summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/intra_mode_search_utils.h
blob: 107c2236f8d854392a5d79f9f45cd8451d335c3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

/*!\file
 * \brief Defines utility functions used in intra mode search.
 *
 * This includes rdcost estimations, histogram based pruning, etc.
 */
#ifndef AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_
#define AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_

#include "av1/common/enums.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconintra.h"

#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/hybrid_fwd_txfm.h"

#ifdef __cplusplus
extern "C" {
#endif

/*!\cond */
// Macro for computing the speed-preset dependent threshold which is used for
// deciding whether to enable/disable variance calculations in
// intra_rd_variance_factor().
#define INTRA_RD_VAR_THRESH(X) (1.0 - (0.25 * (X)))

#define BINS 32
static const float av1_intra_hog_model_bias[DIRECTIONAL_MODES] = {
  0.450578f,  0.695518f,  -0.717944f, -0.639894f,
  -0.602019f, -0.453454f, 0.055857f,  -0.465480f,
};

static const float av1_intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
  -3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
  -2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
  -0.434156f, 0.322868f,  2.260546f,  3.368715f,  3.989290f,  3.308487f,
  2.277893f,  0.923793f,  0.026412f,  -0.385174f, -0.718622f, -1.408867f,
  -1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
  -2.985709f, -3.447155f, 3.758139f,  3.204353f,  2.170998f,  0.826587f,
  -0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
  -2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
  -3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
  -1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
  -0.088058f, 0.753494f,  2.092413f,  3.215266f,  -3.300277f, -2.748658f,
  -2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
  -2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
  -2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
  0.813112f,  1.702213f,  2.653045f,  3.351749f,  3.243554f,  3.199409f,
  2.437856f,  1.468854f,  0.533039f,  -0.099065f, -0.622643f, -2.200732f,
  -4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f,  1.975043f,
  3.179528f,  3.939064f,  3.454379f,  3.689386f,  3.116411f,  1.970991f,
  0.798406f,  -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
  -3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
  -3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
  -3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
  -2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f,  1.416882f,
  2.572884f,  3.607755f,  3.974820f,  3.997783f,  2.970459f,  0.791687f,
  -1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
  -1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
  -3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
  2.794130f,  3.685984f,  3.745195f,  3.252444f,  2.316108f,  1.399146f,
  -0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
  -3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
  -2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
  -1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
  -1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
  -1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
  -2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
  -2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
  0.716997f,  1.481393f,  2.216702f,  2.737986f,  3.109809f,  3.226084f,
  2.490098f,  -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
  -2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
  -1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
  -1.430687f, 0.872896f,  2.766550f,  3.610080f,  3.578041f,  3.334928f,
  2.586680f,  1.895721f,  1.122195f,  0.488519f,  -0.140689f, -0.799076f,
  -1.222860f, -1.502437f, -1.900969f, -3.206816f,
};

static const NN_CONFIG av1_intra_hog_model_nnconfig = {
  BINS,               // num_inputs
  DIRECTIONAL_MODES,  // num_outputs
  0,                  // num_hidden_layers
  { 0 },
  {
      av1_intra_hog_model_weights,
  },
  {
      av1_intra_hog_model_bias,
  },
};

#define FIX_PREC_BITS (16)
static AOM_INLINE int get_hist_bin_idx(int dx, int dy) {
  const int32_t ratio = (dy * (1 << FIX_PREC_BITS)) / dx;

