROBLOCK *const x = &td->mb;
  MACROBLOCKD *const xd = &x->e_mbd;
  const int is_high_bitdepth = is_cur_buf_hbd(xd);
  const int bitdepth = xd->bd;
  const int unit_scale = mi_size_wide[fp_block_size];
  const BLOCK_SIZE bsize =
      get_bsize(mi_params, fp_block_size, unit_row, unit_col);
  const int fp_block_size_height = block_size_wide[fp_block_size];
  const int unit_width = mi_size_wide[fp_block_size];
  const int unit_rows = get_unit_rows(fp_block_size, mi_params->mb_rows);
  const int unit_cols = get_unit_cols(fp_block_size, mi_params->mb_cols);
  // Assume 0,0 motion with no mv overhead.
  FULLPEL_MV mv = kZeroFullMv;
  xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
  // Set up limit values for motion vectors to prevent them extending
  // outside the UMV borders.
  av1_set_mv_col_limits(mi_params, &x->mv_limits, unit_col * unit_width,
                        fp_block_size_height >> MI_SIZE_LOG2,
                        cpi->oxcf.border_in_pixels);

  int motion_error =
      get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
                                    &x->plane[0].src, &xd->plane[0].pre[0]);

  // Compute the motion error of the 0,0 motion using the last source
  // frame as the reference. Skip the further motion search on
  // reconstructed frame if this error is small.
  // TODO(chiyotsai): The unscaled last source might be different dimension
  // as the current source. See BUG=aomedia:3413
  struct buf_2d unscaled_last_source_buf_2d;
  unscaled_last_source_buf_2d.buf =
      cpi->unscaled_last_source->y_buffer + src_yoffset;
  unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
  const int raw_motion_error = get_prediction_error_bitdepth(
      is_high_bitdepth, bitdepth, bsize, &x->plane[0].src,
      &unscaled_last_source_buf_2d);
  raw_motion_err_list[raw_motion_err_counts] = raw_motion_error;
  const FIRST_PASS_SPEED_FEATURES *const fp_sf = &cpi->sf.fp_sf;

  if (raw_motion_error > fp_sf->skip_motion_search_threshold) {
    // Test last reference frame using the previous best mv as the
    // starting point (best reference) for the search.
    first_pass_motion_search(cpi, x, &ref_mv, &mv, &motion_error);

    // If the current best reference mv is not centered on 0,0 then do a
    // 0,0 based search as well.
    if ((fp_sf->skip_zeromv_motion_search == 0) && !is_zero_mv(&ref_mv)) {
      FULLPEL_MV tmp_mv = kZeroFullMv;
      int tmp_err = INT_MAX;
      first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);

      if (tmp_err < motion_error) {
        motion_error = tmp_err;
        mv = tmp_mv;
      }
    }
  }

  // Motion search in 2nd reference frame.
  int gf_motion_error = motion_error;
  if ((current_frame->frame_number > 1) && golden_frame != NULL) {
    FULLPEL_MV tmp_mv = kZeroFullMv;
    // Assume 0,0 motion with no mv overhead.
    av1_setup_pre_planes(xd, 0, golden_frame, 0, 0, NULL, 1);
    xd->plane[0].pre[0].buf += recon_yoffset;
    gf_motion_error =
        get_prediction_error_bitdepth(is_high_bitdepth, bitdepth, bsize,
                                      &x->plane[0].src, &xd->plane[0].pre[0]);
    first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &gf_motion_error);
  }
  if (gf_motion_error < motion_error && gf_motion_error < this_intra_error) {
    ++stats->second_ref_count;
  }
  // In accumulating a score for the 2nd reference frame take the
  // best of the motion predicted score and the intra coded error
  // (just as will be done for) accumulation of "coded_error" for
  // the last frame.
  if ((current_frame->frame_number > 1) && golden_frame != NULL) {
    stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error);
  } else {
    // TODO(chengchen): I believe logically this should also be changed to
    // stats->sr_coded_error += AOMMIN(gf_motion_error, this_intra_error).
    stats->sr_coded_error += motion_error;
  }

  // Reset to last frame as reference buffer.
  xd->plane[0].pre[0].buf = last_frame->y_buffer + recon_yoffset;
  if (av1_num_planes(&cpi->common) > 1) {
    xd->plane[1].pre[0].buf = last_frame->u_buffer + recon_uvoffset;
    xd->plane[2].pre[0].buf = last_frame->v_buffer + recon_uvoffset;
  }

  // Start by assuming that intra mode is best.
  *best_mv = kZeroMv;

  if (motion_error <= this_intra_error) {
    // Keep a count of cases where the inter and intra were very close
    // and very low. This helps with scene cut detection for example in
    // cropped clips with black bars at the sides or top and bottom.
    if (((this_intra_error - INTRA_MODE_PENALTY) * 9 <= motion_error * 10) &&
        (this_intra_error < (2 * INTRA_MODE_PENALTY))) {
      stats->neutral_count += 1.0;
      // Also track cases where the intra is not much worse than the inter
      // and use this in limiting the GF/arf group length.
    } else if ((this_intra_error > NCOUNT_INTRA_THRESH) &&
               (this_intra_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
      stats->neutral_count +=
          (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_intra_error);
    }

