summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/k_means_template.h
blob: 239029345d107900ecdd9b408bc49504ff5e24e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#include "av1/common/blockd.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/random.h"

#ifndef AV1_K_MEANS_DIM
#error "This template requires AV1_K_MEANS_DIM to be defined"
#endif

#define RENAME_(x, y) AV1_K_MEANS_RENAME(x, y)
#define RENAME(x) RENAME_(x, AV1_K_MEANS_DIM)
#define K_MEANS_RENAME_C(x, y) x##_dim##y##_c
#define RENAME_C_(x, y) K_MEANS_RENAME_C(x, y)
#define RENAME_C(x) RENAME_C_(x, AV1_K_MEANS_DIM)

// Though we want to compute the smallest L2 norm, in 1 dimension,
// it is equivalent to find the smallest L1 norm and then square it.
// This is preferrable for speed, especially on the SIMD side.
static int RENAME(calc_dist)(const int16_t *p1, const int16_t *p2) {
#if AV1_K_MEANS_DIM == 1
  return abs(p1[0] - p2[0]);
#else
  int dist = 0;
  for (int i = 0; i < AV1_K_MEANS_DIM; ++i) {
    const int diff = p1[i] - p2[i];
    dist += diff * diff;
  }
  return dist;
#endif
}

void RENAME_C(av1_calc_indices)(const int16_t *data, const int16_t *centroids,
                                uint8_t *indices, int64_t *dist, int n, int k) {
  if (dist) {
    *dist = 0;
  }
  for (int i = 0; i < n; ++i) {
    int min_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, centroids);
    indices[i] = 0;
    for (int j = 1; j < k; ++j) {
      const int this_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM,
                                              centroids + j * AV1_K_MEANS_DIM);
      if (this_dist < min_dist) {
        min_dist = this_dist;
        indices[i] = j;
      }
    }
    if (dist) {
#if AV1_K_MEANS_DIM == 1
      *dist += min_dist * min_dist;
#else
      *dist += min_dist;
#endif
    }
  }
}

static void RENAME(calc_centroids)(const int16_t *data, int16_t *centroids,
                                   const uint8_t *indices, int n, int k) {
  int i, j;
  int count[PALETTE_MAX_SIZE] = { 0 };
  int centroids_sum[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE];
  unsigned int rand_state = (unsigned int)data[0];
  assert(n <= 32768);
  memset(centroids_sum, 0, sizeof(centroids_sum[0]) * k * AV1_K_MEANS_DIM);

  for (i = 0; i < n; ++i) {
    const int index = indices[i];
    assert(index < k);
    ++count[index];
    for (j = 0; j < AV1_K_MEANS_DIM; ++j) {
      centroids_sum[index * AV1_K_MEANS_DIM + j] +=
          data[i * AV1_K_MEANS_DIM + j];
    }
  }

  for (i = 0; i < k; ++i) {
    if (count[i] == 0) {
      memcpy(centroids + i * AV1_K_MEANS_DIM,
             data + (lcg_rand16(&rand_state) % n) * AV1_K_MEANS_DIM,
             sizeof(centroids[0]) * AV1_K_MEANS_DIM);
    } else {
      for (j = 0; j < AV1_K_MEANS_DIM; ++j) {
        centroids[i * AV1_K_MEANS_DIM + j] =
            DIVIDE_AND_ROUND(centroids_sum[i * AV1_K_MEANS_DIM + j], count[i]);
      }
    }
  }
}

void RENAME(av1_k_means)(const int16_t *data, int16_t *centroids,
                         uint8_t *indices, int n, int k, int max_itr) {
  int16_t centroids_tmp[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE];
  uint8_t indices_tmp[MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT];
  int16_t *meta_centroids[2] = { centroids, centroids_tmp };
  uint8_t *meta_indices[2] = { indices, indices_tmp };
  int i, l = 0, prev_l, best_l = 0;
  int64_t this_dist;

  assert(n <= MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT);

#if AV1_K_MEANS_DIM == 1
  av1_calc_indices_dim1(data, centroids, indices, &this_dist, n, k);
#else
  av1_calc_indices_dim2(data, centroids, indices, &this_dist, n, k);
#endif

  for (i = 0; i < max_itr; ++i) {
    const int64_t prev_dist = this_dist;
    prev_l = l;
    l = (l == 1) ? 0 : 1;

    RENAME(calc_centroids)(data, meta_centroids[l], meta_indices[prev_l], n, k);
    if (!memcmp(meta_centroids[l], meta_centroids[prev_l],
                sizeof(centroids[0]) * k * AV1_K_MEANS_DIM)) {
      break;
    }
#if AV1_K_MEANS_DIM == 1
    av1_calc_indices_dim1(data, meta_centroids[l], meta_indices[l], &this_dist,
                          n, k);
#else
    av1_calc_indices_dim2(data, meta_centroids[l], meta_indices[l], &this_dist,
                          n, k);
#endif

    if (this_dist > prev_dist) {
      best_l = prev_l;
      break;
    }
  }
  if (i == max_itr) best_l = l;
  if (best_l != 0) {
    memcpy(centroids, meta_centroids[1],
           sizeof(centroids[0]) * k * AV1_K_MEANS_DIM);
    memcpy(indices, meta_indices[1], sizeof(indices[0]) * n);
  }
}
#undef RENAME_
#undef RENAME
#undef K_MEANS_RENAME_C
#undef RENAME_C_
#undef RENAME_C