  // Find index by bisection
  static const int thresholds[BINS] = {
    -1334015, -441798, -261605, -183158, -138560, -109331, -88359, -72303,
    -59392,   -48579,  -39272,  -30982,  -23445,  -16400,  -9715,  -3194,
    3227,     9748,    16433,   23478,   31015,   39305,   48611,  59425,
    72336,    88392,   109364,  138593,  183191,  261638,  441831, INT32_MAX
  };

  int lo_idx = 0, hi_idx = BINS - 1;
  // Divide into segments of size 8 gives better performance than binary search
  // here.
  if (ratio <= thresholds[7]) {
    lo_idx = 0;
    hi_idx = 7;
  } else if (ratio <= thresholds[15]) {
    lo_idx = 8;
    hi_idx = 15;
  } else if (ratio <= thresholds[23]) {
    lo_idx = 16;
    hi_idx = 23;
  } else {
    lo_idx = 24;
    hi_idx = 31;
  }

  for (int idx = lo_idx; idx <= hi_idx; idx++) {
    if (ratio <= thresholds[idx]) {
      return idx;
    }
  }
  assert(0 && "No valid histogram bin found!");
  return BINS - 1;
}
#undef FIX_PREC_BITS

// Normalizes the hog data.
static AOM_INLINE void normalize_hog(float total, float *hist) {
  for (int i = 0; i < BINS; ++i) hist[i] /= total;
}

static AOM_INLINE void lowbd_generate_hog(const uint8_t *src, int stride,
                                          int rows, int cols, float *hist) {
  float total = 0.1f;
  src += stride;
  for (int r = 1; r < rows - 1; ++r) {
    for (int c = 1; c < cols - 1; ++c) {
      const uint8_t *above = &src[c - stride];
      const uint8_t *below = &src[c + stride];
      const uint8_t *left = &src[c - 1];
      const uint8_t *right = &src[c + 1];
      // Calculate gradient using Sobel filters.
      const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
                     (left[-stride] + 2 * left[0] + left[stride]);
      const int dy = (below[-1] + 2 * below[0] + below[1]) -
                     (above[-1] + 2 * above[0] + above[1]);
      if (dx == 0 && dy == 0) continue;
      const int temp = abs(dx) + abs(dy);
      if (!temp) continue;
      total += temp;
      if (dx == 0) {
        hist[0] += temp / 2;
        hist[BINS - 1] += temp / 2;
      } else {
        const int idx = get_hist_bin_idx(dx, dy);
        assert(idx >= 0 && idx < BINS);
        hist[idx] += temp;
      }
    }
    src += stride;
  }

  normalize_hog(total, hist);
}

// Computes and stores pixel level gradient information of a given superblock
// for LBD encode.
static AOM_INLINE void lowbd_compute_gradient_info_sb(MACROBLOCK *const x,
                                                      BLOCK_SIZE sb_size,
                                                      PLANE_TYPE plane) {
  PixelLevelGradientInfo *const grad_info_sb =
      x->pixel_gradient_info + plane * MAX_SB_SQUARE;
  const uint8_t *src = x->plane[plane].src.buf;
  const int stride = x->plane[plane].src.stride;
  const int ss_x = x->e_mbd.plane[plane].subsampling_x;
  const int ss_y = x->e_mbd.plane[plane].subsampling_y;
  const int sb_height = block_size_high[sb_size] >> ss_y;
  const int sb_width = block_size_wide[sb_size] >> ss_x;
  src += stride;
  for (int r = 1; r < sb_height - 1; ++r) {
    for (int c = 1; c < sb_width - 1; ++c) {
      const uint8_t *above = &src[c - stride];
      const uint8_t *below = &src[c + stride];
      const uint8_t *left = &src[c - 1];
      const uint8_t *right = &src[c + 1];
      // Calculate gradient using Sobel filters.
      const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
                     (left[-stride] + 2 * left[0] + left[stride]);
      const int dy = (below[-1] + 2 * below[0] + below[1]) -
                     (above[-1] + 2 * above[0] + above[1]);
      grad_info_sb[r * sb_width + c].is_dx_zero = (dx == 0);
      grad_info_sb[r * sb_width + c].abs_dx_abs_dy_sum =
          (uint16_t)(abs(dx) + abs(dy));
      grad_info_sb[r * sb_width + c].hist_bin_idx =
          (dx != 0) ? get_hist_bin_idx(dx, dy) : -1;
    }
    src += stride;
  }
}

