summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/picklpf.c
blob: a504535028c1e417c492a02f42ffb0529a60025b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <limits.h>

#include "config/aom_scale_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/psnr.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/quant_common.h"

#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"

// AV1 loop filter applies to the whole frame according to mi_rows and mi_cols,
// which are calculated based on aligned width and aligned height,
// In addition, if super res is enabled, it copies the whole frame
// according to the aligned width and height (av1_superres_upscale()).
// So we need to copy the whole filtered region, instead of the cropped region.
// For example, input image size is: 160x90.
// Then src->y_crop_width = 160, src->y_crop_height = 90.
// The aligned frame size is: src->y_width = 160, src->y_height = 96.
// AV1 aligns frame size to a multiple of 8, if there is
// chroma subsampling, it is able to ensure the chroma is also
// an integer number of mi units. mi unit is 4x4, 8 = 4 * 2, and 2 luma mi
// units correspond to 1 chroma mi unit if there is subsampling.
// See: aom_realloc_frame_buffer() in yv12config.c.
static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc,
                            YV12_BUFFER_CONFIG *dst_bc, int plane) {
  switch (plane) {
    case 0: aom_yv12_copy_y(src_bc, dst_bc, 0); break;
    case 1: aom_yv12_copy_u(src_bc, dst_bc, 0); break;
    case 2: aom_yv12_copy_v(src_bc, dst_bc, 0); break;
    default: assert(plane >= 0 && plane <= 2); break;
  }
}

int av1_get_max_filter_level(const AV1_COMP *cpi) {
  if (is_stat_consumption_stage_twopass(cpi)) {
    return cpi->ppi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4
                                                      : MAX_LOOP_FILTER;
  } else {
    return MAX_LOOP_FILTER;
  }
}

static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd,
                                AV1_COMP *const cpi, int filt_level,
                                int partial_frame, int plane, int dir) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  int num_workers = mt_info->num_mod_workers[MOD_LPF];
  AV1_COMMON *const cm = &cpi->common;
  int64_t filt_err;

  assert(plane >= 0 && plane <= 2);
  int filter_level[2] = { filt_level, filt_level };
  if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1];
  if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0];

  // set base filters for use of av1_get_filter_level when in DELTA_LF mode
  switch (plane) {
    case 0:
      cm->lf.filter_level[0] = filter_level[0];
      cm->lf.filter_level[1] = filter_level[1];
      break;
    case 1: cm->lf.filter_level_u = filter_level[0]; break;
    case 2: cm->lf.filter_level_v = filter_level[0]; break;
  }

  // lpf_opt_level = 1 : Enables dual/quad loop-filtering.
  int lpf_opt_level = is_inter_tx_size_search_level_one(&cpi->sf.tx_sf);

  av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &cpi->td.mb.e_mbd, plane,
                           plane + 1, partial_frame, mt_info->workers,
                           num_workers, &mt_info->lf_row_sync, lpf_opt_level);

  filt_err = aom_get_sse_plane(sd, &cm->cur_frame->buf, plane,
                               cm->seq_params->use_highbitdepth);

  // Re-instate the unfiltered frame
  yv12_copy_plane(&cpi->last_frame_uf, &cm->cur_frame->buf, plane);

  return filt_err;
}

static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
                               int partial_frame,
                               const int *last_frame_filter_level, int plane,
                               int dir) {
  const AV1_COMMON *const cm = &cpi->common;
  const int min_filter_level = 0;
  const int max_filter_level = av1_get_max_filter_level(cpi);
  int filt_direction = 0;
  int64_t best_err;
  int filt_best;

  // Start the search at the previous frame filter level unless it is now out of
  // range.
  int lvl;
  switch (plane) {
    case 0:
      switch (dir) {
        case 2:
          lvl = (last_frame_filter_level[0] + last_frame_filter_level[1] + 1) >>
                1;
          break;
        case 0:
        case 1: lvl = last_frame_filter_level[dir]; break;
        default: assert(dir >= 0 && dir <= 2); return 0;
      }
      break;
    case 1: lvl = last_frame_filter_level[2]; break;
    case 2: lvl = last_frame_filter_level[3]; break;
    default: assert(plane >= 0 && plane <= 2); return 0;
  }
  int filt_mid = clamp(lvl, min_filter_level, max_filter_level);
  int filter_step = filt_mid < 16 ? 4 : filt_mid / 4;
  // Sum squared error at each filter level
  int64_t ss_err[MAX_LOOP_FILTER + 1];

