summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/partition_strategy.c
blob: ce063135793c397f4ef83a1471e37d5b68d3bd8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
/*
 * Copyright (c) 2019, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <float.h>

#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/thirdpass.h"
#include "config/aom_dsp_rtcd.h"

#include "av1/common/enums.h"
#include "av1/common/reconinter.h"

#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/cnn.h"
#include "av1/encoder/partition_model_weights.h"
#include "av1/encoder/partition_cnn_weights.h"
#endif
#include "av1/encoder/encoder.h"

#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_strategy.h"
#include "av1/encoder/partition_search.h"
#include "av1/encoder/rdopt.h"

#if !CONFIG_REALTIME_ONLY
static AOM_INLINE void simple_motion_search_prune_part_features(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
    int features_to_get);

static bool ext_ml_model_decision_before_none(
    AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
    int *partition_none_allowed, int *partition_horz_allowed,
    int *partition_vert_allowed, int *do_rectangular_split,
    int *do_square_split);

static bool ext_ml_model_decision_before_none_part2(
    AV1_COMP *cpi,
    const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
    int *prune_horz, int *prune_vert);

static bool ext_ml_model_decision_after_none(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_after_none, int *do_square_split,
    int *do_rectangular_split);

static bool ext_ml_model_decision_after_none_part2(
    AV1_COMP *const cpi, const float *const features_terminate,
    int *terminate_partition_search);

static bool ext_ml_model_decision_after_split(
    AV1_COMP *const cpi, const float *const features_terminate,
    int *terminate_partition_search);

static bool ext_ml_model_decision_after_split_part2(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_prune, int *prune_rect_part_horz,
    int *prune_rect_part_vert);

static bool ext_ml_model_decision_after_rect(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_after_rect, int *horza_partition_allowed,
    int *horzb_partition_allowed, int *verta_partition_allowed,
    int *vertb_partition_allowed);

static bool ext_ml_model_decision_after_part_ab(
    AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
    int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
    int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
    int *const partition_vert4_allowed, unsigned int pb_source_variance,
    int mi_row, int mi_col);

static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) {
  switch (bsize) {
    case BLOCK_128X128: return 0;
    case BLOCK_64X64: return 1;
    case BLOCK_32X32: return 2;
    case BLOCK_16X16: return 3;
    case BLOCK_8X8: return 4;
    default: assert(0 && "Invalid bsize"); return -1;
  }
}

static char *get_feature_file_name(int id) {
  static char *feature_file_names[] = {
    "feature_before_partition_none",
    "feature_before_partition_none_prune_rect",
    "feature_after_partition_none_prune",
    "feature_after_partition_none_terminate",
    "feature_after_partition_split_terminate",
    "feature_after_partition_split_prune_rect",
    "feature_after_partition_rect",
    "feature_after_partition_ab",
  };

  return feature_file_names[id];
}

static void write_features_to_file(const char *const path,
                                   const bool is_test_mode,
                                   const float *features,
                                   const int feature_size, const int id,
                                   const BLOCK_SIZE bsize, const int mi_row,
                                   const int mi_col) {
  if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;

  char filename[256];
  snprintf(filename, sizeof(filename), "%s/%s", path,
           get_feature_file_name(id));
  FILE *pfile = fopen(filename, "a");
  if (pfile == NULL) return;
  if (!is_test_mode) {
    fprintf(pfile, "%d,%d,%d,%d,%d\n", id, (int)bsize, mi_row, mi_col,
            feature_size);
  }
  for (int i = 0; i < feature_size; ++i) {
    fprintf(pfile, "%.6f", features[i]);
    if (i < feature_size - 1) fprintf(pfile, ",");
  }
  fprintf(pfile, "\n");
  fclose(pfile);
}

// TODO(chiyotsai@google.com): This is very much a work in progress. We still
// need to the following:
//   -- add support for hdres
//   -- add support for pruning rectangular partitions
//   -- use reconstructed pixels instead of source pixels for padding
//   -- use chroma pixels in addition to luma pixels
void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
                                  int quad_tree_idx,
                                  int intra_cnn_based_part_prune_level,
                                  PartitionSearchState *part_state) {
  assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
         "Invalid sb_size for intra_cnn!");
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const BLOCK_SIZE bsize = blk_params->bsize;

  const int bsize_idx = convert_bsize_to_idx(bsize);

  if (bsize == BLOCK_128X128) {
    return;
  }

  PartitionSearchInfo *part_info = &x->part_search_info;

  // Precompute the CNN part and cache the result in MACROBLOCK
  if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
    const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;

    // Prepare the output
    const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
    const int num_outputs = 4;
    const int output_dims[4] = { 1, 2, 4, 8 };
    const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
                             CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
    float *output_buffer[CNN_TOT_OUT_CH];

    float **cur_output_buf = output_buffer;
    float *curr_buf_ptr = part_info->cnn_buffer;
    for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
      const int num_chs = out_chs[output_idx];
      const int ch_size = output_dims[output_idx] * output_dims[output_idx];
      for (int ch = 0; ch < num_chs; ch++) {
        cur_output_buf[ch] = curr_buf_ptr;
        curr_buf_ptr += ch_size;
      }
      cur_output_buf += num_chs;
    }

    CNN_MULTI_OUT output = {
      .num_outputs = 4,
      .output_channels = out_chs,
      .output_strides = output_dims,
      .output_buffer = output_buffer,
    };

    // Prepare the input
    const MACROBLOCKD *xd = &x->e_mbd;
    const int bit_depth = xd->bd;
    const int dc_q =
        av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
    part_info->log_q = log1pf((float)(dc_q * dc_q) / 256.0f);
    part_info->log_q =
        (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
        av1_intra_mode_cnn_partition_std[0];

    const int width = 65, height = 65,
              stride = x->plane[AOM_PLANE_Y].src.stride;

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      uint16_t *image[1] = {
        CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
      };

      if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
                                                cnn_config, &thread_data,
                                                bit_depth, &output)) {
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Error allocating CNN data");
        return;
      }
    } else {
      uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };

      if (!av1_cnn_predict_img_multi_out(image, width, height, stride,
                                         cnn_config, &thread_data, &output)) {
        aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR,
                           "Error allocating CNN data");
        return;
      }
    }

    part_info->cnn_output_valid = 1;
  }

  if (!part_info->cnn_output_valid) {
    return;
  }

  const NN_CONFIG *dnn_configs[5] = {
    NULL,
    &av1_intra_mode_cnn_partition_branch_0_dnn_config,
    &av1_intra_mode_cnn_partition_branch_1_dnn_config,
    &av1_intra_mode_cnn_partition_branch_2_dnn_config,
    &av1_intra_mode_cnn_partition_branch_3_dnn_config,
  };

  const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];

  float dnn_features[100];
  float logits[4] = { 0.0f };

  const float *branch_0 = part_info->cnn_buffer;
  const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
  const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
  const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;

  if (bsize == BLOCK_64X64) {
    int f_idx = 0;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_0[ch_idx];
    }

    const int spa_stride = 2 * 2;
    for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
      for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
        dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
      }
    }
    dnn_features[f_idx++] = part_info->log_q;
  } else if (bsize == BLOCK_32X32) {
    int f_idx = 0;
    for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
      dnn_features[f_idx++] = branch_0[idx];
    }

    const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
    const int spa_stride = 2 * 2;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
    }
    dnn_features[f_idx++] = part_info->log_q;
  } else if (bsize == BLOCK_16X16) {
    int f_idx = 0;
    const int prev_quad_idx = (quad_tree_idx - 1) / 4;
    const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
    const int prev_spa_stride = 2 * 2;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
    }

    const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
    const int spa_stride = 4 * 4;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
    }
    dnn_features[f_idx++] = part_info->log_q;
  } else if (bsize == BLOCK_8X8) {
    int f_idx = 0;
    const int prev_quad_idx = (quad_tree_idx - 1) / 4;
    const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
    const int prev_spa_stride = 4 * 4;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
    }

    const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
    const int spa_stride = 8 * 8;
    for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
      dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
    }
    dnn_features[f_idx++] = part_info->log_q;
  } else {
    assert(0 && "Invalid bsize in intra_cnn partition");
  }

  // Make decision
  av1_nn_predict(dnn_features, dnn_config, 1, logits);

  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
  float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
  if (is_720p_or_larger) {
    split_only_thresh =
        av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
    no_split_thresh =
        av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
  } else if (is_480p_or_larger) {
    split_only_thresh =
        av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
    no_split_thresh =
        av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
  } else {
    split_only_thresh =
        av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
    no_split_thresh =
        av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
  }

  if (logits[0] > split_only_thresh) {
    // As screen contents tend to choose larger partitions, do not prune
    // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
    if (intra_cnn_based_part_prune_level != 1) {
      part_state->partition_none_allowed = 0;
    }
    part_state->do_square_split = 1;
    av1_disable_rect_partitions(part_state);
  }

  if (logits[0] < no_split_thresh) {
    av1_disable_square_split_partition(part_state);
  }
}

static INLINE int get_simple_motion_search_prune_agg(int qindex,
                                                     int prune_level,
                                                     int is_rect_part) {
  assert(prune_level < TOTAL_AGG_LVLS);
  if (prune_level == NO_PRUNING) {
    return -1;
  }

  // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except
  // QIDX_BASED_AGG_LVL
  const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3 };
  if (prune_level < TOTAL_SIMPLE_AGG_LVLS) {
    return sms_prune_agg_levels[prune_level];
  }

  // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value.
  // Aggressive pruning for lower quantizers in non-boosted frames to prune
  // rectangular partitions.
  const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0;
  const int sms_prune_agg_qindex_based[2] = { 1, 2 };
  return sms_prune_agg_qindex_based[qband];
}

void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
                                          SIMPLE_MOTION_DATA_TREE *sms_tree,
                                          PartitionSearchState *part_state) {
  const AV1_COMMON *const cm = &cpi->common;
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  const int bsize_idx = convert_bsize_to_idx(bsize);
  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
  // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
  const int res_idx = is_480p_or_larger + is_720p_or_larger;

  assert(bsize_idx >= 0 && bsize_idx <= 4 &&
         "Invalid bsize in simple_motion_search_based_split");

  const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
  const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
  const NN_CONFIG *nn_config =
      av1_simple_motion_search_split_nn_config[bsize_idx];

  const int agg = get_simple_motion_search_prune_agg(
      x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0);
  if (agg < 0) {
    return;
  }

  const float split_only_thresh =
      av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
  const float no_split_thresh =
      av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];

  float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
                                           bsize, features,
                                           FEATURE_SMS_SPLIT_MODEL_FLAG);

  // Write features to file
  write_features_to_file(cpi->oxcf.partition_info_path,
                         cpi->ext_part_controller.test_mode, features,
                         FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);

  // Note: it is intended to not normalize the features here, to keep it
  // consistent for all features collected and passed to the external model.
  if (ext_ml_model_decision_before_none(
          cpi, features, &part_state->partition_none_allowed,
          &part_state->partition_rect_allowed[HORZ],
          &part_state->partition_rect_allowed[VERT],
          &part_state->do_rectangular_split, &part_state->do_square_split)) {
    return;
  }

  for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
    features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
  }

  float score = 0.0f;

  av1_nn_predict(features, nn_config, 1, &score);

  if (score > split_only_thresh) {
    av1_set_square_split_only(part_state);
  }

  if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
      score < no_split_thresh) {
    av1_disable_square_split_partition(part_state);
  }

  // If the score is very low, prune rectangular split since it is unlikely to
  // occur.
  if (cpi->sf.part_sf.simple_motion_search_rect_split) {
    const float scale = res_idx >= 2 ? 3.0f : 2.0f;
    const float rect_split_thresh =
        scale * av1_simple_motion_search_no_split_thresh
                    [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx]
                    [bsize_idx];
    if (score < rect_split_thresh) {
      part_state->do_rectangular_split = 0;
    }
  }
}

// Given a list of ref frames in refs, performs simple_motion_search on each of
// the refs and returns the ref with the smallest sse. Returns -1 if none of the
// ref in the list is available. Also stores the best sse and var in best_sse,
// best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
// sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
// subtrees.
static int simple_motion_search_get_best_ref(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
    int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
    unsigned int *best_var) {
  const AV1_COMMON *const cm = &cpi->common;
  int best_ref = -1;

  if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
    // If the whole block is outside of the image, set the var and sse to 0.
    *best_var = 0;
    *best_sse = 0;

    return best_ref;
  }

  // Otherwise do loop through the reference frames and find the one with the
  // minimum SSE
  const int num_planes = 1;

  *best_sse = INT_MAX;

  for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
    const int ref = refs[ref_idx];

    if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
      const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
      unsigned int curr_sse = 0, curr_var = 0;
      const int_mv best_mv = av1_simple_motion_search_sse_var(
          cpi, x, mi_row, mi_col, bsize, ref, start_mvs[ref], num_planes,
          use_subpixel, &curr_sse, &curr_var);
      if (curr_sse < *best_sse) {
        *best_sse = curr_sse;
        *best_var = curr_var;
        best_ref = ref;
      }

      if (save_mv) {
        sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
        sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;

        if (bsize >= BLOCK_8X8) {
          for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
            // Propagate the new motion vectors to a lower level
            SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
            sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
          }
        }
      }
    }
  }

  return best_ref;
}

// Collects features using simple_motion_search and store them in features. The
// features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
// collected are the sse and var from the subblocks flagged by features_to_get.
// Furthermore, if features is not NULL, then 7 more features are appended to
// the end of features:
//  - log(1.0 + dc_q ** 2)
//  - whether an above macroblock exists
//  - width of above macroblock
//  - height of above macroblock
//  - whether a left marcoblock exists
//  - width of left macroblock
//  - height of left macroblock
static AOM_INLINE void simple_motion_search_prune_part_features(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
    int features_to_get) {
  const int w_mi = mi_size_wide[bsize];
  const int h_mi = mi_size_high[bsize];
  assert(mi_size_wide[bsize] == mi_size_high[bsize]);
  assert(bsize >= BLOCK_8X8);
  assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
         cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);

  // Setting up motion search
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
                                                        : LAST_FRAME };
  const int num_refs = 1;
  const int use_subpixel = 1;

  // Doing whole block first to update the mv
  if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
    simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
                                      ref_list, num_refs, use_subpixel, 1,
                                      &sms_tree->sms_none_feat[0],
                                      &sms_tree->sms_none_feat[1]);
    sms_tree->sms_none_valid = 1;
  }

  // Split subblocks
  if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
      const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
      const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
      SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];

      if (!sub_tree->sms_none_valid) {
        simple_motion_search_get_best_ref(
            cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
            num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
            &sub_tree->sms_none_feat[1]);
        sub_tree->sms_none_valid = 1;
      }
    }
  }

  // Rectangular subblocks
  if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
    // Horz subblock
    BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
      const int sub_mi_col = mi_col + 0;
      const int sub_mi_row = mi_row + r_idx * h_mi / 2;

      simple_motion_search_get_best_ref(
          cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
          use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
          &sms_tree->sms_rect_feat[2 * r_idx + 1]);
    }

    // Vert subblock
    subsize = get_partition_subsize(bsize, PARTITION_VERT);
    for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
      const int sub_mi_col = mi_col + r_idx * w_mi / 2;
      const int sub_mi_row = mi_row + 0;

      simple_motion_search_get_best_ref(
          cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
          use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
          &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
    }
    sms_tree->sms_rect_valid = 1;
  }

  if (!features) return;

  int f_idx = 0;
  if (features_to_get & FEATURE_SMS_NONE_FLAG) {
    for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
      features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[sub_idx]);
    }
  }

  if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
    for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
      SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
      features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[0]);
      features[f_idx++] = log1pf((float)sub_tree->sms_none_feat[1]);
    }
  }

  if (features_to_get & FEATURE_SMS_RECT_FLAG) {
    for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
      features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[sub_idx]);
    }
  }

  const MACROBLOCKD *xd = &x->e_mbd;
  set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);

  // Q_INDEX
  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
  features[f_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f);

  // Neighbor stuff
  const int has_above = !!xd->above_mbmi;
  const int has_left = !!xd->left_mbmi;
  const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
  const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
  features[f_idx++] = (float)has_above;
  features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
  features[f_idx++] = (float)mi_size_high_log2[above_bsize];
  features[f_idx++] = (float)has_left;
  features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
  features[f_idx++] = (float)mi_size_high_log2[left_bsize];
}

void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
                                         SIMPLE_MOTION_DATA_TREE *sms_tree,
                                         PartitionSearchState *part_state) {
  const AV1_COMMON *const cm = &cpi->common;
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  const int bsize_idx = convert_bsize_to_idx(bsize);
  const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
  // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
  const int res_idx = is_480p_or_larger + is_720p_or_larger;

  // Get model parameters
  const NN_CONFIG *nn_config =
      av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
  const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
              *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];

  const int agg = get_simple_motion_search_prune_agg(
      x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1);
  if (agg < 0) {
    return;
  }

  const float prune_thresh =
      av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];

  // If there is no valid threshold, return immediately.
  if (!nn_config || prune_thresh == 0.0f) {
    return;
  }

  // Get features
  float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
                                           bsize, features,
                                           FEATURE_SMS_PRUNE_PART_FLAG);

