summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/optical_flow.c
blob: dc168e7aee085af8baaff107f6fd5c5c206d60ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */
#include <math.h>
#include <limits.h>

#include "config/aom_config.h"

#include "aom_dsp/mathutils.h"
#include "aom_mem/aom_mem.h"

#include "av1/common/av1_common_int.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/optical_flow.h"
#include "av1/encoder/sparse_linear_solver.h"
#include "av1/encoder/reconinter_enc.h"

#if CONFIG_OPTICAL_FLOW_API

void av1_init_opfl_params(OPFL_PARAMS *opfl_params) {
  opfl_params->pyramid_levels = OPFL_PYRAMID_LEVELS;
  opfl_params->warping_steps = OPFL_WARPING_STEPS;
  opfl_params->lk_params = NULL;
}

void av1_init_lk_params(LK_PARAMS *lk_params) {
  lk_params->window_size = OPFL_WINDOW_SIZE;
}

// Helper function to determine whether a frame is encoded with high bit-depth.
static INLINE int is_frame_high_bitdepth(const YV12_BUFFER_CONFIG *frame) {
  return (frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
}

// Helper function to determine whether optical flow method is sparse.
static INLINE int is_sparse(const OPFL_PARAMS *opfl_params) {
  return (opfl_params->flags & OPFL_FLAG_SPARSE) ? 1 : 0;
}

static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
                                  const YV12_BUFFER_CONFIG *ref_frame,
                                  const double x_coord, const double y_coord,
                                  const int window_size, const int bit_depth,
                                  double *ix, double *iy, double *it,
                                  LOCALMV *mv);

// coefficients for bilinear interpolation on unit square
static int pixel_interp(const double x, const double y, const double b00,
                        const double b01, const double b10, const double b11) {
  const int xint = (int)x;
  const int yint = (int)y;
  const double xdec = x - xint;
  const double ydec = y - yint;
  const double a = (1 - xdec) * (1 - ydec);
  const double b = xdec * (1 - ydec);
  const double c = (1 - xdec) * ydec;
  const double d = xdec * ydec;
  // if x, y are already integers, this results to b00
  int interp = (int)round(a * b00 + b * b01 + c * b10 + d * b11);
  return interp;
}

// Scharr filter to compute spatial gradient
static void spatial_gradient(const YV12_BUFFER_CONFIG *frame, const int x_coord,
                             const int y_coord, const int direction,
                             double *derivative) {
  double *filter;
  // Scharr filters
  double gx[9] = { -3, 0, 3, -10, 0, 10, -3, 0, 3 };
  double gy[9] = { -3, -10, -3, 0, 0, 0, 3, 10, 3 };
  if (direction == 0) {  // x direction
    filter = gx;
  } else {  // y direction
    filter = gy;
  }
  int idx = 0;
  double d = 0;
  for (int yy = -1; yy <= 1; yy++) {
    for (int xx = -1; xx <= 1; xx++) {
      d += filter[idx] *
           frame->y_buffer[(y_coord + yy) * frame->y_stride + (x_coord + xx)];
      idx++;
    }
  }
  // normalization scaling factor for scharr
  *derivative = d / 32.0;
}

// Determine the spatial gradient at subpixel locations
// For example, when reducing images for pyramidal LK,
// corners found in original image may be at subpixel locations.
static void gradient_interp(double *fullpel_deriv, const double x_coord,
                            const double y_coord, const int w, const int h,
                            double *derivative) {
  const int xint = (int)x_coord;
  const int yint = (int)y_coord;
  double interp;
  if (xint + 1 > w - 1 || yint + 1 > h - 1) {
    interp = fullpel_deriv[yint * w + xint];
  } else {
    interp = pixel_interp(x_coord, y_coord, fullpel_deriv[yint * w + xint],
                          fullpel_deriv[yint * w + (xint + 1)],
                          fullpel_deriv[(yint + 1) * w + xint],
                          fullpel_deriv[(yint + 1) * w + (xint + 1)]);
  }

  *derivative = interp;
}

static void temporal_gradient(const YV12_BUFFER_CONFIG *frame,
                              const YV12_BUFFER_CONFIG *frame2,
                              const double x_coord, const double y_coord,
                              const int bit_depth, double *derivative,
                              LOCALMV *mv) {
  const int w = 2;
  const int h = 2;
  uint8_t pred1[4];
  uint8_t pred2[4];

  const int y = (int)y_coord;
  const int x = (int)x_coord;
  const double ydec = y_coord - y;
  const double xdec = x_coord - x;
  const int is_intrabc = 0;  // Is intra-copied?
  const int is_high_bitdepth = is_frame_high_bitdepth(frame2);
  const int subsampling_x = 0, subsampling_y = 0;  // for y-buffer
  const int_interpfilters interp_filters =
      av1_broadcast_interp_filter(MULTITAP_SHARP);
  const int plane = 0;  // y-plane
  const struct buf_2d ref_buf2 = { NULL, frame2->y_buffer, frame2->y_crop_width,
                                   frame2->y_crop_height, frame2->y_stride };
  struct scale_factors scale;
  av1_setup_scale_factors_for_frame(&scale, frame->y_crop_width,
                                    frame->y_crop_height, frame->y_crop_width,
                                    frame->y_crop_height);
  InterPredParams inter_pred_params;
  av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
                        subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
                        &scale, &ref_buf2, interp_filters);
  inter_pred_params.interp_filter_params[0] =
      &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
  inter_pred_params.interp_filter_params[1] =
      &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
  inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
  MV newmv = { .row = (int16_t)round((mv->row + xdec) * 8),
               .col = (int16_t)round((mv->col + ydec) * 8) };
  av1_enc_build_one_inter_predictor(pred2, w, &newmv, &inter_pred_params);
  const struct buf_2d ref_buf1 = { NULL, frame->y_buffer, frame->y_crop_width,
                                   frame->y_crop_height, frame->y_stride };
  av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
                        subsampling_y, bit_depth, is_high_bitdepth, is_intrabc,
                        &scale, &ref_buf1, interp_filters);
  inter_pred_params.interp_filter_params[0] =
      &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
  inter_pred_params.interp_filter_params[1] =
      &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
  inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
  MV zeroMV = { .row = (int16_t)round(xdec * 8),
                .col = (int16_t)round(ydec * 8) };
  av1_enc_build_one_inter_predictor(pred1, w, &zeroMV, &inter_pred_params);