  const int use_coarse_search = cpi->sf.lpf_sf.use_coarse_filter_level_search;
  assert(use_coarse_search <= 1);
  static const int min_filter_step_lookup[2] = { 0, 2 };
  // min_filter_step_thesh determines the stopping criteria for the search.
  // The search is terminated when filter_step equals min_filter_step_thesh.
  const int min_filter_step_thesh = min_filter_step_lookup[use_coarse_search];

  // Set each entry to -1
  memset(ss_err, 0xFF, sizeof(ss_err));
  yv12_copy_plane(&cm->cur_frame->buf, &cpi->last_frame_uf, plane);
  best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir);
  filt_best = filt_mid;
  ss_err[filt_mid] = best_err;

  while (filter_step > min_filter_step_thesh) {
    const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level);
    const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level);

    // Bias against raising loop filter in favor of lowering it.
    int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step;

    if ((is_stat_consumption_stage_twopass(cpi)) &&
        (cpi->ppi->twopass.section_intra_rating < 20))
      bias = (bias * cpi->ppi->twopass.section_intra_rating) / 20;

    // yx, bias less for large block size
    if (cm->features.tx_mode != ONLY_4X4) bias >>= 1;

    if (filt_direction <= 0 && filt_low != filt_mid) {
      // Get Low filter error score
      if (ss_err[filt_low] < 0) {
        ss_err[filt_low] =
            try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir);
      }
      // If value is close to the best so far then bias towards a lower loop
      // filter value.
      if (ss_err[filt_low] < (best_err + bias)) {
        // Was it actually better than the previous best?
        if (ss_err[filt_low] < best_err) {
          best_err = ss_err[filt_low];
        }
        filt_best = filt_low;
      }
    }

    // Now look at filt_high
    if (filt_direction >= 0 && filt_high != filt_mid) {
      if (ss_err[filt_high] < 0) {
        ss_err[filt_high] =
            try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir);
      }
      // If value is significantly better than previous best, bias added against
      // raising filter value
      if (ss_err[filt_high] < (best_err - bias)) {
        best_err = ss_err[filt_high];
        filt_best = filt_high;
      }
    }

    // Half the step distance if the best filter value was the same as last time
    if (filt_best == filt_mid) {
      filter_step /= 2;
      filt_direction = 0;
    } else {
      filt_direction = (filt_best < filt_mid) ? -1 : 1;
      filt_mid = filt_best;
    }
  }

  return filt_best;
}

void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi,
                           LPF_PICK_METHOD method) {
  AV1_COMMON *const cm = &cpi->common;
  const SequenceHeader *const seq_params = cm->seq_params;
  const int num_planes = av1_num_planes(cm);
  struct loopfilter *const lf = &cm->lf;
  int disable_filter_rt_screen = 0;
  (void)sd;

  lf->sharpness_level = 0;

  if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN &&
      cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
      cpi->sf.rt_sf.skip_lf_screen)
    disable_filter_rt_screen = av1_cyclic_refresh_disable_lf_cdef(cpi);

  if (disable_filter_rt_screen ||
      cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_NONE ||
      (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_REFERENCE &&
       cpi->ppi->rtc_ref.non_reference_frame)) {
    lf->filter_level[0] = 0;
    lf->filter_level[1] = 0;
    return;
  }