    *best_mv = get_mv_from_fullmv(&mv);
    this_inter_error = motion_error;
    xd->mi[0]->mode = NEWMV;
    xd->mi[0]->mv[0].as_mv = *best_mv;
    xd->mi[0]->tx_size = TX_4X4;
    xd->mi[0]->ref_frame[0] = LAST_FRAME;
    xd->mi[0]->ref_frame[1] = NONE_FRAME;

    if (fp_sf->disable_recon == 0) {
      av1_enc_build_inter_predictor(cm, xd, unit_row * unit_scale,
                                    unit_col * unit_scale, NULL, bsize,
                                    AOM_PLANE_Y, AOM_PLANE_Y);
      av1_encode_sby_pass1(cpi, x, bsize);
    }
    stats->sum_mvr += best_mv->row;
    stats->sum_mvr_abs += abs(best_mv->row);
    stats->sum_mvc += best_mv->col;
    stats->sum_mvc_abs += abs(best_mv->col);
    stats->sum_mvrs += best_mv->row * best_mv->row;
    stats->sum_mvcs += best_mv->col * best_mv->col;
    ++stats->inter_count;

    accumulate_mv_stats(*best_mv, mv, unit_row, unit_col, unit_rows, unit_cols,
                        last_non_zero_mv, stats);
  }

  return this_inter_error;
}

// Normalize the first pass stats.
// Error / counters are normalized to each MB.
// MVs are normalized to the width/height of the frame.
static void normalize_firstpass_stats(FIRSTPASS_STATS *fps,
                                      double num_mbs_16x16, double f_w,
                                      double f_h) {
  fps->coded_error /= num_mbs_16x16;
  fps->sr_coded_error /= num_mbs_16x16;
  fps->intra_error /= num_mbs_16x16;
  fps->frame_avg_wavelet_energy /= num_mbs_16x16;
  fps->log_coded_error = log1p(fps->coded_error);
  fps->log_intra_error = log1p(fps->intra_error);
  fps->MVr /= f_h;
  fps->mvr_abs /= f_h;
  fps->MVc /= f_w;
  fps->mvc_abs /= f_w;
  fps->MVrv /= (f_h * f_h);
  fps->MVcv /= (f_w * f_w);
  fps->new_mv_count /= num_mbs_16x16;
}

// Updates the first pass stats of this frame.
// Input:
//   cpi: the encoder setting. Only a few params in it will be used.
//   stats: stats accumulated for this frame.
//   raw_err_stdev: the statndard deviation for the motion error of all the
//                  inter blocks of the (0,0) motion using the last source
//                  frame as the reference.
//   frame_number: current frame number.
//   ts_duration: Duration of the frame / collection of frames.
// Updates:
//   twopass->total_stats: the accumulated stats.
//   twopass->stats_buf_ctx->stats_in_end: the pointer to the current stats,
//                                         update its value and its position
//                                         in the buffer.
static void update_firstpass_stats(AV1_COMP *cpi,
                                   const FRAME_STATS *const stats,
                                   const double raw_err_stdev,
                                   const int frame_number,
                                   const int64_t ts_duration,
                                   const BLOCK_SIZE fp_block_size) {
  TWO_PASS *twopass = &cpi->ppi->twopass;
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
  FIRSTPASS_STATS fps;
  // The minimum error here insures some bit allocation to frames even
  // in static regions. The allocation per MB declines for larger formats
  // where the typical "real" energy per MB also falls.
  // Initial estimate here uses sqrt(mbs) to define the min_err, where the
  // number of mbs is proportional to the image area.
  const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
                                ? cpi->initial_mbs
                                : mi_params->MBs;
  // Number of actual units used in the first pass, it can be other square
  // block sizes than 16X16.
  const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
  const double min_err = 200 * sqrt(num_mbs);

  fps.weight = stats->intra_factor * stats->brightness_factor;
  fps.frame = frame_number;
  fps.coded_error = (double)(stats->coded_error >> 8) + min_err;
  fps.sr_coded_error = (double)(stats->sr_coded_error >> 8) + min_err;
  fps.intra_error = (double)(stats->intra_error >> 8) + min_err;
  fps.frame_avg_wavelet_energy = (double)stats->frame_avg_wavelet_energy;
  fps.count = 1.0;
  fps.pcnt_inter = (double)stats->inter_count / num_mbs;
  fps.pcnt_second_ref = (double)stats->second_ref_count / num_mbs;
  fps.pcnt_neutral = (double)stats->neutral_count / num_mbs;
  fps.intra_skip_pct = (double)stats->intra_skip_count / num_mbs;
  fps.inactive_zone_rows = (double)stats->image_data_start_row;
  fps.inactive_zone_cols = 0.0;  // Placeholder: not currently supported.
  fps.raw_error_stdev = raw_err_stdev;
  fps.is_flash = 0;
  fps.noise_var = 0.0;
  fps.cor_coeff = 1.0;
  fps.log_coded_error = 0.0;
  fps.log_intra_error = 0.0;