#if CONFIG_AV1_HIGHBITDEPTH
static AOM_INLINE void highbd_generate_hog(const uint8_t *src8, int stride,
                                           int rows, int cols, float *hist) {
  float total = 0.1f;
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  src += stride;
  for (int r = 1; r < rows - 1; ++r) {
    for (int c = 1; c < cols - 1; ++c) {
      const uint16_t *above = &src[c - stride];
      const uint16_t *below = &src[c + stride];
      const uint16_t *left = &src[c - 1];
      const uint16_t *right = &src[c + 1];
      // Calculate gradient using Sobel filters.
      const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
                     (left[-stride] + 2 * left[0] + left[stride]);
      const int dy = (below[-1] + 2 * below[0] + below[1]) -
                     (above[-1] + 2 * above[0] + above[1]);
      if (dx == 0 && dy == 0) continue;
      const int temp = abs(dx) + abs(dy);
      if (!temp) continue;
      total += temp;
      if (dx == 0) {
        hist[0] += temp / 2;
        hist[BINS - 1] += temp / 2;
      } else {
        const int idx = get_hist_bin_idx(dx, dy);
        assert(idx >= 0 && idx < BINS);
        hist[idx] += temp;
      }
    }
    src += stride;
  }

  normalize_hog(total, hist);
}

// Computes and stores pixel level gradient information of a given superblock
// for HBD encode.
static AOM_INLINE void highbd_compute_gradient_info_sb(MACROBLOCK *const x,
                                                       BLOCK_SIZE sb_size,
                                                       PLANE_TYPE plane) {
  PixelLevelGradientInfo *const grad_info_sb =
      x->pixel_gradient_info + plane * MAX_SB_SQUARE;
  const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[plane].src.buf);
  const int stride = x->plane[plane].src.stride;
  const int ss_x = x->e_mbd.plane[plane].subsampling_x;
  const int ss_y = x->e_mbd.plane[plane].subsampling_y;
  const int sb_height = block_size_high[sb_size] >> ss_y;
  const int sb_width = block_size_wide[sb_size] >> ss_x;
  src += stride;
  for (int r = 1; r < sb_height - 1; ++r) {
    for (int c = 1; c < sb_width - 1; ++c) {
      const uint16_t *above = &src[c - stride];
      const uint16_t *below = &src[c + stride];
      const uint16_t *left = &src[c - 1];
      const uint16_t *right = &src[c + 1];
      // Calculate gradient using Sobel filters.
      const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
                     (left[-stride] + 2 * left[0] + left[stride]);
      const int dy = (below[-1] + 2 * below[0] + below[1]) -
                     (above[-1] + 2 * above[0] + above[1]);
      grad_info_sb[r * sb_width + c].is_dx_zero = (dx == 0);
      grad_info_sb[r * sb_width + c].abs_dx_abs_dy_sum =
          (uint16_t)(abs(dx) + abs(dy));
      grad_info_sb[r * sb_width + c].hist_bin_idx =
          (dx != 0) ? get_hist_bin_idx(dx, dy) : -1;
    }
    src += stride;
  }
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

static AOM_INLINE void generate_hog(const uint8_t *src8, int stride, int rows,
                                    int cols, float *hist, int highbd) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (highbd) {
    highbd_generate_hog(src8, stride, rows, cols, hist);
    return;
  }
#else
  (void)highbd;
#endif  // CONFIG_AV1_HIGHBITDEPTH
  lowbd_generate_hog(src8, stride, rows, cols, hist);
}

static AOM_INLINE void compute_gradient_info_sb(MACROBLOCK *const x,
                                                BLOCK_SIZE sb_size,
                                                PLANE_TYPE plane) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (is_cur_buf_hbd(&x->e_mbd)) {
    highbd_compute_gradient_info_sb(x, sb_size, plane);
    return;
  }
#endif  // CONFIG_AV1_HIGHBITDEPTH
  lowbd_compute_gradient_info_sb(x, sb_size, plane);
}