  *derivative = pred2[0] - pred1[0];
}

// Numerical differentiate over window_size x window_size surrounding (x,y)
// location. Alters ix, iy, it to contain numerical partial derivatives
static void gradients_over_window(const YV12_BUFFER_CONFIG *frame,
                                  const YV12_BUFFER_CONFIG *ref_frame,
                                  const double x_coord, const double y_coord,
                                  const int window_size, const int bit_depth,
                                  double *ix, double *iy, double *it,
                                  LOCALMV *mv) {
  const double left = x_coord - window_size / 2.0;
  const double top = y_coord - window_size / 2.0;
  // gradient operators need pixel before and after (start at 1)
  const double x_start = AOMMAX(1, left);
  const double y_start = AOMMAX(1, top);
  const int frame_height = frame->y_crop_height;
  const int frame_width = frame->y_crop_width;
  double deriv_x;
  double deriv_y;
  double deriv_t;

  const double x_end = AOMMIN(x_coord + window_size / 2.0, frame_width - 2);
  const double y_end = AOMMIN(y_coord + window_size / 2.0, frame_height - 2);
  const int xs = (int)AOMMAX(1, x_start - 1);
  const int ys = (int)AOMMAX(1, y_start - 1);
  const int xe = (int)AOMMIN(x_end + 2, frame_width - 2);
  const int ye = (int)AOMMIN(y_end + 2, frame_height - 2);
  // with normalization, gradients may be double values
  double *fullpel_dx = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_x));
  double *fullpel_dy = aom_malloc((ye - ys) * (xe - xs) * sizeof(deriv_y));
  if (!fullpel_dx || !fullpel_dy) {
    aom_free(fullpel_dx);
    aom_free(fullpel_dy);
    return;
  }

  // TODO(any): This could be more efficient in the case that x_coord
  // and y_coord are integers.. but it may look more messy.

  // calculate spatial gradients at full pixel locations
  for (int j = ys; j < ye; j++) {
    for (int i = xs; i < xe; i++) {
      spatial_gradient(frame, i, j, 0, &deriv_x);
      spatial_gradient(frame, i, j, 1, &deriv_y);
      int idx = (j - ys) * (xe - xs) + (i - xs);
      fullpel_dx[idx] = deriv_x;
      fullpel_dy[idx] = deriv_y;
    }
  }
  // compute numerical differentiation for every pixel in window
  // (this potentially includes subpixels)
  for (double j = y_start; j < y_end; j++) {
    for (double i = x_start; i < x_end; i++) {
      temporal_gradient(frame, ref_frame, i, j, bit_depth, &deriv_t, mv);
      gradient_interp(fullpel_dx, i - xs, j - ys, xe - xs, ye - ys, &deriv_x);
      gradient_interp(fullpel_dy, i - xs, j - ys, xe - xs, ye - ys, &deriv_y);
      int idx = (int)(j - top) * window_size + (int)(i - left);
      ix[idx] = deriv_x;
      iy[idx] = deriv_y;
      it[idx] = deriv_t;
    }
  }
  // TODO(any): to avoid setting deriv arrays to zero for every iteration,
  // could instead pass these two values back through function call
  // int first_idx = (int)(y_start - top) * window_size + (int)(x_start - left);
  // int width = window_size - ((int)(x_start - left) + (int)(left + window_size
  // - x_end));

  aom_free(fullpel_dx);
  aom_free(fullpel_dy);
}

// To compute eigenvalues of 2x2 matrix: Solve for lambda where
// Determinant(matrix - lambda*identity) == 0
static void eigenvalues_2x2(const double *matrix, double *eig) {
  const double a = 1;
  const double b = -1 * matrix[0] - matrix[3];
  const double c = -1 * matrix[1] * matrix[2] + matrix[0] * matrix[3];
  // quadratic formula
  const double discriminant = b * b - 4 * a * c;
  eig[0] = (-b - sqrt(discriminant)) / (2.0 * a);
  eig[1] = (-b + sqrt(discriminant)) / (2.0 * a);
  // double check that eigenvalues are ordered by magnitude
  if (fabs(eig[0]) > fabs(eig[1])) {
    double tmp = eig[0];
    eig[0] = eig[1];
    eig[1] = tmp;
  }
}

// Shi-Tomasi corner detection criteria
static double corner_score(const YV12_BUFFER_CONFIG *frame_to_filter,
                           const YV12_BUFFER_CONFIG *ref_frame, const int x,
                           const int y, double *i_x, double *i_y, double *i_t,
                           const int n, const int bit_depth) {
  double eig[2];
  LOCALMV mv = { .row = 0, .col = 0 };
  // TODO(any): technically, ref_frame and i_t are not used by corner score
  // so these could be replaced by dummy variables,
  // or change this to spatial gradient function over window only
  gradients_over_window(frame_to_filter, ref_frame, x, y, n, bit_depth, i_x,
                        i_y, i_t, &mv);
  double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
  multiply_mat(i_x, i_x, Mres1, 1, n * n, 1);
  multiply_mat(i_x, i_y, Mres2, 1, n * n, 1);
  multiply_mat(i_y, i_y, Mres3, 1, n * n, 1);
  double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
  eigenvalues_2x2(M, eig);
  return fabs(eig[0]);
}