  if (stats->mv_count > 0) {
    fps.MVr = (double)stats->sum_mvr / stats->mv_count;
    fps.mvr_abs = (double)stats->sum_mvr_abs / stats->mv_count;
    fps.MVc = (double)stats->sum_mvc / stats->mv_count;
    fps.mvc_abs = (double)stats->sum_mvc_abs / stats->mv_count;
    fps.MVrv = ((double)stats->sum_mvrs -
                ((double)stats->sum_mvr * stats->sum_mvr / stats->mv_count)) /
               stats->mv_count;
    fps.MVcv = ((double)stats->sum_mvcs -
                ((double)stats->sum_mvc * stats->sum_mvc / stats->mv_count)) /
               stats->mv_count;
    fps.mv_in_out_count = (double)stats->sum_in_vectors / (stats->mv_count * 2);
    fps.new_mv_count = stats->new_mv_count;
    fps.pcnt_motion = (double)stats->mv_count / num_mbs;
  } else {
    fps.MVr = 0.0;
    fps.mvr_abs = 0.0;
    fps.MVc = 0.0;
    fps.mvc_abs = 0.0;
    fps.MVrv = 0.0;
    fps.MVcv = 0.0;
    fps.mv_in_out_count = 0.0;
    fps.new_mv_count = 0.0;
    fps.pcnt_motion = 0.0;
  }

  // TODO(paulwilkins):  Handle the case when duration is set to 0, or
  // something less than the full time between subsequent values of
  // cpi->source_time_stamp.
  fps.duration = (double)ts_duration;

  normalize_firstpass_stats(&fps, num_mbs_16X16, cm->width, cm->height);

  // We will store the stats inside the persistent twopass struct (and NOT the
  // local variable 'fps'), and then cpi->output_pkt_list will point to it.
  *this_frame_stats = fps;
  if (!cpi->ppi->lap_enabled) {
    output_stats(this_frame_stats, cpi->ppi->output_pkt_list);
  } else {
    av1_firstpass_info_push(&twopass->firstpass_info, this_frame_stats);
  }
  if (cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL) {
    av1_accumulate_stats(cpi->ppi->twopass.stats_buf_ctx->total_stats, &fps);
  }
  twopass->stats_buf_ctx->stats_in_end++;
  // When ducky encode is on, we always use linear buffer for stats_buf_ctx.
  if (cpi->use_ducky_encode == 0) {
    // TODO(angiebird): Figure out why first pass uses circular buffer.
    /* In the case of two pass, first pass uses it as a circular buffer,
     * when LAP is enabled it is used as a linear buffer*/
    if ((cpi->oxcf.pass == AOM_RC_FIRST_PASS) &&
        (twopass->stats_buf_ctx->stats_in_end >=
         twopass->stats_buf_ctx->stats_in_buf_end)) {
      twopass->stats_buf_ctx->stats_in_end =
          twopass->stats_buf_ctx->stats_in_start;
    }
  }
}

static void print_reconstruction_frame(
    const YV12_BUFFER_CONFIG *const last_frame, int frame_number,
    int do_print) {
  if (!do_print) return;

  char filename[512];
  FILE *recon_file;
  snprintf(filename, sizeof(filename), "enc%04d.yuv", frame_number);

  if (frame_number == 0) {
    recon_file = fopen(filename, "wb");
  } else {
    recon_file = fopen(filename, "ab");
  }

  fwrite(last_frame->buffer_alloc, last_frame->frame_size, 1, recon_file);
  fclose(recon_file);
}

static FRAME_STATS accumulate_frame_stats(FRAME_STATS *mb_stats, int mb_rows,
                                          int mb_cols) {
  FRAME_STATS stats = { 0 };
  int i, j;

  stats.image_data_start_row = INVALID_ROW;
  for (j = 0; j < mb_rows; j++) {
    for (i = 0; i < mb_cols; i++) {
      FRAME_STATS mb_stat = mb_stats[j * mb_cols + i];
      stats.brightness_factor += mb_stat.brightness_factor;
      stats.coded_error += mb_stat.coded_error;
      stats.frame_avg_wavelet_energy += mb_stat.frame_avg_wavelet_energy;
      if (stats.image_data_start_row == INVALID_ROW &&
          mb_stat.image_data_start_row != INVALID_ROW) {
        stats.image_data_start_row = mb_stat.image_data_start_row;
      }
      stats.inter_count += mb_stat.inter_count;
      stats.intra_error += mb_stat.intra_error;
      stats.intra_factor += mb_stat.intra_factor;
      stats.intra_skip_count += mb_stat.intra_skip_count;
      stats.mv_count += mb_stat.mv_count;
      stats.neutral_count += mb_stat.neutral_count;
      stats.new_mv_count += mb_stat.new_mv_count;
      stats.second_ref_count += mb_stat.second_ref_count;
      stats.sr_coded_error += mb_stat.sr_coded_error;
      stats.sum_in_vectors += mb_stat.sum_in_vectors;
      stats.sum_mvc += mb_stat.sum_mvc;
      stats.sum_mvc_abs += mb_stat.sum_mvc_abs;
      stats.sum_mvcs += mb_stat.sum_mvcs;
      stats.sum_mvr += mb_stat.sum_mvr;
      stats.sum_mvr_abs += mb_stat.sum_mvr_abs;
      stats.sum_mvrs += mb_stat.sum_mvrs;
    }
  }
  return stats;
}