// Gradient caching at superblock level is allowed only if all of the following
// conditions are satisfied:
// (1) The current frame is an intra only frame
// (2) Non-RD mode decisions are not enabled
// (3) The sf partition_search_type is set to SEARCH_PARTITION
// (4) Either intra_pruning_with_hog or chroma_intra_pruning_with_hog is enabled
//
// SB level caching of gradient data may not help in speedup for the following
// cases:
// (1) Inter frames (due to early intra gating)
// (2) When partition_search_type is not SEARCH_PARTITION
// Hence, gradient data is computed at block level in such cases.
static AOM_INLINE bool is_gradient_caching_for_hog_enabled(
    const AV1_COMP *const cpi) {
  const SPEED_FEATURES *const sf = &cpi->sf;
  return frame_is_intra_only(&cpi->common) && !sf->rt_sf.use_nonrd_pick_mode &&
         (sf->part_sf.partition_search_type == SEARCH_PARTITION) &&
         (sf->intra_sf.intra_pruning_with_hog ||
          sf->intra_sf.chroma_intra_pruning_with_hog);
}

// Function to generate pixel level gradient information for a given superblock.
// Sets the flags 'is_sb_gradient_cached' for the specific plane-type if
// gradient info is generated for the same.
static AOM_INLINE void produce_gradients_for_sb(AV1_COMP *cpi, MACROBLOCK *x,
                                                BLOCK_SIZE sb_size, int mi_row,
                                                int mi_col) {
  // Initialise flags related to hog data caching.
  x->is_sb_gradient_cached[PLANE_TYPE_Y] = false;
  x->is_sb_gradient_cached[PLANE_TYPE_UV] = false;
  if (!is_gradient_caching_for_hog_enabled(cpi)) return;

  const SPEED_FEATURES *sf = &cpi->sf;
  const int num_planes = av1_num_planes(&cpi->common);

  av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);

  if (sf->intra_sf.intra_pruning_with_hog) {
    compute_gradient_info_sb(x, sb_size, PLANE_TYPE_Y);
    x->is_sb_gradient_cached[PLANE_TYPE_Y] = true;
  }
  if (sf->intra_sf.chroma_intra_pruning_with_hog && num_planes > 1) {
    compute_gradient_info_sb(x, sb_size, PLANE_TYPE_UV);
    x->is_sb_gradient_cached[PLANE_TYPE_UV] = true;
  }
}

// Reuses the pixel level gradient data generated at superblock level for block
// level histogram computation.
static AOM_INLINE void generate_hog_using_gradient_cache(const MACROBLOCK *x,
                                                         int rows, int cols,
                                                         BLOCK_SIZE sb_size,
                                                         PLANE_TYPE plane,
                                                         float *hist) {
  float total = 0.1f;
  const int ss_x = x->e_mbd.plane[plane].subsampling_x;
  const int ss_y = x->e_mbd.plane[plane].subsampling_y;
  const int sb_width = block_size_wide[sb_size] >> ss_x;

  // Derive the offset from the starting of the superblock in order to locate
  // the block level gradient data in the cache.
  const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1);
  const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1);
  const int block_offset_in_grad_cache =
      sb_width * (mi_row_in_sb << (MI_SIZE_LOG2 - ss_y)) +
      (mi_col_in_sb << (MI_SIZE_LOG2 - ss_x));
  const PixelLevelGradientInfo *grad_info_blk = x->pixel_gradient_info +
                                                plane * MAX_SB_SQUARE +
                                                block_offset_in_grad_cache;