// Finds corners in frame_to_filter
// For less strict requirements (i.e. more corners), decrease threshold
static int detect_corners(const YV12_BUFFER_CONFIG *frame_to_filter,
                          const YV12_BUFFER_CONFIG *ref_frame,
                          const int maxcorners, int *ref_corners,
                          const int bit_depth) {
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  // TODO(any): currently if maxcorners is decreased, then it only means
  // corners will be omited from bottom-right of image. if maxcorners
  // is actually used, then this algorithm would need to re-iterate
  // and choose threshold based on that
  assert(maxcorners == frame_height * frame_width);
  int countcorners = 0;
  const double threshold = 0.1;
  double score;
  const int n = 3;
  double i_x[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  double i_y[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  double i_t[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  const int fromedge = n;
  double max_score = corner_score(frame_to_filter, ref_frame, fromedge,
                                  fromedge, i_x, i_y, i_t, n, bit_depth);
  // rough estimate of max corner score in image
  for (int x = fromedge; x < frame_width - fromedge; x += 1) {
    for (int y = fromedge; y < frame_height - fromedge; y += frame_height / 5) {
      for (int i = 0; i < n * n; i++) {
        i_x[i] = 0;
        i_y[i] = 0;
        i_t[i] = 0;
      }
      score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
                           bit_depth);
      if (score > max_score) {
        max_score = score;
      }
    }
  }
  // score all the points and choose corners over threshold
  for (int x = fromedge; x < frame_width - fromedge; x += 1) {
    for (int y = fromedge;
         (y < frame_height - fromedge) && countcorners < maxcorners; y += 1) {
      for (int i = 0; i < n * n; i++) {
        i_x[i] = 0;
        i_y[i] = 0;
        i_t[i] = 0;
      }
      score = corner_score(frame_to_filter, ref_frame, x, y, i_x, i_y, i_t, n,
                           bit_depth);
      if (score > threshold * max_score) {
        ref_corners[countcorners * 2] = x;
        ref_corners[countcorners * 2 + 1] = y;
        countcorners++;
      }
    }
  }
  return countcorners;
}

// weights is an nxn matrix. weights is filled with a gaussian function,
// with independent variable: distance from the center point.
static void gaussian(const double sigma, const int n, const int normalize,
                     double *weights) {
  double total_weight = 0;
  for (int j = 0; j < n; j++) {
    for (int i = 0; i < n; i++) {
      double distance = sqrt(pow(n / 2 - i, 2) + pow(n / 2 - j, 2));
      double weight = exp(-0.5 * pow(distance / sigma, 2));
      weights[j * n + i] = weight;
      total_weight += weight;
    }
  }
  if (normalize == 1) {
    for (int j = 0; j < n; j++) {
      weights[j] = weights[j] / total_weight;
    }
  }
}

static double convolve(const double *filter, const int *img, const int size) {
  double result = 0;
  for (int i = 0; i < size; i++) {
    result += filter[i] * img[i];
  }
  return result;
}

// Applies a Gaussian low-pass smoothing filter to produce
// a corresponding lower resolution image with halved dimensions
static void reduce(uint8_t *img, int height, int width, int stride,
                   uint8_t *reduced_img) {
  const int new_width = width / 2;
  const int window_size = 5;
  const double gaussian_filter[25] = {
    1. / 256, 1.0 / 64, 3. / 128, 1. / 64,  1. / 256, 1. / 64, 1. / 16,
    3. / 32,  1. / 16,  1. / 64,  3. / 128, 3. / 32,  9. / 64, 3. / 32,
    3. / 128, 1. / 64,  1. / 16,  3. / 32,  1. / 16,  1. / 64, 1. / 256,
    1. / 64,  3. / 128, 1. / 64,  1. / 256
  };
  // filter is 5x5 so need prev and forward 2 pixels
  int img_section[25];
  for (int y = 0; y < height - 1; y += 2) {
    for (int x = 0; x < width - 1; x += 2) {
      int i = 0;
      for (int yy = y - window_size / 2; yy <= y + window_size / 2; yy++) {
        for (int xx = x - window_size / 2; xx <= x + window_size / 2; xx++) {
          int yvalue = yy;
          int xvalue = xx;
          // copied pixels outside the boundary
          if (yvalue < 0) yvalue = 0;
          if (xvalue < 0) xvalue = 0;
          if (yvalue >= height) yvalue = height - 1;
          if (xvalue >= width) xvalue = width - 1;
          img_section[i++] = img[yvalue * stride + xvalue];
        }
      }
      reduced_img[(y / 2) * new_width + (x / 2)] = (uint8_t)convolve(
          gaussian_filter, img_section, window_size * window_size);
    }
  }
}

static int cmpfunc(const void *a, const void *b) {
  return (*(int *)a - *(int *)b);
}
static void filter_mvs(const MV_FILTER_TYPE mv_filter, const int frame_height,
                       const int frame_width, LOCALMV *localmvs, MV *mvs) {
  const int n = 5;  // window size
  // for smoothing filter
  const double gaussian_filter[25] = {
    1. / 256, 1. / 64,  3. / 128, 1. / 64,  1. / 256, 1. / 64, 1. / 16,
    3. / 32,  1. / 16,  1. / 64,  3. / 128, 3. / 32,  9. / 64, 3. / 32,
    3. / 128, 1. / 64,  1. / 16,  3. / 32,  1. / 16,  1. / 64, 1. / 256,
    1. / 64,  3. / 128, 1. / 64,  1. / 256
  };
  // for median filter
  int mvrows[25];
  int mvcols[25];
  if (mv_filter != MV_FILTER_NONE) {
    for (int y = 0; y < frame_height; y++) {
      for (int x = 0; x < frame_width; x++) {
        int center_idx = y * frame_width + x;
        int i = 0;
        double filtered_row = 0;
        double filtered_col = 0;
        for (int yy = y - n / 2; yy <= y + n / 2; yy++) {
          for (int xx = x - n / 2; xx <= x + n / 2; xx++) {
            int yvalue = yy;
            int xvalue = xx;
            // copied pixels outside the boundary
            if (yvalue < 0) yvalue = 0;
            if (xvalue < 0) xvalue = 0;
            if (yvalue >= frame_height) yvalue = frame_height - 1;
            if (xvalue >= frame_width) xvalue = frame_width - 1;
            int index = yvalue * frame_width + xvalue;
            if (mv_filter == MV_FILTER_SMOOTH) {
              filtered_row += mvs[index].row * gaussian_filter[i];
              filtered_col += mvs[index].col * gaussian_filter[i];
            } else if (mv_filter == MV_FILTER_MEDIAN) {
              mvrows[i] = mvs[index].row;
              mvcols[i] = mvs[index].col;
            }
            i++;
          }
        }