static void setup_firstpass_data(AV1_COMMON *const cm,
                                 FirstPassData *firstpass_data,
                                 const int unit_rows, const int unit_cols) {
  CHECK_MEM_ERROR(cm, firstpass_data->raw_motion_err_list,
                  aom_calloc(unit_rows * unit_cols,
                             sizeof(*firstpass_data->raw_motion_err_list)));
  CHECK_MEM_ERROR(
      cm, firstpass_data->mb_stats,
      aom_calloc(unit_rows * unit_cols, sizeof(*firstpass_data->mb_stats)));
  for (int j = 0; j < unit_rows; j++) {
    for (int i = 0; i < unit_cols; i++) {
      firstpass_data->mb_stats[j * unit_cols + i].image_data_start_row =
          INVALID_ROW;
    }
  }
}

void av1_free_firstpass_data(FirstPassData *firstpass_data) {
  aom_free(firstpass_data->raw_motion_err_list);
  firstpass_data->raw_motion_err_list = NULL;
  aom_free(firstpass_data->mb_stats);
  firstpass_data->mb_stats = NULL;
}

int av1_get_unit_rows_in_tile(const TileInfo *tile,
                              const BLOCK_SIZE fp_block_size) {
  const int unit_height_log2 = mi_size_high_log2[fp_block_size];
  const int mi_rows = tile->mi_row_end - tile->mi_row_start;
  const int unit_rows = CEIL_POWER_OF_TWO(mi_rows, unit_height_log2);

  return unit_rows;
}

int av1_get_unit_cols_in_tile(const TileInfo *tile,
                              const BLOCK_SIZE fp_block_size) {
  const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
  const int mi_cols = tile->mi_col_end - tile->mi_col_start;
  const int unit_cols = CEIL_POWER_OF_TWO(mi_cols, unit_width_log2);

  return unit_cols;
}

#define FIRST_PASS_ALT_REF_DISTANCE 16
static void first_pass_tile(AV1_COMP *cpi, ThreadData *td,
                            TileDataEnc *tile_data,
                            const BLOCK_SIZE fp_block_size) {
  TileInfo *tile = &tile_data->tile_info;
  const int unit_height = mi_size_high[fp_block_size];
  const int unit_height_log2 = mi_size_high_log2[fp_block_size];
  for (int mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
       mi_row += unit_height) {
    av1_first_pass_row(cpi, td, tile_data, mi_row >> unit_height_log2,
                       fp_block_size);
  }
}

static void first_pass_tiles(AV1_COMP *cpi, const BLOCK_SIZE fp_block_size) {
  AV1_COMMON *const cm = &cpi->common;
  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;

  av1_alloc_src_diff_buf(cm, &cpi->td.mb);
  for (int tile_row = 0; tile_row < tile_rows; ++tile_row) {
    for (int tile_col = 0; tile_col < tile_cols; ++tile_col) {
      TileDataEnc *const tile_data =
          &cpi->tile_data[tile_row * tile_cols + tile_col];
      first_pass_tile(cpi, &cpi->td, tile_data, fp_block_size);
    }
  }
}

void av1_first_pass_row(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data,
                        const int unit_row, const BLOCK_SIZE fp_block_size) {
  MACROBLOCK *const x = &td->mb;
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const SequenceHeader *const seq_params = cm->seq_params;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  TileInfo *tile = &tile_data->tile_info;
  const int qindex = find_fp_qindex(seq_params->bit_depth);
  const int fp_block_size_width = block_size_high[fp_block_size];
  const int fp_block_size_height = block_size_wide[fp_block_size];
  const int unit_width = mi_size_wide[fp_block_size];
  const int unit_width_log2 = mi_size_wide_log2[fp_block_size];
  const int unit_height_log2 = mi_size_high_log2[fp_block_size];
  const int unit_cols = mi_params->mb_cols * 4 / unit_width;
  int raw_motion_err_counts = 0;
  int unit_row_in_tile = unit_row - (tile->mi_row_start >> unit_height_log2);
  int unit_col_start = tile->mi_col_start >> unit_width_log2;
  int unit_cols_in_tile = av1_get_unit_cols_in_tile(tile, fp_block_size);
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
  AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;

  const YV12_BUFFER_CONFIG *last_frame =
      av1_get_scaled_ref_frame(cpi, LAST_FRAME);
  if (!last_frame) {
    last_frame = get_ref_frame_yv12_buf(cm, LAST_FRAME);
  }
  const YV12_BUFFER_CONFIG *golden_frame =
      av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
  if (!golden_frame) {
    golden_frame = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
  }
  YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;