  // Retrieve the cached gradient information and generate the histogram.
  for (int r = 1; r < rows - 1; ++r) {
    for (int c = 1; c < cols - 1; ++c) {
      const uint16_t abs_dx_abs_dy_sum =
          grad_info_blk[r * sb_width + c].abs_dx_abs_dy_sum;
      if (!abs_dx_abs_dy_sum) continue;
      total += abs_dx_abs_dy_sum;
      const bool is_dx_zero = grad_info_blk[r * sb_width + c].is_dx_zero;
      if (is_dx_zero) {
        hist[0] += abs_dx_abs_dy_sum >> 1;
        hist[BINS - 1] += abs_dx_abs_dy_sum >> 1;
      } else {
        const int8_t idx = grad_info_blk[r * sb_width + c].hist_bin_idx;
        assert(idx >= 0 && idx < BINS);
        hist[idx] += abs_dx_abs_dy_sum;
      }
    }
  }
  normalize_hog(total, hist);
}

static INLINE void collect_hog_data(const MACROBLOCK *x, BLOCK_SIZE bsize,
                                    BLOCK_SIZE sb_size, int plane, float *hog) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int ss_x = pd->subsampling_x;
  const int ss_y = pd->subsampling_y;
  const int bh = block_size_high[bsize];
  const int bw = block_size_wide[bsize];
  const int rows =
      ((xd->mb_to_bottom_edge >= 0) ? bh : (xd->mb_to_bottom_edge >> 3) + bh) >>
      ss_y;
  const int cols =
      ((xd->mb_to_right_edge >= 0) ? bw : (xd->mb_to_right_edge >> 3) + bw) >>
      ss_x;

  // If gradient data is already generated at SB level, reuse the cached data.
  // Otherwise, compute the data.
  if (x->is_sb_gradient_cached[plane]) {
    generate_hog_using_gradient_cache(x, rows, cols, sb_size, plane, hog);
  } else {
    const uint8_t *src = x->plane[plane].src.buf;
    const int src_stride = x->plane[plane].src.stride;
    generate_hog(src, src_stride, rows, cols, hog, is_cur_buf_hbd(xd));
  }

  // Scale the hog so the luma and chroma are on the same scale
  for (int b = 0; b < BINS; ++b) {
    hog[b] *= (1 + ss_x) * (1 + ss_y);
  }
}

static AOM_INLINE void prune_intra_mode_with_hog(
    const MACROBLOCK *x, BLOCK_SIZE bsize, BLOCK_SIZE sb_size, float th,
    uint8_t *directional_mode_skip_mask, int is_chroma) {
  const int plane = is_chroma ? AOM_PLANE_U : AOM_PLANE_Y;
  float hist[BINS] = { 0.0f };
  collect_hog_data(x, bsize, sb_size, plane, hist);

  // Make prediction for each of the mode
  float scores[DIRECTIONAL_MODES] = { 0.0f };
  av1_nn_predict(hist, &av1_intra_hog_model_nnconfig, 1, scores);
  for (UV_PREDICTION_MODE uv_mode = UV_V_PRED; uv_mode <= UV_D67_PRED;
       uv_mode++) {
    if (scores[uv_mode - UV_V_PRED] <= th) {
      directional_mode_skip_mask[uv_mode] = 1;
    }
  }
}
#undef BINS

int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf,
                                 const int stride, const int is_hbd);

// Returns whether caching of source variance for 4x4 sub-blocks is allowed.
static AOM_INLINE bool is_src_var_for_4x4_sub_blocks_caching_enabled(
    const AV1_COMP *const cpi) {
  const SPEED_FEATURES *const sf = &cpi->sf;
  if (cpi->oxcf.mode != ALLINTRA) return false;

  if (sf->part_sf.partition_search_type == SEARCH_PARTITION) return true;

  if (INTRA_RD_VAR_THRESH(cpi->oxcf.speed) <= 0 ||
      (sf->rt_sf.use_nonrd_pick_mode && !sf->rt_sf.hybrid_intra_pickmode))
    return false;

  return true;
}

// Initialize the members of Block4x4VarInfo structure to -1 at the start
// of every superblock.
static AOM_INLINE void init_src_var_info_of_4x4_sub_blocks(
    const AV1_COMP *const cpi, Block4x4VarInfo *src_var_info_of_4x4_sub_blocks,
    const BLOCK_SIZE sb_size) {
  if (!is_src_var_for_4x4_sub_blocks_caching_enabled(cpi)) return;

  const int mi_count_in_sb = mi_size_wide[sb_size] * mi_size_high[sb_size];
  for (int i = 0; i < mi_count_in_sb; i++) {
    src_var_info_of_4x4_sub_blocks[i].var = -1;
    src_var_info_of_4x4_sub_blocks[i].log_var = -1.0;
  }
}