        MV mv = mvs[center_idx];
        if (mv_filter == MV_FILTER_SMOOTH) {
          mv.row = (int16_t)filtered_row;
          mv.col = (int16_t)filtered_col;
        } else if (mv_filter == MV_FILTER_MEDIAN) {
          qsort(mvrows, 25, sizeof(mv.row), cmpfunc);
          qsort(mvcols, 25, sizeof(mv.col), cmpfunc);
          mv.row = mvrows[25 / 2];
          mv.col = mvcols[25 / 2];
        }
        LOCALMV localmv = { .row = ((double)mv.row) / 8,
                            .col = ((double)mv.row) / 8 };
        localmvs[y * frame_width + x] = localmv;
        // if mvs array is immediately updated here, then the result may
        // propagate to other pixels.
      }
    }
    for (int i = 0; i < frame_height * frame_width; i++) {
      MV mv = { .row = (int16_t)round(8 * localmvs[i].row),
                .col = (int16_t)round(8 * localmvs[i].col) };
      mvs[i] = mv;
    }
  }
}

// Computes optical flow at a single pyramid level,
// using Lucas-Kanade algorithm.
// Modifies mvs array.
static void lucas_kanade(const YV12_BUFFER_CONFIG *from_frame,
                         const YV12_BUFFER_CONFIG *to_frame, const int level,
                         const LK_PARAMS *lk_params, const int num_ref_corners,
                         int *ref_corners, const int mv_stride,
                         const int bit_depth, LOCALMV *mvs) {
  assert(lk_params->window_size > 0 && lk_params->window_size % 2 == 0);
  const int n = lk_params->window_size;
  // algorithm is sensitive to window size
  double *i_x = (double *)aom_malloc(n * n * sizeof(*i_x));
  double *i_y = (double *)aom_malloc(n * n * sizeof(*i_y));
  double *i_t = (double *)aom_malloc(n * n * sizeof(*i_t));
  double *weights = (double *)aom_malloc(n * n * sizeof(*weights));
  if (!i_x || !i_y || !i_t || !weights) goto free_lk_buf;

  const int expand_multiplier = (int)pow(2, level);
  double sigma = 0.2 * n;
  // normalizing doesn't really affect anything since it's applied
  // to every component of M and b
  gaussian(sigma, n, 0, weights);
  for (int i = 0; i < num_ref_corners; i++) {
    const double x_coord = 1.0 * ref_corners[i * 2] / expand_multiplier;
    const double y_coord = 1.0 * ref_corners[i * 2 + 1] / expand_multiplier;
    int highres_x = ref_corners[i * 2];
    int highres_y = ref_corners[i * 2 + 1];
    int mv_idx = highres_y * (mv_stride) + highres_x;
    LOCALMV mv_old = mvs[mv_idx];
    mv_old.row = mv_old.row / expand_multiplier;
    mv_old.col = mv_old.col / expand_multiplier;
    // using this instead of memset, since it's not completely
    // clear if zero memset works on double arrays
    for (int j = 0; j < n * n; j++) {
      i_x[j] = 0;
      i_y[j] = 0;
      i_t[j] = 0;
    }
    gradients_over_window(from_frame, to_frame, x_coord, y_coord, n, bit_depth,
                          i_x, i_y, i_t, &mv_old);
    double Mres1[1] = { 0 }, Mres2[1] = { 0 }, Mres3[1] = { 0 };
    double bres1[1] = { 0 }, bres2[1] = { 0 };
    for (int j = 0; j < n * n; j++) {
      Mres1[0] += weights[j] * i_x[j] * i_x[j];
      Mres2[0] += weights[j] * i_x[j] * i_y[j];
      Mres3[0] += weights[j] * i_y[j] * i_y[j];
      bres1[0] += weights[j] * i_x[j] * i_t[j];
      bres2[0] += weights[j] * i_y[j] * i_t[j];
    }
    double M[4] = { Mres1[0], Mres2[0], Mres2[0], Mres3[0] };
    double b[2] = { -1 * bres1[0], -1 * bres2[0] };
    double eig[2] = { 1, 1 };
    eigenvalues_2x2(M, eig);
    double threshold = 0.1;
    if (fabs(eig[0]) > threshold) {
      // if M is not invertible, then displacement
      // will default to zeros
      double u[2] = { 0, 0 };
      linsolve(2, M, 2, b, u);
      int mult = 1;
      if (level != 0)
        mult = expand_multiplier;  // mv doubles when resolution doubles
      LOCALMV mv = { .row = (mult * (u[0] + mv_old.row)),
                     .col = (mult * (u[1] + mv_old.col)) };
      mvs[mv_idx] = mv;
      mvs[mv_idx] = mv;
    }
  }
free_lk_buf:
  aom_free(weights);
  aom_free(i_t);
  aom_free(i_x);
  aom_free(i_y);
}