  // Note: it is intended to not normalize the features here, to keep it
  // consistent for all features collected and passed to the external model.
  if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
      !frame_is_intra_only(cm) &&
      (part_state->partition_rect_allowed[HORZ] ||
       part_state->partition_rect_allowed[VERT]) &&
      bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
    // Write features to file
    write_features_to_file(
        cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
        features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);

    if (ext_ml_model_decision_before_none_part2(
            cpi, features, &part_state->prune_rect_part[HORZ],
            &part_state->prune_rect_part[VERT])) {
      return;
    }
  }

  for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
    features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
  }

  // Get probabilities
  float scores[EXT_PARTITION_TYPES] = { 0.0f },
        probs[EXT_PARTITION_TYPES] = { 0.0f };
  const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
                              ? PARTITION_TYPES
                              : EXT_PARTITION_TYPES;

  av1_nn_predict(features, nn_config, 1, scores);

  av1_nn_softmax(scores, probs, num_classes);

  // Determine if we should prune rectangular partitions.
  if (probs[PARTITION_HORZ] <= prune_thresh) {
    part_state->prune_rect_part[HORZ] = 1;
  }
  if (probs[PARTITION_VERT] <= prune_thresh) {
    part_state->prune_rect_part[VERT] = 1;
  }
}

// Early terminates PARTITION_NONE using simple_motion_search features and the
// rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
//  - The frame is a show frame
//  - The frame is not intra only
//  - The current bsize is > BLOCK_8X8
//  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
void av1_simple_motion_search_early_term_none(
    AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
    const RD_STATS *none_rdc, PartitionSearchState *part_state) {
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
                                           bsize, features,
                                           FEATURE_SMS_PRUNE_PART_FLAG);
  int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;

  features[f_idx++] = log1pf((float)none_rdc->rate);
  features[f_idx++] = log1pf((float)none_rdc->dist);
  features[f_idx++] = log1pf((float)none_rdc->rdcost);

  assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);

  const float *ml_mean = NULL;
  const float *ml_std = NULL;
  const float *ml_model = NULL;

  if (bsize == BLOCK_128X128) {
    ml_mean = av1_simple_motion_search_term_none_mean_128;
    ml_std = av1_simple_motion_search_term_none_std_128;
    ml_model = av1_simple_motion_search_term_none_model_128;
  } else if (bsize == BLOCK_64X64) {
    ml_mean = av1_simple_motion_search_term_none_mean_64;
    ml_std = av1_simple_motion_search_term_none_std_64;
    ml_model = av1_simple_motion_search_term_none_model_64;
  } else if (bsize == BLOCK_32X32) {
    ml_mean = av1_simple_motion_search_term_none_mean_32;
    ml_std = av1_simple_motion_search_term_none_std_32;
    ml_model = av1_simple_motion_search_term_none_model_32;
  } else if (bsize == BLOCK_16X16) {
    ml_mean = av1_simple_motion_search_term_none_mean_16;
    ml_std = av1_simple_motion_search_term_none_std_16;
    ml_model = av1_simple_motion_search_term_none_model_16;
  } else {
    assert(0 && "Unexpected block size in simple_motion_term_none");
  }

  // Write features to file
  write_features_to_file(cpi->oxcf.partition_info_path,
                         cpi->ext_part_controller.test_mode, features,
                         FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);

  if (ext_ml_model_decision_after_none_part2(
          cpi, features, &part_state->terminate_partition_search)) {
    return;
  }

  if (ml_model) {
    float score = 0.0f;
    for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
      score +=
          ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
    }
    score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];

    if (score >= 0.0f) {
      part_state->terminate_partition_search = 1;
    }
  }
}

void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
                                        int mi_row, int mi_col,
                                        float *features) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;

  // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
  assert(sb_size == BLOCK_128X128);

  int f_idx = 0;

  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
  const float log_q_sq = log1pf((float)(dc_q * dc_q) / 256.0f);

  // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
  float sum_mv_row_sq = 0;
  float sum_mv_row = 0;
  float min_abs_mv_row = FLT_MAX;
  float max_abs_mv_row = 0;

  float sum_mv_col_sq = 0;
  float sum_mv_col = 0;
  float min_abs_mv_col = FLT_MAX;
  float max_abs_mv_col = 0;

  float sum_log_sse_sq = 0;
  float sum_log_sse = 0;
  float min_log_sse = FLT_MAX;
  float max_log_sse = 0;

  const BLOCK_SIZE mb_size = BLOCK_16X16;
  const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
  const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
  const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
  const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];

  for (int mb_row = 0; mb_row < mb_rows; mb_row++)
    for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
      const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
      const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
      unsigned int sse = 0;
      unsigned int var = 0;
      const FULLPEL_MV start_mv = kZeroFullMv;
      const MV_REFERENCE_FRAME ref =
          cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
      const int_mv best_mv = av1_simple_motion_search_sse_var(
          cpi, x, this_mi_row, this_mi_col, mb_size, ref, start_mv, 1, 0, &sse,
          &var);

      const float mv_row = (float)(best_mv.as_mv.row / 8);
      const float mv_col = (float)(best_mv.as_mv.col / 8);
      const float log_sse = log1pf((float)sse);
      const float abs_mv_row = fabsf(mv_row);
      const float abs_mv_col = fabsf(mv_col);

      sum_mv_row_sq += mv_row * mv_row;
      sum_mv_row += mv_row;
      sum_mv_col_sq += mv_col * mv_col;
      sum_mv_col += mv_col;

      if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
      if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
      if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
      if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;

      sum_log_sse_sq += log_sse * log_sse;
      sum_log_sse += log_sse;
      if (log_sse < min_log_sse) min_log_sse = log_sse;
      if (log_sse > max_log_sse) max_log_sse = log_sse;
    }
  const int blks = mb_rows * mb_cols;
  const float avg_mv_row = sum_mv_row / (float)blks;
  const float var_mv_row =
      sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;

  const float avg_mv_col = sum_mv_col / (float)blks;
  const float var_mv_col =
      sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;

  const float avg_log_sse = sum_log_sse / (float)blks;
  const float var_log_sse =
      sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;

  features[f_idx++] = avg_log_sse;
  features[f_idx++] = avg_mv_col;
  features[f_idx++] = avg_mv_row;
  features[f_idx++] = log_q_sq;
  features[f_idx++] = max_abs_mv_col;
  features[f_idx++] = max_abs_mv_row;
  features[f_idx++] = max_log_sse;
  features[f_idx++] = min_abs_mv_col;
  features[f_idx++] = min_abs_mv_row;
  features[f_idx++] = min_log_sse;
  features[f_idx++] = var_log_sse;
  features[f_idx++] = var_mv_col;
  features[f_idx++] = var_mv_row;

  assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
}

// Convert result index to block size.
// result idx     block size
//     0          BLOCK_16X16
//     1          BLOCK_32X32
//     2          BLOCK_64X64
//     3          BLOCK_128X128
static BLOCK_SIZE get_block_size(int idx) {
  return (BLOCK_SIZE)((idx + 2) * 3);
}

BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
                                     const MACROBLOCK *const x,
                                     const float *features) {
  float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
  const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;

  assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
         NOT_IN_USE);

  av1_nn_predict(features, nn_config, 1, scores);

  int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
  if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
      DIRECT_PRED) {
    result = 0;
    float max_score = scores[0];
    for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
      if (scores[i] > max_score) {
        max_score = scores[i];
        result = i;
      }
    }
    return get_block_size(result);
  }

  float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
  av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);

  if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
      RELAXED_PRED) {
    for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
         --result) {
      if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
        probs[result] += probs[result + 1];
      }
      if (probs[result] > 0.2) break;
    }
  } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
             ADAPT_PRED) {
    const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
    // TODO(debargha): x->source_variance is unavailable at this point,
    // so compute. The redundant recomputation later can be removed.
    const unsigned int source_variance = av1_get_perpixel_variance_facade(
        cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y);
    if (source_variance > 16) {
      const double thresh = source_variance < 128 ? 0.05 : 0.1;
      for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
           --result) {
        if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
          probs[result] += probs[result + 1];
        }
        if (probs[result] > thresh) break;
      }
    }
  }

  return get_block_size(result);
}

// Get the minimum partition block width and height(in log scale) under a
// SIMPLE_MOTION_DATA_TREE.
static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
                                     int *min_bw, int *min_bh) {
  if (!sms_tree) return;

  const BLOCK_SIZE bsize = sms_tree->block_size;
  if (bsize == BLOCK_4X4) {
    *min_bw = 0;
    *min_bh = 0;
    return;
  }

  PARTITION_TYPE part_type = sms_tree->partitioning;
  if (part_type == PARTITION_INVALID) return;

  if (part_type == PARTITION_SPLIT) {
    for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
      get_min_bsize(sms_tree->split[i], min_bw, min_bh);
    }
  } else {
    if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
        part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
      part_type = PARTITION_SPLIT;
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
    if (subsize != BLOCK_INVALID) {
      *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
      *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
    }
  }
}

static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
                                  int *feature_idx) {
  const int rd_valid = rd > 0 && rd < INT64_MAX;
  const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
  features[(*feature_idx)++] = (float)rd_valid;
  features[(*feature_idx)++] = rd_ratio;
}