  PICK_MODE_CONTEXT *ctx = td->firstpass_ctx;
  FRAME_STATS *mb_stats =
      cpi->firstpass_data.mb_stats + unit_row * unit_cols + unit_col_start;
  int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list +
                             unit_row * unit_cols + unit_col_start;
  MV *first_top_mv = &tile_data->firstpass_top_mv;

  for (int i = 0; i < num_planes; ++i) {
    x->plane[i].coeff = ctx->coeff[i];
    x->plane[i].qcoeff = ctx->qcoeff[i];
    x->plane[i].eobs = ctx->eobs[i];
    x->plane[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
    x->plane[i].dqcoeff = ctx->dqcoeff[i];
  }

  const int src_y_stride = cpi->source->y_stride;
  const int recon_y_stride = this_frame->y_stride;
  const int recon_uv_stride = this_frame->uv_stride;
  const int uv_mb_height =
      fp_block_size_height >> (this_frame->y_height > this_frame->uv_height);

  MV best_ref_mv = kZeroMv;
  MV last_mv;

  // Reset above block coeffs.
  xd->up_available = (unit_row_in_tile != 0);
  int recon_yoffset = (unit_row * recon_y_stride * fp_block_size_height) +
                      (unit_col_start * fp_block_size_width);
  int src_yoffset = (unit_row * src_y_stride * fp_block_size_height) +
                    (unit_col_start * fp_block_size_width);
  int recon_uvoffset = (unit_row * recon_uv_stride * uv_mb_height) +
                       (unit_col_start * uv_mb_height);

  // Set up limit values for motion vectors to prevent them extending
  // outside the UMV borders.
  av1_set_mv_row_limits(
      mi_params, &x->mv_limits, (unit_row << unit_height_log2),
      (fp_block_size_height >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels);

  av1_setup_src_planes(x, cpi->source, unit_row << unit_height_log2,
                       tile->mi_col_start, num_planes, fp_block_size);

  // Fix - zero the 16x16 block first. This ensures correct this_intra_error for
  // block sizes smaller than 16x16.
  av1_zero_array(x->plane[0].src_diff, 256);

  for (int unit_col_in_tile = 0; unit_col_in_tile < unit_cols_in_tile;
       unit_col_in_tile++) {
    const int unit_col = unit_col_start + unit_col_in_tile;

    enc_row_mt->sync_read_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile);

#if CONFIG_MULTITHREAD
    if (cpi->ppi->p_mt_info.num_workers > 1) {
      pthread_mutex_lock(enc_row_mt->mutex_);
      bool firstpass_mt_exit = enc_row_mt->firstpass_mt_exit;
      pthread_mutex_unlock(enc_row_mt->mutex_);
      // Exit in case any worker has encountered an error.
      if (firstpass_mt_exit) return;
    }
#endif

    if (unit_col_in_tile == 0) {
      last_mv = *first_top_mv;
    }
    int this_intra_error = firstpass_intra_prediction(
        cpi, td, this_frame, tile, unit_row, unit_col, recon_yoffset,
        recon_uvoffset, fp_block_size, qindex, mb_stats);

    if (!frame_is_intra_only(cm)) {
      const int this_inter_error = firstpass_inter_prediction(
          cpi, td, last_frame, golden_frame, unit_row, unit_col, recon_yoffset,
          recon_uvoffset, src_yoffset, fp_block_size, this_intra_error,
          raw_motion_err_counts, raw_motion_err_list, best_ref_mv, &best_ref_mv,
          &last_mv, mb_stats);
      if (unit_col_in_tile == 0) {
        *first_top_mv = last_mv;
      }
      mb_stats->coded_error += this_inter_error;
      ++raw_motion_err_counts;
    } else {
      mb_stats->sr_coded_error += this_intra_error;
      mb_stats->coded_error += this_intra_error;
    }