  if (method == LPF_PICK_MINIMAL_LPF) {
    lf->filter_level[0] = 0;
    lf->filter_level[1] = 0;
  } else if (method >= LPF_PICK_FROM_Q) {
    const int min_filter_level = 0;
    const int max_filter_level = av1_get_max_filter_level(cpi);
    const int q = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
                                   seq_params->bit_depth);
    // based on tests result for rtc test set
    // 0.04590 boosted or 0.02295 non-booseted in 18-bit fixed point
    const int strength_boost_q_treshold = 0;
    int inter_frame_multiplier =
        (q > strength_boost_q_treshold ||
         (cpi->sf.rt_sf.use_nonrd_pick_mode &&
          cpi->common.width * cpi->common.height > 352 * 288))
            ? 12034
            : 6017;
    // Increase strength on base TL0 for temporal layers, for low-resoln,
    // based on frame source_sad.
    if (cpi->svc.number_temporal_layers > 1 &&
        cpi->svc.temporal_layer_id == 0 &&
        cpi->common.width * cpi->common.height <= 352 * 288 &&
        cpi->sf.rt_sf.use_nonrd_pick_mode) {
      if (cpi->rc.frame_source_sad > 100000)
        inter_frame_multiplier = inter_frame_multiplier << 1;
      else if (cpi->rc.frame_source_sad > 50000)
        inter_frame_multiplier = 3 * (inter_frame_multiplier >> 1);
    }
    // These values were determined by linear fitting the result of the
    // searched level for 8 bit depth:
    // Keyframes: filt_guess = q * 0.06699 - 1.60817
    // Other frames: filt_guess = q * inter_frame_multiplier + 2.48225
    //
    // And high bit depth separately:
    // filt_guess = q * 0.316206 + 3.87252
    int filt_guess;
    switch (seq_params->bit_depth) {
      case AOM_BITS_8:
        filt_guess =
            (cm->current_frame.frame_type == KEY_FRAME)
                ? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18)
                : ROUND_POWER_OF_TWO(q * inter_frame_multiplier + 650707, 18);
        break;
      case AOM_BITS_10:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
        break;
      case AOM_BITS_12:
        filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
        break;
      default:
        assert(0 &&
               "bit_depth should be AOM_BITS_8, AOM_BITS_10 "
               "or AOM_BITS_12");
        return;
    }
    if (seq_params->bit_depth != AOM_BITS_8 &&
        cm->current_frame.frame_type == KEY_FRAME)
      filt_guess -= 4;
    // TODO(chengchen): retrain the model for Y, U, V filter levels
    lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level);
    lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level);
    lf->filter_level_u = clamp(filt_guess, min_filter_level, max_filter_level);
    lf->filter_level_v = clamp(filt_guess, min_filter_level, max_filter_level);
    if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY &&
        !frame_is_intra_only(cm) && !cpi->rc.high_source_sad) {
      if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) {
        lf->filter_level[0] = 0;
        lf->filter_level[1] = 0;
      } else {
        const int num4x4 = (cm->width >> 2) * (cm->height >> 2);
        const int newmv_thresh = 7;
        const int distance_since_key_thresh = 5;
        if ((cpi->td.rd_counts.newmv_or_intra_blocks * 100 / num4x4) <
                newmv_thresh &&
            cpi->rc.frames_since_key > distance_since_key_thresh) {
          lf->filter_level[0] = 0;
          lf->filter_level[1] = 0;
        }
      }
    }
  } else {
    int last_frame_filter_level[4] = { 0 };
    if (!frame_is_intra_only(cm)) {
      last_frame_filter_level[0] = cpi->ppi->filter_level[0];
      last_frame_filter_level[1] = cpi->ppi->filter_level[1];
      last_frame_filter_level[2] = cpi->ppi->filter_level_u;
      last_frame_filter_level[3] = cpi->ppi->filter_level_v;
    }
    // The frame buffer last_frame_uf is used to store the non-loop filtered
    // reconstructed frame in search_filter_level().
    if (aom_realloc_frame_buffer(
            &cpi->last_frame_uf, cm->width, cm->height,
            seq_params->subsampling_x, seq_params->subsampling_y,
            seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
            cm->features.byte_alignment, NULL, NULL, NULL, false, 0))
      aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                         "Failed to allocate last frame buffer");

    lf->filter_level[0] = lf->filter_level[1] =
        search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
                            last_frame_filter_level, 0, 2);
    if (method != LPF_PICK_FROM_FULL_IMAGE_NON_DUAL) {
      lf->filter_level[0] =
          search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
                              last_frame_filter_level, 0, 0);
      lf->filter_level[1] =
          search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
                              last_frame_filter_level, 0, 1);
    }

    if (num_planes > 1) {
      lf->filter_level_u =
          search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
                              last_frame_filter_level, 1, 0);
      lf->filter_level_v =
          search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE,
                              last_frame_filter_level, 2, 0);
    }
  }
}