#define FEATURES 31
void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
                                   SIMPLE_MOTION_DATA_TREE *const sms_tree,
                                   int64_t best_rd, int64_t part_none_rd,
                                   int64_t part_split_rd,
                                   int64_t *split_block_rd,
                                   PartitionSearchState *part_state) {
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  if (best_rd <= 0 || best_rd == INT64_MAX ||
      part_state->terminate_partition_search)
    return;

  const AV1_COMMON *const cm = &cpi->common;
  const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
  const NN_CONFIG *nn_config = NULL;
  float thresh = -1e6;
  switch (bsize) {
    case BLOCK_128X128: break;
    case BLOCK_64X64:
      nn_config = &av1_early_term_after_split_nnconfig_64;
      thresh = is_480p_or_larger ? -2.0f : -1.2f;
      break;
    case BLOCK_32X32:
      nn_config = &av1_early_term_after_split_nnconfig_32;
      thresh = is_480p_or_larger ? -2.6f : -2.3f;
      break;
    case BLOCK_16X16:
      nn_config = &av1_early_term_after_split_nnconfig_16;
      thresh = is_480p_or_larger ? -2.0f : -2.4f;
      break;
    case BLOCK_8X8:
      nn_config = &av1_early_term_after_split_nnconfig_8;
      thresh = is_480p_or_larger ? -1.0f : -1.4f;
      break;
    case BLOCK_4X4: break;
    default:
      assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
      break;
  }
  if (!nn_config) return;

  // Use more conservative threshold for level 1.
  if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;

  const MACROBLOCKD *const xd = &x->e_mbd;
  const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
  const int bs = block_size_wide[bsize];
  int f_idx = 0;
  float features[FEATURES] = { 0.0f };

  features[f_idx++] = log1pf((float)dc_q / 4.0f);
  features[f_idx++] = log1pf((float)best_rd / bs / bs / 1024.0f);

  add_rd_feature(part_none_rd, best_rd, features, &f_idx);
  add_rd_feature(part_split_rd, best_rd, features, &f_idx);

  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
    int min_bw = MAX_SB_SIZE_LOG2;
    int min_bh = MAX_SB_SIZE_LOG2;
    get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
    features[f_idx++] = (float)min_bw;
    features[f_idx++] = (float)min_bh;
  }

  simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
                                           bsize, NULL,
                                           FEATURE_SMS_PRUNE_PART_FLAG);

  features[f_idx++] = log1pf((float)sms_tree->sms_none_feat[1]);

  features[f_idx++] = log1pf((float)sms_tree->split[0]->sms_none_feat[1]);
  features[f_idx++] = log1pf((float)sms_tree->split[1]->sms_none_feat[1]);
  features[f_idx++] = log1pf((float)sms_tree->split[2]->sms_none_feat[1]);
  features[f_idx++] = log1pf((float)sms_tree->split[3]->sms_none_feat[1]);

  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[1]);
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[3]);
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[5]);
  features[f_idx++] = log1pf((float)sms_tree->sms_rect_feat[7]);

  assert(f_idx == FEATURES);

  // Write features to file
  write_features_to_file(cpi->oxcf.partition_info_path,
                         cpi->ext_part_controller.test_mode, features, FEATURES,
                         4, bsize, mi_row, mi_col);

  if (ext_ml_model_decision_after_split(
          cpi, features, &part_state->terminate_partition_search)) {
    return;
  }

  float score = 0.0f;
  av1_nn_predict(features, nn_config, 1, &score);
  // Score is indicator of confidence that we should NOT terminate.
  if (score < thresh) {
    part_state->terminate_partition_search = 1;
  }
}
#undef FEATURES

void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
                                 int64_t best_rd, int64_t none_rd,
                                 const int64_t *split_rd,
                                 PartitionSearchState *part_state) {
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
  best_rd = AOMMAX(best_rd, 1);
  const NN_CONFIG *nn_config = NULL;
  const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
  float cur_thresh = 0.0f;
  switch (bsize) {
    case BLOCK_8X8:
      nn_config = &av1_rect_partition_nnconfig_8;
      cur_thresh = prob_thresholds[0];
      break;
    case BLOCK_16X16:
      nn_config = &av1_rect_partition_nnconfig_16;
      cur_thresh = prob_thresholds[1];
      break;
    case BLOCK_32X32:
      nn_config = &av1_rect_partition_nnconfig_32;
      cur_thresh = prob_thresholds[2];
      break;
    case BLOCK_64X64:
      nn_config = &av1_rect_partition_nnconfig_64;
      cur_thresh = prob_thresholds[3];
      break;
    case BLOCK_128X128:
      nn_config = &av1_rect_partition_nnconfig_128;
      cur_thresh = prob_thresholds[4];
      break;
    default: assert(0 && "Unexpected bsize.");
  }
  if (!nn_config) return;

  // 1. Compute input features
  float features[9];

  // RD cost ratios
  for (int i = 0; i < 5; i++) features[i] = 1.0f;
  if (none_rd > 0 && none_rd < 1000000000)
    features[0] = (float)none_rd / (float)best_rd;
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
      features[1 + i] = (float)split_rd[i] / (float)best_rd;
  }

  // Variance ratios
  const MACROBLOCKD *const xd = &x->e_mbd;
  int whole_block_variance;
  whole_block_variance = av1_get_perpixel_variance_facade(
      cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
  whole_block_variance = AOMMAX(whole_block_variance, 1);

  int split_variance[SUB_PARTITIONS_SPLIT];
  const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
  struct buf_2d buf;
  buf.stride = x->plane[0].src.stride;
  const int bw = block_size_wide[bsize];
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    const int x_idx = (i & 1) * bw / 2;
    const int y_idx = (i >> 1) * bw / 2;
    buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
    split_variance[i] =
        av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y);
  }

  for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
    features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;

  // Write features to file
  write_features_to_file(cpi->oxcf.partition_info_path,
                         cpi->ext_part_controller.test_mode, features,
                         /*feature_size=*/9, 5, bsize, mi_row, mi_col);

  if (ext_ml_model_decision_after_split_part2(
          &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
          features, &part_state->prune_rect_part[HORZ],
          &part_state->prune_rect_part[VERT])) {
    return;
  }

  // 2. Do the prediction and prune 0-2 partitions based on their probabilities
  float raw_scores[3] = { 0.0f };
  av1_nn_predict(features, nn_config, 1, raw_scores);
  float probs[3] = { 0.0f };
  av1_nn_softmax(raw_scores, probs, 3);

  // probs[0] is the probability of the fact that both rectangular partitions
  // are worse than current best_rd
  if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
  if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
}

// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
// considered.
void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx,
                               int64_t best_rd,
                               PartitionSearchState *part_state,
                               int *ab_partitions_allowed) {
  const PartitionBlkParams blk_params = part_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;

  if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
  const NN_CONFIG *nn_config = NULL;
  switch (bsize) {
    case BLOCK_8X8: nn_config = NULL; break;
    case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
    case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
    case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
    case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
    default: assert(0 && "Unexpected bsize.");
  }
  if (!nn_config) return;

  // Generate features.
  float features[10];
  int feature_index = 0;
  features[feature_index++] = (float)part_ctx;
  features[feature_index++] = (float)var_ctx;
  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
  int sub_block_rdcost[8] = { 0 };
  int rd_index = 0;
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    const int64_t *vert_rd = part_state->rect_part_rd[VERT];
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    const int64_t *split_rd = part_state->split_rd;
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)split_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < 8; ++i) {
    // Ratio between the sub-block RD and the whole-block RD.
    float rd_ratio = 1.0f;
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
    features[feature_index++] = rd_ratio;
  }
  assert(feature_index == 10);

  // Write features to file
  if (!frame_is_intra_only(&cpi->common)) {
    write_features_to_file(cpi->oxcf.partition_info_path,
                           cpi->ext_part_controller.test_mode, features,
                           /*feature_size=*/10, 6, bsize, mi_row, mi_col);
  }

  if (ext_ml_model_decision_after_rect(
          &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
          features, &ab_partitions_allowed[HORZ_A],
          &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
          &ab_partitions_allowed[VERT_B])) {
    return;
  }

  // Calculate scores using the NN model.
  float score[16] = { 0.0f };
  av1_nn_predict(features, nn_config, 1, score);
  int int_score[16];
  int max_score = -1000;
  for (int i = 0; i < 16; ++i) {
    int_score[i] = (int)(100 * score[i]);
    max_score = AOMMAX(int_score[i], max_score);
  }