    // Adjust to the next column of MBs.
    x->plane[0].src.buf += fp_block_size_width;
    if (num_planes > 1) {
      x->plane[1].src.buf += uv_mb_height;
      x->plane[2].src.buf += uv_mb_height;
    }

    recon_yoffset += fp_block_size_width;
    src_yoffset += fp_block_size_width;
    recon_uvoffset += uv_mb_height;
    mb_stats++;

    enc_row_mt->sync_write_ptr(row_mt_sync, unit_row_in_tile, unit_col_in_tile,
                               unit_cols_in_tile);
  }
}

void av1_noop_first_pass_frame(AV1_COMP *cpi, const int64_t ts_duration) {
  AV1_COMMON *const cm = &cpi->common;
  CurrentFrame *const current_frame = &cm->current_frame;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  int max_mb_rows = mi_params->mb_rows;
  int max_mb_cols = mi_params->mb_cols;
  if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
    int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
    max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
  }
  if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
    int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
    max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
  }
  const int unit_rows = get_unit_rows(BLOCK_16X16, max_mb_rows);
  const int unit_cols = get_unit_cols(BLOCK_16X16, max_mb_cols);
  setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
  FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;
  FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
  av1_free_firstpass_data(&cpi->firstpass_data);
  update_firstpass_stats(cpi, &stats, 1.0, current_frame->frame_number,
                         ts_duration, BLOCK_16X16);
}

void av1_first_pass(AV1_COMP *cpi, const int64_t ts_duration) {
  MACROBLOCK *const x = &cpi->td.mb;
  AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  CurrentFrame *const current_frame = &cm->current_frame;
  const SequenceHeader *const seq_params = cm->seq_params;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  const int qindex = find_fp_qindex(seq_params->bit_depth);
  const int ref_frame_flags_backup = cpi->ref_frame_flags;
  cpi->ref_frame_flags = av1_ref_frame_flag_list[LAST_FRAME] |
                         av1_ref_frame_flag_list[GOLDEN_FRAME];

  // Detect if the key frame is screen content type.
  if (frame_is_intra_only(cm)) {
    FeatureFlags *const features = &cm->features;
    assert(cpi->source != NULL);
    xd->cur_buf = cpi->source;
    av1_set_screen_content_options(cpi, features);
  }

  // Prepare the speed features
  av1_set_speed_features_framesize_independent(cpi, cpi->oxcf.speed);

  // Unit size for the first pass encoding.
  const BLOCK_SIZE fp_block_size =
      get_fp_block_size(cpi->is_screen_content_type);

  int max_mb_rows = mi_params->mb_rows;
  int max_mb_cols = mi_params->mb_cols;
  if (cpi->oxcf.frm_dim_cfg.forced_max_frame_width) {
    int max_mi_cols = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_width);
    max_mb_cols = ROUND_POWER_OF_TWO(max_mi_cols, 2);
  }
  if (cpi->oxcf.frm_dim_cfg.forced_max_frame_height) {
    int max_mi_rows = size_in_mi(cpi->oxcf.frm_dim_cfg.forced_max_frame_height);
    max_mb_rows = ROUND_POWER_OF_TWO(max_mi_rows, 2);
  }

  // Number of rows in the unit size.
  // Note max_mb_rows and max_mb_cols are in the unit of 16x16.
  const int unit_rows = get_unit_rows(fp_block_size, max_mb_rows);
  const int unit_cols = get_unit_cols(fp_block_size, max_mb_cols);

  // Set fp_block_size, for the convenience of multi-thread usage.
  cpi->fp_block_size = fp_block_size;

  setup_firstpass_data(cm, &cpi->firstpass_data, unit_rows, unit_cols);
  int *raw_motion_err_list = cpi->firstpass_data.raw_motion_err_list;
  FRAME_STATS *mb_stats = cpi->firstpass_data.mb_stats;

  // multi threading info
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;

  const int tile_cols = cm->tiles.cols;
  const int tile_rows = cm->tiles.rows;
  if (cpi->allocated_tiles < tile_cols * tile_rows) {
    av1_alloc_tile_data(cpi);
  }

  av1_init_tile_data(cpi);

  const YV12_BUFFER_CONFIG *last_frame = NULL;
  const YV12_BUFFER_CONFIG *golden_frame = NULL;
  if (!frame_is_intra_only(cm)) {
    av1_scale_references(cpi, EIGHTTAP_REGULAR, 0, 0);
    last_frame = av1_is_scaled(get_ref_scale_factors_const(cm, LAST_FRAME))
                     ? av1_get_scaled_ref_frame(cpi, LAST_FRAME)
                     : get_ref_frame_yv12_buf(cm, LAST_FRAME);
    golden_frame = av1_is_scaled(get_ref_scale_factors_const(cm, GOLDEN_FRAME))
                       ? av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME)
                       : get_ref_frame_yv12_buf(cm, GOLDEN_FRAME);
  }

  YV12_BUFFER_CONFIG *const this_frame = &cm->cur_frame->buf;
  // First pass code requires valid last and new frame buffers.
  assert(this_frame != NULL);
  assert(frame_is_intra_only(cm) || (last_frame != NULL));

  av1_setup_frame_size(cpi);
  av1_set_mv_search_params(cpi);

  set_mi_offsets(mi_params, xd, 0, 0);
  xd->mi[0]->bsize = fp_block_size;