// Returns the cost needed to send a uniformly distributed r.v.
static AOM_INLINE int write_uniform_cost(int n, int v) {
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
  if (l == 0) return 0;
  if (v < m)
    return av1_cost_literal(l - 1);
  else
    return av1_cost_literal(l);
}
/*!\endcond */

/*!\brief Returns the rate cost for luma prediction mode info of intra blocks.
 *
 * \callergraph
 */
static AOM_INLINE int intra_mode_info_cost_y(const AV1_COMP *cpi,
                                             const MACROBLOCK *x,
                                             const MB_MODE_INFO *mbmi,
                                             BLOCK_SIZE bsize, int mode_cost,
                                             int discount_color_cost) {
  int total_rate = mode_cost;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
  const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
  const int use_intrabc = mbmi->use_intrabc;
  // Can only activate one mode.
  assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
          use_filter_intra) <= 1);
  const int try_palette = av1_allow_palette(
      cpi->common.features.allow_screen_content_tools, mbmi->bsize);
  if (try_palette && mbmi->mode == DC_PRED) {
    const MACROBLOCKD *xd = &x->e_mbd;
    const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
    const int mode_ctx = av1_get_palette_mode_ctx(xd);
    total_rate +=
        mode_costs->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
    if (use_palette) {
      const uint8_t *const color_map = xd->plane[0].color_index_map;
      int block_width, block_height, rows, cols;
      av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
                               &cols);
      const int plt_size = mbmi->palette_mode_info.palette_size[0];
      int palette_mode_cost =
          mode_costs
              ->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
          write_uniform_cost(plt_size, color_map[0]);
      uint16_t color_cache[2 * PALETTE_MAX_SIZE];
      const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
      palette_mode_cost +=
          av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
                                   n_cache, cpi->common.seq_params->bit_depth);
      if (!discount_color_cost)
        palette_mode_cost +=
            av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);

      total_rate += palette_mode_cost;
    }
  }
  if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
    total_rate += mode_costs->filter_intra_cost[mbmi->bsize][use_filter_intra];
    if (use_filter_intra) {
      total_rate +=
          mode_costs->filter_intra_mode_cost[mbmi->filter_intra_mode_info
                                                 .filter_intra_mode];
    }
  }
  if (av1_is_directional_mode(mbmi->mode)) {
    if (av1_use_angle_delta(bsize)) {
      total_rate +=
          mode_costs->angle_delta_cost[mbmi->mode - V_PRED]
                                      [MAX_ANGLE_DELTA +
                                       mbmi->angle_delta[PLANE_TYPE_Y]];
    }
  }
  if (av1_allow_intrabc(&cpi->common))
    total_rate += mode_costs->intrabc_cost[use_intrabc];
  return total_rate;
}

/*!\brief Return the rate cost for chroma prediction mode info of intra blocks.
 *
 * \callergraph
 */
static AOM_INLINE int intra_mode_info_cost_uv(const AV1_COMP *cpi,
                                              const MACROBLOCK *x,
                                              const MB_MODE_INFO *mbmi,
                                              BLOCK_SIZE bsize, int mode_cost) {
  int total_rate = mode_cost;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
  const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
  // Can only activate one mode.
  assert(((uv_mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);