  // Make decisions based on the model scores.
  int thresh = max_score;
  switch (bsize) {
    case BLOCK_16X16: thresh -= 150; break;
    case BLOCK_32X32: thresh -= 100; break;
    default: break;
  }
  av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
  for (int i = 0; i < 16; ++i) {
    if (int_score[i] >= thresh) {
      if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
      if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
      if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
      if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
    }
  }
}

#define FEATURES 18
#define LABELS 4
// Use a ML model to predict if horz4 and vert4 should be considered.
void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
                              int part_ctx, int64_t best_rd,
                              PartitionSearchState *part_state,
                              int *part4_allowed,
                              unsigned int pb_source_variance) {
  const PartitionBlkParams blk_params = part_state->part_blk_params;
  const int mi_row = blk_params.mi_row;
  const int mi_col = blk_params.mi_col;
  const BLOCK_SIZE bsize = blk_params.bsize;

  int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
  int64_t *split_rd = part_state->split_rd;
  if (ext_ml_model_decision_after_part_ab(
          cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
          &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
          mi_row, mi_col))
    return;

  if (best_rd >= 1000000000) return;
  int64_t *horz_rd = rect_part_rd[HORZ4];
  int64_t *vert_rd = rect_part_rd[VERT4];
  const NN_CONFIG *nn_config = NULL;
  // 4-way partitions are only allowed for these three square block sizes.
  switch (bsize) {
    case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
    case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
    case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
    default: assert(0 && "Unexpected bsize.");
  }
  if (!nn_config) return;

  // Generate features.
  float features[FEATURES];
  int feature_index = 0;
  features[feature_index++] = (float)part_ctx;
  features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);

  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
  int sub_block_rdcost[8] = { 0 };
  int rd_index = 0;
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)split_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < 8; ++i) {
    // Ratio between the sub-block RD and the whole-block RD.
    float rd_ratio = 1.0f;
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
    features[feature_index++] = rd_ratio;
  }

  // Get variance of the 1:4 and 4:1 sub-blocks.
  unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
  unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
  {
    BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
    BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);

    assert(horz_4_bs != BLOCK_INVALID);
    assert(vert_4_bs != BLOCK_INVALID);

    av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
                         av1_num_planes(&cpi->common), bsize);
    const int src_stride = x->plane[0].src.stride;
    uint8_t *src = x->plane[0].src.buf;
    const MACROBLOCKD *const xd = &x->e_mbd;

    struct buf_2d horz_4_src, vert_4_src;
    horz_4_src.stride = src_stride;
    vert_4_src.stride = src_stride;

    for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
      horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
      vert_4_src.buf = src + i * block_size_wide[vert_4_bs];

      horz_4_source_var[i] = av1_get_perpixel_variance_facade(
          cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
      vert_4_source_var[i] = av1_get_perpixel_variance_facade(
          cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
    }
  }

  const float denom = (float)(pb_source_variance + 1);
  const float low_b = 0.1f;
  const float high_b = 10.0f;
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    // Ratio between the 4:1 sub-block variance and the whole-block variance.
    float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
    if (var_ratio < low_b) var_ratio = low_b;
    if (var_ratio > high_b) var_ratio = high_b;
    features[feature_index++] = var_ratio;
  }
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    // Ratio between the 1:4 sub-block RD and the whole-block RD.
    float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
    if (var_ratio < low_b) var_ratio = low_b;
    if (var_ratio > high_b) var_ratio = high_b;
    features[feature_index++] = var_ratio;
  }
  assert(feature_index == FEATURES);

  // Write features to file
  if (!frame_is_intra_only(&cpi->common)) {
    write_features_to_file(cpi->oxcf.partition_info_path,
                           cpi->ext_part_controller.test_mode, features,
                           FEATURES, 7, bsize, mi_row, mi_col);
  }

  // Calculate scores using the NN model.
  float score[LABELS] = { 0.0f };
  av1_nn_predict(features, nn_config, 1, score);
  int int_score[LABELS];
  int max_score = -1000;
  for (int i = 0; i < LABELS; ++i) {
    int_score[i] = (int)(100 * score[i]);
    max_score = AOMMAX(int_score[i], max_score);
  }

  // Make decisions based on the model scores.
  int thresh = max_score;
  switch (bsize) {
    case BLOCK_16X16: thresh -= 500; break;
    case BLOCK_32X32: thresh -= 500; break;
    case BLOCK_64X64: thresh -= 200; break;
    default: break;
  }
  av1_zero_array(part4_allowed, NUM_PART4_TYPES);
  for (int i = 0; i < LABELS; ++i) {
    if (int_score[i] >= thresh) {
      if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
      if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
    }
  }
}
#undef FEATURES
#undef LABELS

#define FEATURES 4
void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
                             const RD_STATS *const rd_stats,
                             unsigned int pb_source_variance, int bit_depth,
                             PartitionSearchState *part_state) {
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
  const BLOCK_SIZE bsize = blk_params->bsize;

  const NN_CONFIG *nn_config = NULL;
  int thresh = 0;
  switch (bsize) {
    case BLOCK_8X8:
      nn_config = &av1_partition_breakout_nnconfig_8;
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
      break;
    case BLOCK_16X16:
      nn_config = &av1_partition_breakout_nnconfig_16;
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
      break;
    case BLOCK_32X32:
      nn_config = &av1_partition_breakout_nnconfig_32;
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
      break;
    case BLOCK_64X64:
      nn_config = &av1_partition_breakout_nnconfig_64;
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
      break;
    case BLOCK_128X128:
      nn_config = &av1_partition_breakout_nnconfig_128;
      thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
      break;
    default: assert(0 && "Unexpected bsize.");
  }
  if (!nn_config || thresh < 0) return;

  const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
  thresh = (int)((float)thresh *
                 ml_predict_breakout_thresh_scale
                     [cpi->sf.part_sf.ml_predict_breakout_level - 1]);

  // Generate feature values.
  float features[FEATURES];
  int feature_index = 0;

  const int num_pels_log2 = num_pels_log2_lookup[bsize];
  float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
  rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
           rate_f;
  features[feature_index++] = rate_f;

  const float dist_f =
      (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
  features[feature_index++] = dist_f;

  features[feature_index++] = (float)pb_source_variance;

  const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
  features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
  assert(feature_index == FEATURES);

  // Write features to file
  write_features_to_file(cpi->oxcf.partition_info_path,
                         cpi->ext_part_controller.test_mode, features, FEATURES,
                         2, bsize, mi_row, mi_col);

  if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
                                       frame_is_intra_only(&cpi->common),
                                       features, &part_state->do_square_split,
                                       &part_state->do_rectangular_split)) {
    return;
  }

  // Calculate score using the NN model.
  float score = 0.0f;
  av1_nn_predict(features, nn_config, 1, &score);

  // Make decision.
  if ((int)(score * 100) >= thresh) {
    part_state->do_square_split = 0;
    part_state->do_rectangular_split = 0;
  }
}
#undef FEATURES

void av1_prune_partitions_before_search(AV1_COMP *const cpi,
                                        MACROBLOCK *const x,
                                        SIMPLE_MOTION_DATA_TREE *const sms_tree,
                                        PartitionSearchState *part_state) {
  const AV1_COMMON *const cm = &cpi->common;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;

  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const BLOCK_SIZE bsize = blk_params->bsize;

  if (cpi->third_pass_ctx) {
    int mi_row = blk_params->mi_row;
    int mi_col = blk_params->mi_col;
    double ratio_h, ratio_w;
    av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width,
                             &ratio_h, &ratio_w);
    THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
        cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w);
    BLOCK_SIZE third_pass_bsize =
        av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w);
    // check the actual partition of this block in the second pass
    PARTITION_TYPE third_pass_part =
        av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi);

    int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) ||
                  (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols);

    if (!is_edge && block_size_wide[bsize] >= 16) {
      // If in second pass we used rectangular partition, then do not search for
      // rectangular partition in the different direction.
      if (third_pass_part != PARTITION_NONE) {
        if (third_pass_part == PARTITION_HORZ ||
            third_pass_part == PARTITION_HORZ_4 ||
            third_pass_part == PARTITION_HORZ_A ||
            third_pass_part == PARTITION_HORZ_B) {
          part_state->partition_rect_allowed[VERT] = 0;
        } else if (third_pass_part == PARTITION_VERT ||
                   third_pass_part == PARTITION_VERT_4 ||
                   third_pass_part == PARTITION_VERT_A ||
                   third_pass_part == PARTITION_VERT_B) {
          part_state->partition_rect_allowed[HORZ] = 0;
        }
      }

      int minSize = AOMMIN(block_size_wide[third_pass_bsize],
                           block_size_high[third_pass_bsize]);
      int maxSize = AOMMAX(block_size_wide[third_pass_bsize],
                           block_size_high[third_pass_bsize]);
      if (block_size_wide[bsize] < minSize / 4) {
        // Current partition is too small, just terminate
        part_state->terminate_partition_search = 1;
        return;
      } else if (block_size_wide[bsize] < minSize / 2) {
        if (third_pass_part != PARTITION_NONE) {
          // Current partition is very small, and in second pass we used
          // rectangular partition. Terminate the search here then.
          part_state->terminate_partition_search = 1;
          return;
        } else {
          // Partition is small, but we still check this partition, only disable
          // further splits.
          // TODO(any): check why this is not covered by the termination for <
          // minSize/4.
          av1_disable_square_split_partition(part_state);
          av1_disable_rect_partitions(part_state);
          return;
        }
      } else if (block_size_wide[bsize] > maxSize) {
        // Partition is larger than in the second pass. Only allow split.
        av1_set_square_split_only(part_state);
        return;
      } else if (block_size_wide[bsize] >= minSize &&
                 block_size_wide[bsize] <= maxSize) {
        // Partition is within a range where it is very likely to find a good
        // choice, so do not prune anything.
        return;
      }
    }
  }