  // Do not use periodic key frames.
  cpi->rc.frames_to_key = INT_MAX;

  av1_set_quantizer(
      cm, cpi->oxcf.q_cfg.qm_minlevel, cpi->oxcf.q_cfg.qm_maxlevel, qindex,
      cpi->oxcf.q_cfg.enable_chroma_deltaq, cpi->oxcf.q_cfg.enable_hdr_deltaq);

  av1_setup_block_planes(xd, seq_params->subsampling_x,
                         seq_params->subsampling_y, num_planes);

  av1_setup_src_planes(x, cpi->source, 0, 0, num_planes, fp_block_size);
  av1_setup_dst_planes(xd->plane, seq_params->sb_size, this_frame, 0, 0, 0,
                       num_planes);

  if (!frame_is_intra_only(cm)) {
    av1_setup_pre_planes(xd, 0, last_frame, 0, 0, NULL, num_planes);
  }

  set_mi_offsets(mi_params, xd, 0, 0);

  // Don't store luma on the fist pass since chroma is not computed
  xd->cfl.store_y = 0;
  av1_frame_init_quantizer(cpi);

  av1_default_coef_probs(cm);
  av1_init_mode_probs(cm->fc);
  av1_init_mv_probs(cm);
  av1_initialize_rd_consts(cpi);

  enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy;
  enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy;

  if (mt_info->num_workers > 1) {
    enc_row_mt->sync_read_ptr = av1_row_mt_sync_read;
    enc_row_mt->sync_write_ptr = av1_row_mt_sync_write;
    av1_fp_encode_tiles_row_mt(cpi);
  } else {
    first_pass_tiles(cpi, fp_block_size);
  }

  FRAME_STATS stats = accumulate_frame_stats(mb_stats, unit_rows, unit_cols);
  int total_raw_motion_err_count =
      frame_is_intra_only(cm) ? 0 : unit_rows * unit_cols;
  const double raw_err_stdev =
      raw_motion_error_stdev(raw_motion_err_list, total_raw_motion_err_count);
  av1_free_firstpass_data(&cpi->firstpass_data);
  av1_dealloc_src_diff_buf(&cpi->td.mb, av1_num_planes(cm));

  // Clamp the image start to rows/2. This number of rows is discarded top
  // and bottom as dead data so rows / 2 means the frame is blank.
  if ((stats.image_data_start_row > unit_rows / 2) ||
      (stats.image_data_start_row == INVALID_ROW)) {
    stats.image_data_start_row = unit_rows / 2;
  }
  // Exclude any image dead zone
  if (stats.image_data_start_row > 0) {
    stats.intra_skip_count =
        AOMMAX(0, stats.intra_skip_count -
                      (stats.image_data_start_row * unit_cols * 2));
  }

  TWO_PASS *twopass = &cpi->ppi->twopass;
  const int num_mbs_16X16 = (cpi->oxcf.resize_cfg.resize_mode != RESIZE_NONE)
                                ? cpi->initial_mbs
                                : mi_params->MBs;
  // Number of actual units used in the first pass, it can be other square
  // block sizes than 16X16.
  const int num_mbs = get_num_mbs(fp_block_size, num_mbs_16X16);
  stats.intra_factor = stats.intra_factor / (double)num_mbs;
  stats.brightness_factor = stats.brightness_factor / (double)num_mbs;
  FIRSTPASS_STATS *this_frame_stats = twopass->stats_buf_ctx->stats_in_end;
  update_firstpass_stats(cpi, &stats, raw_err_stdev,
                         current_frame->frame_number, ts_duration,
                         fp_block_size);

  // Copy the previous Last Frame back into gf buffer if the prediction is good
  // enough... but also don't allow it to lag too far.
  if ((twopass->sr_update_lag > 3) ||
      ((current_frame->frame_number > 0) &&
       (this_frame_stats->pcnt_inter > 0.20) &&
       ((this_frame_stats->intra_error /
         DOUBLE_DIVIDE_CHECK(this_frame_stats->coded_error)) > 2.0))) {
    if (golden_frame != NULL) {
      assign_frame_buffer_p(
          &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
          cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
    }
    twopass->sr_update_lag = 1;
  } else {
    ++twopass->sr_update_lag;
  }

  aom_extend_frame_borders(this_frame, num_planes);

  // The frame we just compressed now becomes the last frame.
  assign_frame_buffer_p(
      &cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)], cm->cur_frame);

  // Special case for the first frame. Copy into the GF buffer as a second
  // reference.
  if (current_frame->frame_number == 0 &&
      get_ref_frame_map_idx(cm, GOLDEN_FRAME) != INVALID_IDX) {
    assign_frame_buffer_p(
        &cm->ref_frame_map[get_ref_frame_map_idx(cm, GOLDEN_FRAME)],
        cm->ref_frame_map[get_ref_frame_map_idx(cm, LAST_FRAME)]);
  }

  print_reconstruction_frame(last_frame, current_frame->frame_number,
                             /*do_print=*/0);