// Warp the src_frame to warper_frame according to mvs.
// mvs point to src_frame
static void warp_back_frame(YV12_BUFFER_CONFIG *warped_frame,
                            const YV12_BUFFER_CONFIG *src_frame,
                            const LOCALMV *mvs, int mv_stride) {
  int w, h;
  const int fw = src_frame->y_crop_width;
  const int fh = src_frame->y_crop_height;
  const int src_fs = src_frame->y_stride, warped_fs = warped_frame->y_stride;
  const uint8_t *src_buf = src_frame->y_buffer;
  uint8_t *warped_buf = warped_frame->y_buffer;
  double temp;
  for (h = 0; h < fh; h++) {
    for (w = 0; w < fw; w++) {
      double cord_x = (double)w + mvs[h * mv_stride + w].col;
      double cord_y = (double)h + mvs[h * mv_stride + w].row;
      cord_x = fclamp(cord_x, 0, (double)(fw - 1));
      cord_y = fclamp(cord_y, 0, (double)(fh - 1));
      const int floorx = (int)floor(cord_x);
      const int floory = (int)floor(cord_y);
      const double fracx = cord_x - (double)floorx;
      const double fracy = cord_y - (double)floory;

      temp = 0;
      for (int hh = 0; hh < 2; hh++) {
        const double weighth = hh ? (fracy) : (1 - fracy);
        for (int ww = 0; ww < 2; ww++) {
          const double weightw = ww ? (fracx) : (1 - fracx);
          int y = floory + hh;
          int x = floorx + ww;
          y = clamp(y, 0, fh - 1);
          x = clamp(x, 0, fw - 1);
          temp += (double)src_buf[y * src_fs + x] * weightw * weighth;
        }
      }
      warped_buf[h * warped_fs + w] = (uint8_t)round(temp);
    }
  }
}

// Same as warp_back_frame, but using a better interpolation filter.
static void warp_back_frame_intp(YV12_BUFFER_CONFIG *warped_frame,
                                 const YV12_BUFFER_CONFIG *src_frame,
                                 const LOCALMV *mvs, int mv_stride) {
  int w, h;
  const int fw = src_frame->y_crop_width;
  const int fh = src_frame->y_crop_height;
  const int warped_fs = warped_frame->y_stride;
  uint8_t *warped_buf = warped_frame->y_buffer;
  const int blk = 2;
  uint8_t temp_blk[4];

  const int is_intrabc = 0;  // Is intra-copied?
  const int is_high_bitdepth = is_frame_high_bitdepth(src_frame);
  const int subsampling_x = 0, subsampling_y = 0;  // for y-buffer
  const int_interpfilters interp_filters =
      av1_broadcast_interp_filter(MULTITAP_SHARP2);
  const int plane = 0;  // y-plane
  const struct buf_2d ref_buf2 = { NULL, src_frame->y_buffer,
                                   src_frame->y_crop_width,
                                   src_frame->y_crop_height,
                                   src_frame->y_stride };
  const int bit_depth = src_frame->bit_depth;
  struct scale_factors scale;
  av1_setup_scale_factors_for_frame(
      &scale, src_frame->y_crop_width, src_frame->y_crop_height,
      src_frame->y_crop_width, src_frame->y_crop_height);

  for (h = 0; h < fh; h++) {
    for (w = 0; w < fw; w++) {
      InterPredParams inter_pred_params;
      av1_init_inter_params(&inter_pred_params, blk, blk, h, w, subsampling_x,
                            subsampling_y, bit_depth, is_high_bitdepth,
                            is_intrabc, &scale, &ref_buf2, interp_filters);
      inter_pred_params.interp_filter_params[0] =
          &av1_interp_filter_params_list[interp_filters.as_filters.x_filter];
      inter_pred_params.interp_filter_params[1] =
          &av1_interp_filter_params_list[interp_filters.as_filters.y_filter];
      inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
      MV newmv = { .row = (int16_t)round((mvs[h * mv_stride + w].row) * 8),
                   .col = (int16_t)round((mvs[h * mv_stride + w].col) * 8) };
      av1_enc_build_one_inter_predictor(temp_blk, blk, &newmv,
                                        &inter_pred_params);
      warped_buf[h * warped_fs + w] = temp_blk[0];
    }
  }
}

#define DERIVATIVE_FILTER_LENGTH 7
double filter[DERIVATIVE_FILTER_LENGTH] = { -1.0 / 60, 9.0 / 60,  -45.0 / 60, 0,
                                            45.0 / 60, -9.0 / 60, 1.0 / 60 };

// Get gradient of the whole frame
static void get_frame_gradients(const YV12_BUFFER_CONFIG *from_frame,
                                const YV12_BUFFER_CONFIG *to_frame, double *ix,
                                double *iy, double *it, int grad_stride) {
  int w, h, k, idx;
  const int fw = from_frame->y_crop_width;
  const int fh = from_frame->y_crop_height;
  const int from_fs = from_frame->y_stride, to_fs = to_frame->y_stride;
  const uint8_t *from_buf = from_frame->y_buffer;
  const uint8_t *to_buf = to_frame->y_buffer;

  const int lh = DERIVATIVE_FILTER_LENGTH;
  const int hleft = (lh - 1) / 2;

  for (h = 0; h < fh; h++) {
    for (w = 0; w < fw; w++) {
      // x
      ix[h * grad_stride + w] = 0;
      for (k = 0; k < lh; k++) {
        // if we want to make this block dependent, need to extend the
        // boundaries using other initializations.
        idx = w + k - hleft;
        idx = clamp(idx, 0, fw - 1);
        ix[h * grad_stride + w] += filter[k] * 0.5 *
                                   ((double)from_buf[h * from_fs + idx] +
                                    (double)to_buf[h * to_fs + idx]);
      }
      // y
      iy[h * grad_stride + w] = 0;
      for (k = 0; k < lh; k++) {
        // if we want to make this block dependent, need to extend the
        // boundaries using other initializations.
        idx = h + k - hleft;
        idx = clamp(idx, 0, fh - 1);
        iy[h * grad_stride + w] += filter[k] * 0.5 *
                                   ((double)from_buf[idx * from_fs + w] +
                                    (double)to_buf[idx * to_fs + w]);
      }
      // t
      it[h * grad_stride + w] =
          (double)to_buf[h * to_fs + w] - (double)from_buf[h * from_fs + w];
    }
  }
}