  // Prune rectangular partitions for larger blocks.
  if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
    part_state->do_rectangular_split = 0;
    part_state->partition_rect_allowed[HORZ] = 0;
    part_state->partition_rect_allowed[VERT] = 0;
  }

  // Prune rectangular, AB and 4-way partition based on q index and block size
  if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
    if (bsize == BLOCK_8X8 && x->qindex < 35)
      av1_disable_rect_partitions(part_state);

  } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
    // Enumeration difference between two square partitions
    const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
    int max_bsize =
        BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
    max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
    const BLOCK_SIZE max_prune_bsize =
        (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);

    // Prune partition
    // qidx 0 to 85: prune bsize below BLOCK_32X32
    // qidx 86 to 170: prune bsize below BLOCK_16X16
    // qidx 171 to 255: prune bsize below BLOCK_8X8
    if (bsize < max_prune_bsize) {
      av1_disable_rect_partitions(part_state);
    }
  }

  if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
    const MACROBLOCKD *const xd = &x->e_mbd;
    int prune_sub_8x8;
    if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 2) {
      prune_sub_8x8 = 1;
    } else {
      assert(cpi->sf.part_sf.prune_sub_8x8_partition_level == 1);
      // Prune if both neighbors are available and either is > BLOCK_8X8
      prune_sub_8x8 = xd->left_available && xd->up_available &&
                      (xd->left_mbmi->bsize > BLOCK_8X8 ||
                       xd->above_mbmi->bsize > BLOCK_8X8);
    }
    if (prune_sub_8x8) {
      av1_disable_all_splits(part_state);
    }
  }

  // A CNN-based speed feature pruning out either split or all non-split
  // partition in INTRA frame coding.
  const int try_intra_cnn_based_part_prune =
      frame_is_intra_only(cm) &&
      cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
      cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
      blk_params->bsize_at_least_8x8 &&
      av1_is_whole_blk_in_frame(blk_params, mi_params);

  if (try_intra_cnn_based_part_prune) {
    av1_intra_mode_cnn_partition(
        &cpi->common, x, x->part_search_info.quad_tree_idx,
        cpi->sf.part_sf.intra_cnn_based_part_prune_level, part_state);
  }

  // Use simple motion search to prune out split or non-split partitions. This
  // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
  // smaller blocksize.
  const int try_split_only =
      cpi->sf.part_sf.simple_motion_search_split &&
      part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
      av1_is_whole_blk_in_frame(blk_params, mi_params) &&
      !frame_is_intra_only(cm) && !av1_superres_scaled(cm);

  if (try_split_only) {
    av1_simple_motion_search_based_split(cpi, x, sms_tree, part_state);
  }

  // Use simple motion search to prune out rectangular partition in some
  // direction. The results are stored in prune_horz and prune_vert in order to
  // bypass future related pruning checks if a pruning decision has been made.

  // We want to search at least one partition mode, so don't prune if NONE and
  // SPLIT are disabled.
  const int non_rect_part_allowed =
      part_state->do_square_split || part_state->partition_none_allowed;
  // Only run the model if the partitions are not already pruned.
  const int rect_part_allowed = part_state->do_rectangular_split &&
                                ((part_state->partition_rect_allowed[HORZ] &&
                                  !part_state->prune_rect_part[HORZ]) ||
                                 (part_state->partition_rect_allowed[VERT] &&
                                  !part_state->prune_rect_part[VERT]));

  const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
                             !frame_is_intra_only(cm) &&
                             non_rect_part_allowed && rect_part_allowed &&
                             !av1_superres_scaled(cm);

  if (try_prune_rect) {
    av1_simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
  }
}

#ifndef NDEBUG
static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) {
  return block_size_wide[bsize] == block_size_high[bsize];
}
#endif  // NDEBUG

void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
                                           PartitionSearchState *part_state) {
  assert(is_bsize_square(sb_enc->max_partition_size));
  assert(is_bsize_square(sb_enc->min_partition_size));
  assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
  const PartitionBlkParams *blk_params = &part_state->part_blk_params;
  const BLOCK_SIZE bsize = blk_params->bsize;
  assert(is_bsize_square(bsize));
  const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
  const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
  const int bsize_1d = block_size_wide[bsize];
  assert(min_partition_size_1d <= max_partition_size_1d);
  const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
  const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
  if (is_gt_max_sq_part) {
    // If current block size is larger than max, only allow split.
    av1_set_square_split_only(part_state);
  } else if (is_le_min_sq_part) {
    // If current block size is less or equal to min, only allow none if valid
    // block large enough; only allow split otherwise.
    av1_disable_rect_partitions(part_state);

    // only disable square split when current block is not at the picture
    // boundary. otherwise, inherit the square split flag from previous logic
    if (av1_blk_has_rows_and_cols(blk_params)) {
      part_state->do_square_split = 0;
    }
    part_state->partition_none_allowed = !(part_state->do_square_split);
  }
}

// Decide whether to evaluate the AB partition specified by part_type based on
// split and HORZ/VERT info
int evaluate_ab_partition_based_on_split(
    const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
    const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
    int split_idx2) {
  int num_win = 0;
  // Threshold for number of winners
  // Conservative pruning for high quantizers
  const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
  int sub_part_win =
      (rect_part_win_info == NULL)    ? (pc_tree->partitioning == rect_part)
      : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ]
                                      : rect_part_win_info->rect_part_win[VERT];
  num_win += (sub_part_win) ? 1 : 0;
  if (pc_tree->split[split_idx1]) {
    num_win +=
        (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
  } else {
    num_win += 1;
  }
  if (pc_tree->split[split_idx2]) {
    num_win +=
        (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
  } else {
    num_win += 1;
  }
  if (num_win < num_win_thresh) {
    return 0;
  }
  return 1;
}

void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
                             const PC_TREE *pc_tree, int pb_source_variance,
                             int64_t best_rdcost,
                             const RD_RECT_PART_WIN_INFO *rect_part_win_info,
                             bool ext_partition_allowed,
                             PartitionSearchState *part_state,
                             int *ab_partitions_allowed) {
  int64_t *horz_rd = part_state->rect_part_rd[HORZ];
  int64_t *vert_rd = part_state->rect_part_rd[VERT];
  int64_t *split_rd = part_state->split_rd;
  const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
  // The standard AB partitions are allowed initially if ext-partition-types are
  // allowed.
  int horzab_partition_allowed = ext_partition_allowed &&
                                 part_cfg->enable_ab_partitions &&
                                 part_state->partition_rect_allowed[HORZ];
  int vertab_partition_allowed = ext_partition_allowed &&
                                 part_cfg->enable_ab_partitions &&
                                 part_state->partition_rect_allowed[VERT];

  // Pruning: pruning out AB partitions on one main direction based on the
  // current best partition and source variance.
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
    if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
      // TODO(debargha,huisu@google.com): may need to tune the threshold for
      // pb_source_variance.
      horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
                                   (pc_tree->partitioning == PARTITION_NONE &&
                                    pb_source_variance < 32) ||
                                   pc_tree->partitioning == PARTITION_SPLIT);
      vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
                                   (pc_tree->partitioning == PARTITION_NONE &&
                                    pb_source_variance < 32) ||
                                   pc_tree->partitioning == PARTITION_SPLIT);
    } else {
      horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
                                   pc_tree->partitioning == PARTITION_SPLIT);
      vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
                                   pc_tree->partitioning == PARTITION_SPLIT);
    }
    horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
    horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
    vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
    vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
    split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
    split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
    split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
    split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
  }

  // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
  // subblocks estimated from previous partitions is much higher than the best
  // rd so far.
  ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
  ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
    const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
    const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
    switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
      case 1:
        ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
        ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
        break;
      case 2:
      default:
        ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
        ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
        break;
    }
  }

  // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
  // subblocks estimated from previous partitions is much higher than the best
  // rd so far.
  ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
  ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
  if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
    const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
    const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
    switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
      case 1:
        ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
        ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
        break;
      case 2:
      default:
        ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
        ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
        break;
    }
  }