  ++current_frame->frame_number;
  cpi->ref_frame_flags = ref_frame_flags_backup;
  if (!frame_is_intra_only(cm)) {
    release_scaled_references(cpi);
  }
}

aom_codec_err_t av1_firstpass_info_init(FIRSTPASS_INFO *firstpass_info,
                                        FIRSTPASS_STATS *ext_stats_buf,
                                        int ext_stats_buf_size) {
  assert(IMPLIES(ext_stats_buf == NULL, ext_stats_buf_size == 0));
  if (ext_stats_buf == NULL) {
    firstpass_info->stats_buf = firstpass_info->static_stats_buf;
    firstpass_info->stats_buf_size =
        sizeof(firstpass_info->static_stats_buf) /
        sizeof(firstpass_info->static_stats_buf[0]);
    firstpass_info->start_index = 0;
    firstpass_info->cur_index = 0;
    firstpass_info->stats_count = 0;
    firstpass_info->future_stats_count = 0;
    firstpass_info->past_stats_count = 0;
    av1_zero(firstpass_info->total_stats);
    if (ext_stats_buf_size == 0) {
      return AOM_CODEC_OK;
    } else {
      return AOM_CODEC_ERROR;
    }
  } else {
    firstpass_info->stats_buf = ext_stats_buf;
    firstpass_info->stats_buf_size = ext_stats_buf_size;
    firstpass_info->start_index = 0;
    firstpass_info->cur_index = 0;
    firstpass_info->stats_count = firstpass_info->stats_buf_size;
    firstpass_info->future_stats_count = firstpass_info->stats_count;
    firstpass_info->past_stats_count = 0;
    av1_zero(firstpass_info->total_stats);
    for (int i = 0; i < firstpass_info->stats_count; ++i) {
      av1_accumulate_stats(&firstpass_info->total_stats,
                           &firstpass_info->stats_buf[i]);
    }
  }
  return AOM_CODEC_OK;
}

aom_codec_err_t av1_firstpass_info_move_cur_index(
    FIRSTPASS_INFO *firstpass_info) {
  assert(firstpass_info->future_stats_count +
             firstpass_info->past_stats_count ==
         firstpass_info->stats_count);
  if (firstpass_info->future_stats_count > 1) {
    firstpass_info->cur_index =
        (firstpass_info->cur_index + 1) % firstpass_info->stats_buf_size;
    --firstpass_info->future_stats_count;
    ++firstpass_info->past_stats_count;
    return AOM_CODEC_OK;
  } else {
    return AOM_CODEC_ERROR;
  }
}

aom_codec_err_t av1_firstpass_info_pop(FIRSTPASS_INFO *firstpass_info) {
  if (firstpass_info->stats_count > 0 && firstpass_info->past_stats_count > 0) {
    const int next_start =
        (firstpass_info->start_index + 1) % firstpass_info->stats_buf_size;
    firstpass_info->start_index = next_start;
    --firstpass_info->stats_count;
    --firstpass_info->past_stats_count;
    return AOM_CODEC_OK;
  } else {
    return AOM_CODEC_ERROR;
  }
}

aom_codec_err_t av1_firstpass_info_move_cur_index_and_pop(
    FIRSTPASS_INFO *firstpass_info) {
  aom_codec_err_t ret = av1_firstpass_info_move_cur_index(firstpass_info);
  if (ret != AOM_CODEC_OK) return ret;
  ret = av1_firstpass_info_pop(firstpass_info);
  return ret;
}

aom_codec_err_t av1_firstpass_info_push(FIRSTPASS_INFO *firstpass_info,
                                        const FIRSTPASS_STATS *input_stats) {
  if (firstpass_info->stats_count < firstpass_info->stats_buf_size) {
    const int next_index =
        (firstpass_info->start_index + firstpass_info->stats_count) %
        firstpass_info->stats_buf_size;
    firstpass_info->stats_buf[next_index] = *input_stats;
    ++firstpass_info->stats_count;
    ++firstpass_info->future_stats_count;
    av1_accumulate_stats(&firstpass_info->total_stats, input_stats);
    return AOM_CODEC_OK;
  } else {
    return AOM_CODEC_ERROR;
  }
}

const FIRSTPASS_STATS *av1_firstpass_info_peek(
    const FIRSTPASS_INFO *firstpass_info, int offset_from_cur) {
  if (offset_from_cur >= -firstpass_info->past_stats_count &&
      offset_from_cur < firstpass_info->future_stats_count) {
    const int index = (firstpass_info->cur_index + offset_from_cur) %
                      firstpass_info->stats_buf_size;
    return &firstpass_info->stats_buf[index];
  } else {
    return NULL;
  }
}

int av1_firstpass_info_future_count(const FIRSTPASS_INFO *firstpass_info,
                                    int offset_from_cur) {
  if (offset_from_cur < firstpass_info->future_stats_count) {
    return firstpass_info->future_stats_count - offset_from_cur;
  }
  return 0;
}

int av1_firstpass_info_past_count(const FIRSTPASS_INFO *firstpass_info,
                                  int offset_from_cur) {
  if (offset_from_cur >= -firstpass_info->past_stats_count) {
    return offset_from_cur + firstpass_info->past_stats_count;
  }
  return 0;
}