// Solve for linear equations given by the H-S method
static void solve_horn_schunck(const double *ix, const double *iy,
                               const double *it, int grad_stride, int width,
                               int height, const LOCALMV *init_mvs,
                               int init_mv_stride, LOCALMV *mvs,
                               int mv_stride) {
  // TODO(bohanli): May just need to allocate the buffers once per optical flow
  // calculation
  int *row_pos = aom_calloc(width * height * 28, sizeof(*row_pos));
  int *col_pos = aom_calloc(width * height * 28, sizeof(*col_pos));
  double *values = aom_calloc(width * height * 28, sizeof(*values));
  double *mv_vec = aom_calloc(width * height * 2, sizeof(*mv_vec));
  double *mv_init_vec = aom_calloc(width * height * 2, sizeof(*mv_init_vec));
  double *temp_b = aom_calloc(width * height * 2, sizeof(*temp_b));
  double *b = aom_calloc(width * height * 2, sizeof(*b));
  if (!row_pos || !col_pos || !values || !mv_vec || !mv_init_vec || !temp_b ||
      !b) {
    goto free_hs_solver_buf;
  }

  // the location idx for neighboring pixels, k < 4 are the 4 direct neighbors
  const int check_locs_y[12] = { 0, 0, -1, 1, -1, -1, 1, 1, 0, 0, -2, 2 };
  const int check_locs_x[12] = { -1, 1, 0, 0, -1, 1, -1, 1, -2, 2, 0, 0 };

  int h, w, checkh, checkw, k, ret;
  const int offset = height * width;
  SPARSE_MTX A;
  int c = 0;
  const double lambda = 100;

  for (w = 0; w < width; w++) {
    for (h = 0; h < height; h++) {
      mv_init_vec[w * height + h] = init_mvs[h * init_mv_stride + w].col;
      mv_init_vec[w * height + h + offset] =
          init_mvs[h * init_mv_stride + w].row;
    }
  }

  // get matrix A
  for (w = 0; w < width; w++) {
    for (h = 0; h < height; h++) {
      int center_num_direct = 4;
      const int center_idx = w * height + h;
      if (w == 0 || w == width - 1) center_num_direct--;
      if (h == 0 || h == height - 1) center_num_direct--;
      // diagonal entry for this row from the center pixel
      double cor_w = center_num_direct * center_num_direct + center_num_direct;
      row_pos[c] = center_idx;
      col_pos[c] = center_idx;
      values[c] = lambda * cor_w;
      c++;
      row_pos[c] = center_idx + offset;
      col_pos[c] = center_idx + offset;
      values[c] = lambda * cor_w;
      c++;
      // other entries from direct neighbors
      for (k = 0; k < 4; k++) {
        checkh = h + check_locs_y[k];
        checkw = w + check_locs_x[k];
        if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
          continue;
        }
        int this_idx = checkw * height + checkh;
        int this_num_direct = 4;
        if (checkw == 0 || checkw == width - 1) this_num_direct--;
        if (checkh == 0 || checkh == height - 1) this_num_direct--;
        cor_w = -center_num_direct - this_num_direct;
        row_pos[c] = center_idx;
        col_pos[c] = this_idx;
        values[c] = lambda * cor_w;
        c++;
        row_pos[c] = center_idx + offset;
        col_pos[c] = this_idx + offset;
        values[c] = lambda * cor_w;
        c++;
      }
      // entries from neighbors on the diagonal corners
      for (k = 4; k < 8; k++) {
        checkh = h + check_locs_y[k];
        checkw = w + check_locs_x[k];
        if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
          continue;
        }
        int this_idx = checkw * height + checkh;
        cor_w = 2;
        row_pos[c] = center_idx;
        col_pos[c] = this_idx;
        values[c] = lambda * cor_w;
        c++;
        row_pos[c] = center_idx + offset;
        col_pos[c] = this_idx + offset;
        values[c] = lambda * cor_w;
        c++;
      }
      // entries from neighbors with dist of 2
      for (k = 8; k < 12; k++) {
        checkh = h + check_locs_y[k];
        checkw = w + check_locs_x[k];
        if (checkh < 0 || checkh >= height || checkw < 0 || checkw >= width) {
          continue;
        }
        int this_idx = checkw * height + checkh;
        cor_w = 1;
        row_pos[c] = center_idx;
        col_pos[c] = this_idx;
        values[c] = lambda * cor_w;
        c++;
        row_pos[c] = center_idx + offset;
        col_pos[c] = this_idx + offset;
        values[c] = lambda * cor_w;
        c++;
      }
    }
  }
  ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
                            2 * width * height, &A);
  if (ret < 0) goto free_hs_solver_buf;
  // subtract init mv part from b
  av1_mtx_vect_multi_left(&A, mv_init_vec, temp_b, 2 * width * height);
  for (int i = 0; i < 2 * width * height; i++) {
    b[i] = -temp_b[i];
  }
  av1_free_sparse_mtx_elems(&A);

  // add cross terms to A and modify b with ExEt / EyEt
  for (w = 0; w < width; w++) {
    for (h = 0; h < height; h++) {
      int curidx = w * height + h;
      // modify b
      b[curidx] += -ix[h * grad_stride + w] * it[h * grad_stride + w];
      b[curidx + offset] += -iy[h * grad_stride + w] * it[h * grad_stride + w];
      // add cross terms to A
      row_pos[c] = curidx;
      col_pos[c] = curidx + offset;
      values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
      c++;
      row_pos[c] = curidx + offset;
      col_pos[c] = curidx;
      values[c] = ix[h * grad_stride + w] * iy[h * grad_stride + w];
      c++;
    }
  }
  // Add diagonal terms to A
  for (int i = 0; i < c; i++) {
    if (row_pos[i] == col_pos[i]) {
      if (row_pos[i] < offset) {
        w = row_pos[i] / height;
        h = row_pos[i] % height;
        values[i] += pow(ix[h * grad_stride + w], 2);
      } else {
        w = (row_pos[i] - offset) / height;
        h = (row_pos[i] - offset) % height;
        values[i] += pow(iy[h * grad_stride + w], 2);
      }
    }
  }

  ret = av1_init_sparse_mtx(row_pos, col_pos, values, c, 2 * width * height,
                            2 * width * height, &A);
  if (ret < 0) goto free_hs_solver_buf;