  // Pruning: pruning out some ab partitions using a DNN taking rd costs of
  // sub-blocks from previous basic partition types.
  if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
      part_state->partition_rect_allowed[HORZ] &&
      part_state->partition_rect_allowed[VERT]) {
    // TODO(huisu@google.com): x->source_variance may not be the current
    // block's variance. The correct one to use is pb_source_variance. Need to
    // re-train the model to fix it.
    av1_ml_prune_ab_partition(cpi, pc_tree->partitioning,
                              get_unsigned_bits(x->source_variance),
                              best_rdcost, part_state, ab_partitions_allowed);
  }

  // Pruning: pruning AB partitions based on the number of horz/vert wins
  // in the current block and sub-blocks in PARTITION_SPLIT.
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
      ab_partitions_allowed[HORZ_A]) {
    ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
        pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
  }
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
      ab_partitions_allowed[HORZ_B]) {
    ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
        pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
  }
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
      ab_partitions_allowed[VERT_A]) {
    ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
        pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
  }
  if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
      ab_partitions_allowed[VERT_B]) {
    ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
        pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
  }
}

// Prepare features for the external model. Specifically, features after
// ab partition is searched.
static void prepare_features_after_part_ab(
    const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
    int part_ctx, int64_t best_rd,
    int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
    int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
    int mi_row, int mi_col, aom_partition_features_t *const features) {
  int64_t *horz_rd = rect_part_rd[HORZ];
  int64_t *vert_rd = rect_part_rd[VERT];

  // Generate features.
  int feature_index = 0;
  features->after_part_ab.f[feature_index++] = (float)part_ctx;
  features->after_part_ab.f[feature_index++] =
      (float)get_unsigned_bits(pb_source_variance);

  const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
  int sub_block_rdcost[8] = { 0 };
  int rd_index = 0;
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)horz_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
    if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)vert_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
    if (split_rd[i] > 0 && split_rd[i] < 1000000000)
      sub_block_rdcost[rd_index] = (int)split_rd[i];
    ++rd_index;
  }
  for (int i = 0; i < 8; ++i) {
    // Ratio between the sub-block RD and the whole-block RD.
    float rd_ratio = 1.0f;
    if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
      rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
    features->after_part_ab.f[feature_index++] = rd_ratio;
  }

  // 4-way partitions are only allowed for these three square block sizes.
  assert(bsize == BLOCK_16X16 || bsize == BLOCK_32X32 || bsize == BLOCK_64X64);

  // Get variance of the 1:4 and 4:1 sub-blocks.
  unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
  unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
  {
    BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
    BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);

    assert(horz_4_bs != BLOCK_INVALID);
    assert(vert_4_bs != BLOCK_INVALID);

    av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
                         av1_num_planes(&cpi->common), bsize);
    const int src_stride = x->plane[0].src.stride;
    uint8_t *src = x->plane[0].src.buf;
    const MACROBLOCKD *const xd = &x->e_mbd;

    struct buf_2d horz_4_src, vert_4_src;
    horz_4_src.stride = src_stride;
    vert_4_src.stride = src_stride;

    for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
      horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
      vert_4_src.buf = src + i * block_size_wide[vert_4_bs];

      horz_4_source_var[i] = av1_get_perpixel_variance_facade(
          cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
      vert_4_source_var[i] = av1_get_perpixel_variance_facade(
          cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
    }
  }

  const float denom = (float)(pb_source_variance + 1);
  const float low_b = 0.1f;
  const float high_b = 10.0f;
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    // Ratio between the 4:1 sub-block variance and the whole-block variance.
    float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
    if (var_ratio < low_b) var_ratio = low_b;
    if (var_ratio > high_b) var_ratio = high_b;
    features->after_part_ab.f[feature_index++] = var_ratio;
  }
  for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
    // Ratio between the 1:4 sub-block RD and the whole-block RD.
    float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
    if (var_ratio < low_b) var_ratio = low_b;
    if (var_ratio > high_b) var_ratio = high_b;
    features->after_part_ab.f[feature_index++] = var_ratio;
  }
  assert(feature_index == 18);
}

// If the external partition model is used, we let it determine partition
// decisions before partition none. Specifically, these parameters:
// partition_none_allowed
// partition_horz_allowed
// partition_vert_allowed
// do_rectangular_split
// do_square_split
static bool ext_ml_model_decision_before_none(
    AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
    int *partition_none_allowed, int *partition_horz_allowed,
    int *partition_vert_allowed, int *do_rectangular_split,
    int *do_square_split) {
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  if (!ext_part_controller->ready) return false;

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
  for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
    features.before_part_none.f[i] = features_from_motion[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *partition_none_allowed = decision.partition_none_allowed;
  *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
  *partition_vert_allowed = decision.partition_rect_allowed[VERT];
  *do_rectangular_split = decision.do_rectangular_split;
  *do_square_split = decision.do_square_split;

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions before partition none. Specifically, these parameters:
// prune_horz
// prune_vert
static bool ext_ml_model_decision_before_none_part2(
    AV1_COMP *cpi,
    const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
    int *prune_horz, int *prune_vert) {
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  if (!ext_part_controller->ready) return false;

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
  for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
    features.before_part_none.f_part2[i] = features_from_motion[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *prune_horz = decision.prune_rect_part[HORZ];
  *prune_vert = decision.prune_rect_part[VERT];

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after none partition. Specifically, these parameters:
// do_square_split
// do_rectangular_split
bool ext_ml_model_decision_after_none(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_after_none, int *do_square_split,
    int *do_rectangular_split) {
  if (!ext_part_controller->ready || is_intra_frame) return false;

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
  for (int i = 0; i < 4; ++i) {
    features.after_part_none.f[i] = features_after_none[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *do_square_split = decision.do_square_split;
  *do_rectangular_split = decision.do_rectangular_split;

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after none partition. Specifically, these parameters:
// terminate_partition_search
bool ext_ml_model_decision_after_none_part2(
    AV1_COMP *const cpi, const float *const features_terminate,
    int *terminate_partition_search) {
  AV1_COMMON *const cm = &cpi->common;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
  for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
    features.after_part_none.f_terminate[i] = features_terminate[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *terminate_partition_search = decision.terminate_partition_search;

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after none partition. Specifically, these parameters:
// terminate_partition_search
bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
                                       const float *const features_terminate,
                                       int *terminate_partition_search) {
  const AV1_COMMON *const cm = &cpi->common;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
  if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
    return false;
  }

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
  for (int i = 0; i < 31; ++i) {
    features.after_part_split.f_terminate[i] = features_terminate[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *terminate_partition_search = decision.terminate_partition_search;

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after none partition. Specifically, these parameters:
// prune_rect_part[HORZ]
// prune_rect_part[VERT]
bool ext_ml_model_decision_after_split_part2(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_prune, int *prune_rect_part_horz,
    int *prune_rect_part_vert) {
  if (is_intra_frame || !ext_part_controller->ready) {
    return false;
  }

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
  for (int i = 0; i < 9; ++i) {
    features.after_part_split.f_prune_rect[i] = features_prune[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *prune_rect_part_horz = decision.prune_rect_part[0];
  *prune_rect_part_vert = decision.prune_rect_part[1];

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after rectangular partition. Specifically, these parameters:
// horza_partition_allowed
// horzb_partition_allowed
// verta_partition_allowed
// vertb_partition_allowed
static bool ext_ml_model_decision_after_rect(
    ExtPartController *const ext_part_controller, const int is_intra_frame,
    const float *const features_after_rect, int *horza_partition_allowed,
    int *horzb_partition_allowed, int *verta_partition_allowed,
    int *vertb_partition_allowed) {
  if (is_intra_frame || !ext_part_controller->ready) return false;

  // Setup features.
  aom_partition_features_t features;
  features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
  for (int i = 0; i < 10; ++i) {
    features.after_part_rect.f[i] = features_after_rect[i];
  }

  // Send necessary features to the external model.
  av1_ext_part_send_features(ext_part_controller, &features);

  // Get partition decisions from the external model.
  aom_partition_decision_t decision;
  const bool valid_decision =
      av1_ext_part_get_partition_decision(ext_part_controller, &decision);
  if (!valid_decision) return false;

  // Populate decisions
  *horza_partition_allowed = decision.horza_partition_allowed;
  *horzb_partition_allowed = decision.horzb_partition_allowed;
  *verta_partition_allowed = decision.verta_partition_allowed;
  *vertb_partition_allowed = decision.vertb_partition_allowed;

  return true;
}

// If the external partition model is used, we let it determine partition
// decisions after AB partition. Specifically, these parameters:
// partition_vert4_allowed
// partition_horz4_allowed
static bool ext_ml_model_decision_after_part_ab(
    AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
    int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
    int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
    int *const partition_vert4_allowed, unsigned int pb_source_variance,
    int mi_row, int mi_col) {
  const AV1_COMMON *const cm = &cpi->common;
  ExtPartController *const ext_part_controller = &cpi->ext_part_controller;

  if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
    // Setup features.
    aom_partition_features_t features;
    features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
    prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
                                   rect_part_rd, split_rd, pb_source_variance,
                                   mi_row, mi_col, &features);