  const int try_palette = av1_allow_palette(
      cpi->common.features.allow_screen_content_tools, mbmi->bsize);
  if (try_palette && uv_mode == UV_DC_PRED) {
    const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
    total_rate +=
        mode_costs->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
    if (use_palette) {
      const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
      const int plt_size = pmi->palette_size[1];
      const MACROBLOCKD *xd = &x->e_mbd;
      const uint8_t *const color_map = xd->plane[1].color_index_map;
      int palette_mode_cost =
          mode_costs
              ->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
          write_uniform_cost(plt_size, color_map[0]);
      uint16_t color_cache[2 * PALETTE_MAX_SIZE];
      const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
      palette_mode_cost += av1_palette_color_cost_uv(
          pmi, color_cache, n_cache, cpi->common.seq_params->bit_depth);
      palette_mode_cost +=
          av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
      total_rate += palette_mode_cost;
    }
  }
  const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
  if (av1_is_directional_mode(intra_mode)) {
    if (av1_use_angle_delta(bsize)) {
      total_rate +=
          mode_costs->angle_delta_cost[intra_mode - V_PRED]
                                      [mbmi->angle_delta[PLANE_TYPE_UV] +
                                       MAX_ANGLE_DELTA];
    }
  }
  return total_rate;
}

/*!\cond */
// Makes a quick intra prediction and estimate the rdcost with a model without
// going through the whole txfm/quantize/itxfm process.
static int64_t intra_model_rd(const AV1_COMMON *cm, MACROBLOCK *const x,
                              int plane, BLOCK_SIZE plane_bsize,
                              TX_SIZE tx_size, int use_hadamard) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const BitDepthInfo bd_info = get_bit_depth_info(xd);
  int row, col;
  assert(!is_inter_block(xd->mi[0]));
  const int stepr = tx_size_high_unit[tx_size];
  const int stepc = tx_size_wide_unit[tx_size];
  const int txbw = tx_size_wide[tx_size];
  const int txbh = tx_size_high[tx_size];
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
  int64_t satd_cost = 0;
  struct macroblock_plane *p = &x->plane[plane];
  struct macroblockd_plane *pd = &xd->plane[plane];
  // Prediction.
  for (row = 0; row < max_blocks_high; row += stepr) {
    for (col = 0; col < max_blocks_wide; col += stepc) {
      av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
      // Here we use p->src_diff and p->coeff as temporary buffers for
      // prediction residue and transform coefficients. The buffers are only
      // used in this for loop, therefore we don't need to properly add offset
      // to the buffers.
      av1_subtract_block(
          bd_info, txbh, txbw, p->src_diff, block_size_wide[plane_bsize],
          p->src.buf + (((row * p->src.stride) + col) << 2), p->src.stride,
          pd->dst.buf + (((row * pd->dst.stride) + col) << 2), pd->dst.stride);
      av1_quick_txfm(use_hadamard, tx_size, bd_info, p->src_diff,
                     block_size_wide[plane_bsize], p->coeff);
      satd_cost += aom_satd(p->coeff, tx_size_2d[tx_size]);
    }
  }
  return satd_cost;
}
/*!\endcond */

/*!\brief Estimate the luma rdcost of a given intra mode and try to prune it.
 *
 * \ingroup intra_mode_search
 * \callergraph
 * This function first makes a quick luma prediction and estimates the rdcost
 * with a model without going through the txfm, then try to prune the current
 * mode if the new estimate y_rd > 1.25 * best_model_rd.
 *
 * \return Returns 1 if the given mode is prune; 0 otherwise.
 */
static AOM_INLINE int model_intra_yrd_and_prune(const AV1_COMP *const cpi,
                                                MACROBLOCK *x, BLOCK_SIZE bsize,
                                                int64_t *best_model_rd) {
  const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]);
  const int plane = 0;
  const AV1_COMMON *cm = &cpi->common;
  const int64_t this_model_rd =
      intra_model_rd(cm, x, plane, bsize, tx_size, /*use_hadamard=*/1);
  if (*best_model_rd != INT64_MAX &&
      this_model_rd > *best_model_rd + (*best_model_rd >> 2)) {
    return 1;
  } else if (this_model_rd < *best_model_rd) {
    *best_model_rd = this_model_rd;
  }
  return 0;
}

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AOM_AV1_ENCODER_INTRA_MODE_SEARCH_UTILS_H_