  // solve for the mvs
  ret = av1_conjugate_gradient_sparse(&A, b, 2 * width * height, mv_vec);
  if (ret < 0) goto free_hs_solver_buf;

  // copy mvs
  for (w = 0; w < width; w++) {
    for (h = 0; h < height; h++) {
      mvs[h * mv_stride + w].col = mv_vec[w * height + h];
      mvs[h * mv_stride + w].row = mv_vec[w * height + h + offset];
    }
  }
free_hs_solver_buf:
  aom_free(row_pos);
  aom_free(col_pos);
  aom_free(values);
  aom_free(mv_vec);
  aom_free(mv_init_vec);
  aom_free(b);
  aom_free(temp_b);
  av1_free_sparse_mtx_elems(&A);
}

// Calculate optical flow from from_frame to to_frame using the H-S method.
static void horn_schunck(const YV12_BUFFER_CONFIG *from_frame,
                         const YV12_BUFFER_CONFIG *to_frame, const int level,
                         const int mv_stride, const int mv_height,
                         const int mv_width, const OPFL_PARAMS *opfl_params,
                         LOCALMV *mvs) {
  // mvs are always on level 0, here we define two new mv arrays that is of size
  // of this level.
  const int fw = from_frame->y_crop_width;
  const int fh = from_frame->y_crop_height;
  const int factor = (int)pow(2, level);
  int w, h, k, init_mv_stride;
  LOCALMV *init_mvs = NULL, *refine_mvs = NULL;
  double *ix = NULL, *iy = NULL, *it = NULL;
  YV12_BUFFER_CONFIG temp_frame;
  temp_frame.y_buffer = NULL;
  if (level == 0) {
    init_mvs = mvs;
    init_mv_stride = mv_stride;
  } else {
    init_mvs = aom_calloc(fw * fh, sizeof(*mvs));
    if (!init_mvs) goto free_hs_buf;
    init_mv_stride = fw;
    for (h = 0; h < fh; h++) {
      for (w = 0; w < fw; w++) {
        init_mvs[h * init_mv_stride + w].row =
            mvs[h * factor * mv_stride + w * factor].row / (double)factor;
        init_mvs[h * init_mv_stride + w].col =
            mvs[h * factor * mv_stride + w * factor].col / (double)factor;
      }
    }
  }
  refine_mvs = aom_calloc(fw * fh, sizeof(*mvs));
  if (!refine_mvs) goto free_hs_buf;
  // temp frame for warping
  temp_frame.y_buffer =
      (uint8_t *)aom_calloc(fh * fw, sizeof(*temp_frame.y_buffer));
  if (!temp_frame.y_buffer) goto free_hs_buf;
  temp_frame.y_crop_height = fh;
  temp_frame.y_crop_width = fw;
  temp_frame.y_stride = fw;
  // gradient buffers
  ix = aom_calloc(fw * fh, sizeof(*ix));
  iy = aom_calloc(fw * fh, sizeof(*iy));
  it = aom_calloc(fw * fh, sizeof(*it));
  if (!ix || !iy || !it) goto free_hs_buf;
  // For each warping step
  for (k = 0; k < opfl_params->warping_steps; k++) {
    // warp from_frame with init_mv
    if (level == 0) {
      warp_back_frame_intp(&temp_frame, to_frame, init_mvs, init_mv_stride);
    } else {
      warp_back_frame(&temp_frame, to_frame, init_mvs, init_mv_stride);
    }
    // calculate frame gradients
    get_frame_gradients(from_frame, &temp_frame, ix, iy, it, fw);
    // form linear equations and solve mvs
    solve_horn_schunck(ix, iy, it, fw, fw, fh, init_mvs, init_mv_stride,
                       refine_mvs, fw);
    // update init_mvs
    for (h = 0; h < fh; h++) {
      for (w = 0; w < fw; w++) {
        init_mvs[h * init_mv_stride + w].col += refine_mvs[h * fw + w].col;
        init_mvs[h * init_mv_stride + w].row += refine_mvs[h * fw + w].row;
      }
    }
  }
  // copy back the mvs if needed
  if (level != 0) {
    for (h = 0; h < mv_height; h++) {
      for (w = 0; w < mv_width; w++) {
        mvs[h * mv_stride + w].row =
            init_mvs[h / factor * init_mv_stride + w / factor].row *
            (double)factor;
        mvs[h * mv_stride + w].col =
            init_mvs[h / factor * init_mv_stride + w / factor].col *
            (double)factor;
      }
    }
  }
free_hs_buf:
  if (level != 0) aom_free(init_mvs);
  aom_free(refine_mvs);
  aom_free(temp_frame.y_buffer);
  aom_free(ix);
  aom_free(iy);
  aom_free(it);
}

// Apply optical flow iteratively at each pyramid level
static void pyramid_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
                                 const YV12_BUFFER_CONFIG *to_frame,
                                 const int bit_depth,
                                 const OPFL_PARAMS *opfl_params,
                                 const OPTFLOW_METHOD method, LOCALMV *mvs) {
  assert(opfl_params->pyramid_levels > 0 &&
         opfl_params->pyramid_levels <= MAX_PYRAMID_LEVELS);
  int levels = opfl_params->pyramid_levels;
  const int frame_height = from_frame->y_crop_height;
  const int frame_width = from_frame->y_crop_width;
  if ((frame_height / pow(2.0, levels - 1) < 50 ||
       frame_height / pow(2.0, levels - 1) < 50) &&
      levels > 1)
    levels = levels - 1;
  uint8_t *images1[MAX_PYRAMID_LEVELS] = { NULL };
  uint8_t *images2[MAX_PYRAMID_LEVELS] = { NULL };
  int *ref_corners = NULL;