    // Send necessary features to the external model.
    av1_ext_part_send_features(ext_part_controller, &features);

    // Get partition decisions from the external model.
    aom_partition_decision_t decision;
    const bool valid_decision =
        av1_ext_part_get_partition_decision(ext_part_controller, &decision);
    if (!valid_decision) return false;

    // Populate decisions
    *partition_horz4_allowed = decision.partition_horz4_allowed;
    *partition_vert4_allowed = decision.partition_vert4_allowed;

    return true;
  }

  return false;
}

// This function resembles "av1_setup_sms_tree()" in context_tree.c
// with function signature change.
static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
    AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
  AV1_COMMON *const cm = &cpi->common;
  const int stat_generation_stage = is_stat_generation_stage(cpi);
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
  const int tree_nodes =
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
  int sms_tree_index = 0;
  SIMPLE_MOTION_DATA_TREE *this_sms;
  int square_index = 1;
  int nodes;
  this_sms = &sms_tree[0];

  if (!stat_generation_stage) {
    const int leaf_factor = is_sb_size_128 ? 4 : 1;
    const int leaf_nodes = 256 * leaf_factor;

    // Sets up all the leaf nodes in the tree.
    for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
      SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
      tree->block_size = square[0];
    }

    // Each node has 4 leaf nodes, fill each block_size level of the tree
    // from leafs to the root.
    for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
      for (int i = 0; i < nodes; ++i) {
        SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
        tree->block_size = square[square_index];
        for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
        ++sms_tree_index;
      }
      ++square_index;
    }
  } else {
    // Allocation for firstpass/LAP stage
    // TODO(Mufaddal): refactor square_index to use a common block_size macro
    // from firstpass.c
    SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
    square_index = 2;
    tree->block_size = square[square_index];
  }

  // Set up the root node for the largest superblock size
  return &sms_tree[tree_nodes - 1];
}

static void write_motion_feature_to_file(
    const char *const path, const int sb_counter, const unsigned int *block_sse,
    const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
    const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
  char filename[256];
  snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
           sb_counter);
  FILE *pfile = fopen(filename, "w");
  fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
          block_size_wide[fixed_block_size], num_blocks);
  for (int i = 0; i < num_blocks; ++i) {
    fprintf(pfile, "%d", block_sse[i]);
    if (i < num_blocks - 1) fprintf(pfile, ",");
  }
  fprintf(pfile, "\n");
  for (int i = 0; i < num_blocks; ++i) {
    fprintf(pfile, "%d", block_var[i]);
    if (i < num_blocks - 1) fprintf(pfile, ",");
  }
  fprintf(pfile, "\n");
  fclose(pfile);
}

void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
                                           TileDataEnc *tile_data,
                                           const int mi_row, const int mi_col,
                                           const BLOCK_SIZE bsize,
                                           aom_partition_features_t *features) {
  const AV1_COMMON *const cm = &cpi->common;
  if (frame_is_intra_only(cm)) return;

  MACROBLOCK *const x = &td->mb;
  const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
  const int col_step = mi_size_wide[fixed_block_size];
  const int row_step = mi_size_high[fixed_block_size];
  SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
  const int stat_generation_stage = is_stat_generation_stage(cpi);
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
  const int tree_nodes =
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
  CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
  SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
  TileInfo *const tile_info = &tile_data->tile_info;
  av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
  av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
                                           mi_col);
  av1_reset_simple_motion_tree_partition(sms_root, bsize);
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
                                                        : LAST_FRAME };
  const int mi_width =
      AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
  const int mi_height =
      AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
  const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
  const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
  const int num_blocks = col_steps * row_steps;
  unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
  unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
  if (!(block_sse && block_var)) {
    aom_free(sms_tree);
    aom_free(block_sse);
    aom_free(block_var);
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                       "Error allocating block_sse & block_var");
  }
  int idx = 0;

  for (int row = mi_row;
       row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
       row += row_step) {
    for (int col = mi_col;
         col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
         col += col_step) {
      simple_motion_search_get_best_ref(
          cpi, x, sms_root, row, col, fixed_block_size, ref_list,
          /*num_refs=*/1, /*use_subpixel=*/1,
          /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
      ++idx;
    }
  }
  if (features == NULL) {
    write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
                                 block_sse, block_var, idx, bsize,
                                 fixed_block_size, mi_row, mi_col);
  } else {
    features->sb_features.motion_features.unit_length =
        block_size_wide[fixed_block_size];
    features->sb_features.motion_features.num_units = idx;
    for (int i = 0; i < idx; ++i) {
      features->sb_features.motion_features.block_sse[i] = block_sse[i];
      features->sb_features.motion_features.block_var[i] = block_var[i];
    }
  }

  aom_free(block_sse);
  aom_free(block_var);
  aom_free(sms_tree);
}

void av1_prepare_motion_search_features_block(
    AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
    const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
    const int valid_partition_types, unsigned int *block_sse,
    unsigned int *block_var, unsigned int sub_block_sse[4],
    unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
    unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
    unsigned int vert_block_var[2]) {
  const AV1_COMMON *const cm = &cpi->common;
  if (frame_is_intra_only(cm)) return;
  MACROBLOCK *const x = &td->mb;
  SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
  const int stat_generation_stage = is_stat_generation_stage(cpi);
  const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
  const int tree_nodes =
      av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
  CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
  SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
  TileInfo *const tile_info = &tile_data->tile_info;
  av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
  av1_reset_simple_motion_tree_partition(sms_root, bsize);
  const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
                                                        : LAST_FRAME };
  const int sub_mi_width = mi_size_wide[bsize] / 2;
  const int sub_mi_height = sub_mi_width;
  simple_motion_search_get_best_ref(
      cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1,
      /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var);
  // Split to 4 sub blocks.
  if (valid_partition_types & (1 << PARTITION_SPLIT)) {
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
    for (int i = 0; i < 4; ++i) {
      const int row = mi_row + (i >> 1) * sub_mi_height;
      const int col = mi_col + (i & 1) * sub_mi_width;
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
                                        ref_list, /*num_refs=*/1,
                                        /*use_subpixel=*/1, /*save_mv=*/1,
                                        &sub_block_sse[i], &sub_block_var[i]);
    }
  }
  // Horizontal split
  if (valid_partition_types & (1 << PARTITION_HORZ)) {
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
    for (int i = 0; i < 2; ++i) {
      const int row = mi_row + (i & 1) * sub_mi_height;
      const int col = mi_col;
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
                                        ref_list, /*num_refs=*/1,
                                        /*use_subpixel=*/1, /*save_mv=*/1,
                                        &horz_block_sse[i], &horz_block_var[i]);
    }
  }
  // Vertical split
  if (valid_partition_types & (1 << PARTITION_VERT)) {
    const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
    for (int i = 0; i < 2; ++i) {
      const int row = mi_row;
      const int col = mi_col + (i & 1) * sub_mi_width;
      simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
                                        ref_list, /*num_refs=*/1,
                                        /*use_subpixel=*/1, /*save_mv=*/1,
                                        &vert_block_sse[i], &vert_block_var[i]);
    }
  }

  aom_free(sms_tree);
}
#endif  // !CONFIG_REALTIME_ONLY

static INLINE void init_simple_motion_search_mvs(
    SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
  memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
  av1_zero(sms_tree->sms_none_feat);
  av1_zero(sms_tree->sms_rect_feat);
  av1_zero(sms_tree->sms_none_valid);
  av1_zero(sms_tree->sms_rect_valid);

  if (sms_tree->block_size >= BLOCK_8X8) {
    init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
    init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
    init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
    init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
  }
}

void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
                                              const TileInfo *tile_info,
                                              MACROBLOCK *x,
                                              SIMPLE_MOTION_DATA_TREE *sms_root,
                                              int mi_row, int mi_col) {
  // Use the NEARESTMV of the sb as the start mv
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  FULLPEL_MV ref_mvs[REF_FRAMES];
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  av1_zero(ref_mvs);
  // If tile_info is NULL, assume that the offsets have already been set.
  if (tile_info) {
    av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
                                       sb_size);
  }

  MB_MODE_INFO_EXT mbmi_ext;
  const int ref_frame =
      cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
  av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
                   xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
                   mbmi_ext.mode_context);
  if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
    ref_mvs[ref_frame] =
        get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
  } else {
    ref_mvs[ref_frame] =
        get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
  }

  init_simple_motion_search_mvs(sms_root, ref_mvs);
}