  images1[0] = from_frame->y_buffer;
  images2[0] = to_frame->y_buffer;
  YV12_BUFFER_CONFIG *buffers1 = aom_malloc(levels * sizeof(*buffers1));
  YV12_BUFFER_CONFIG *buffers2 = aom_malloc(levels * sizeof(*buffers2));
  if (!buffers1 || !buffers2) goto free_pyramid_buf;
  buffers1[0] = *from_frame;
  buffers2[0] = *to_frame;
  int fw = frame_width;
  int fh = frame_height;
  for (int i = 1; i < levels; i++) {
    // TODO(bohanli): may need to extend buffers for better interpolation SIMD
    images1[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images1[i]));
    images2[i] = (uint8_t *)aom_calloc(fh / 2 * fw / 2, sizeof(*images2[i]));
    if (!images1[i] || !images2[i]) goto free_pyramid_buf;
    int stride;
    if (i == 1)
      stride = from_frame->y_stride;
    else
      stride = fw;
    reduce(images1[i - 1], fh, fw, stride, images1[i]);
    reduce(images2[i - 1], fh, fw, stride, images2[i]);
    fh /= 2;
    fw /= 2;
    YV12_BUFFER_CONFIG a = { .y_buffer = images1[i],
                             .y_crop_width = fw,
                             .y_crop_height = fh,
                             .y_stride = fw };
    YV12_BUFFER_CONFIG b = { .y_buffer = images2[i],
                             .y_crop_width = fw,
                             .y_crop_height = fh,
                             .y_stride = fw };
    buffers1[i] = a;
    buffers2[i] = b;
  }
  // Compute corners for specific frame
  int num_ref_corners = 0;
  if (is_sparse(opfl_params)) {
    int maxcorners = from_frame->y_crop_width * from_frame->y_crop_height;
    ref_corners = aom_malloc(maxcorners * 2 * sizeof(*ref_corners));
    if (!ref_corners) goto free_pyramid_buf;
    num_ref_corners = detect_corners(from_frame, to_frame, maxcorners,
                                     ref_corners, bit_depth);
  }
  const int stop_level = 0;
  for (int i = levels - 1; i >= stop_level; i--) {
    if (method == LUCAS_KANADE) {
      assert(is_sparse(opfl_params));
      lucas_kanade(&buffers1[i], &buffers2[i], i, opfl_params->lk_params,
                   num_ref_corners, ref_corners, buffers1[0].y_crop_width,
                   bit_depth, mvs);
    } else if (method == HORN_SCHUNCK) {
      assert(!is_sparse(opfl_params));
      horn_schunck(&buffers1[i], &buffers2[i], i, buffers1[0].y_crop_width,
                   buffers1[0].y_crop_height, buffers1[0].y_crop_width,
                   opfl_params, mvs);
    }
  }
free_pyramid_buf:
  for (int i = 1; i < levels; i++) {
    aom_free(images1[i]);
    aom_free(images2[i]);
  }
  aom_free(ref_corners);
  aom_free(buffers1);
  aom_free(buffers2);
}
// Computes optical flow by applying algorithm at
// multiple pyramid levels of images (lower-resolution, smoothed images)
// This accounts for larger motions.
// Inputs:
//   from_frame Frame buffer.
//   to_frame: Frame buffer. MVs point from_frame -> to_frame.
//   from_frame_idx: Index of from_frame.
//   to_frame_idx: Index of to_frame. Return all zero MVs when idx are equal.
//   bit_depth:
//   opfl_params: contains algorithm-specific parameters.
//   mv_filter: MV_FILTER_NONE, MV_FILTER_SMOOTH, or MV_FILTER_MEDIAN.
//   method: LUCAS_KANADE, HORN_SCHUNCK
//   mvs: pointer to MVs. Contains initialization, and modified
//   based on optical flow. Must have
//   dimensions = from_frame->y_crop_width * from_frame->y_crop_height
void av1_optical_flow(const YV12_BUFFER_CONFIG *from_frame,
                      const YV12_BUFFER_CONFIG *to_frame,
                      const int from_frame_idx, const int to_frame_idx,
                      const int bit_depth, const OPFL_PARAMS *opfl_params,
                      const MV_FILTER_TYPE mv_filter,
                      const OPTFLOW_METHOD method, MV *mvs) {
  const int frame_height = from_frame->y_crop_height;
  const int frame_width = from_frame->y_crop_width;
  // TODO(any): deal with the case where frames are not of the same dimensions
  assert(frame_height == to_frame->y_crop_height &&
         frame_width == to_frame->y_crop_width);
  if (from_frame_idx == to_frame_idx) {
    // immediately return all zero mvs when frame indices are equal
    for (int yy = 0; yy < frame_height; yy++) {
      for (int xx = 0; xx < frame_width; xx++) {
        MV mv = { .row = 0, .col = 0 };
        mvs[yy * frame_width + xx] = mv;
      }
    }
    return;
  }

  // Initialize double mvs based on input parameter mvs array
  LOCALMV *localmvs =
      aom_malloc(frame_height * frame_width * sizeof(*localmvs));
  if (!localmvs) return;

  filter_mvs(MV_FILTER_SMOOTH, frame_height, frame_width, localmvs, mvs);

  for (int i = 0; i < frame_width * frame_height; i++) {
    MV mv = mvs[i];
    LOCALMV localmv = { .row = ((double)mv.row) / 8,
                        .col = ((double)mv.col) / 8 };
    localmvs[i] = localmv;
  }
  // Apply optical flow algorithm
  pyramid_optical_flow(from_frame, to_frame, bit_depth, opfl_params, method,
                       localmvs);

  // Update original mvs array
  for (int j = 0; j < frame_height; j++) {
    for (int i = 0; i < frame_width; i++) {
      int idx = j * frame_width + i;
      if (j + localmvs[idx].row < 0 || j + localmvs[idx].row >= frame_height ||
          i + localmvs[idx].col < 0 || i + localmvs[idx].col >= frame_width) {
        continue;
      }
      MV mv = { .row = (int16_t)round(8 * localmvs[idx].row),
                .col = (int16_t)round(8 * localmvs[idx].col) };
      mvs[idx] = mv;
    }
  }

  filter_mvs(mv_filter, frame_height, frame_width, localmvs, mvs);

  aom_free(localmvs);
}
#endif