summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/rc_utils.h
blob: fe22ee5afbc521f3ebcaa8c599a1d16775d174c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * Copyright (c) 2020, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_AV1_ENCODER_RC_UTILS_H_
#define AOM_AV1_ENCODER_RC_UTILS_H_

#include "av1/encoder/encoder.h"
#include "aom_dsp/psnr.h"

#ifdef __cplusplus
extern "C" {
#endif

static AOM_INLINE void check_reset_rc_flag(AV1_COMP *cpi) {
  RATE_CONTROL *rc = &cpi->rc;
  PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
  if (cpi->common.current_frame.frame_number >
      (unsigned int)cpi->svc.number_spatial_layers) {
    if (cpi->ppi->use_svc) {
      av1_svc_check_reset_layer_rc_flag(cpi);
    } else {
      if (rc->avg_frame_bandwidth > (3 * rc->prev_avg_frame_bandwidth >> 1) ||
          rc->avg_frame_bandwidth < (rc->prev_avg_frame_bandwidth >> 1)) {
        rc->rc_1_frame = 0;
        rc->rc_2_frame = 0;
        p_rc->bits_off_target = p_rc->optimal_buffer_level;
        p_rc->buffer_level = p_rc->optimal_buffer_level;
      }
    }
  }
}

static AOM_INLINE void set_primary_rc_buffer_sizes(const AV1EncoderConfig *oxcf,
                                                   AV1_PRIMARY *ppi) {
  PRIMARY_RATE_CONTROL *p_rc = &ppi->p_rc;
  const RateControlCfg *const rc_cfg = &oxcf->rc_cfg;

  const int64_t bandwidth = rc_cfg->target_bandwidth;
  const int64_t starting = rc_cfg->starting_buffer_level_ms;
  const int64_t optimal = rc_cfg->optimal_buffer_level_ms;
  const int64_t maximum = rc_cfg->maximum_buffer_size_ms;

  p_rc->starting_buffer_level = starting * bandwidth / 1000;
  p_rc->optimal_buffer_level =
      (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000;
  p_rc->maximum_buffer_size =
      (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000;

  // Under a configuration change, where maximum_buffer_size may change,
  // keep buffer level clipped to the maximum allowed buffer size.
  p_rc->bits_off_target =
      AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size);
  p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size);
}

static AOM_INLINE void config_target_level(AV1_COMP *const cpi,
                                           AV1_LEVEL target_level, int tier) {
  AV1EncoderConfig *const oxcf = &cpi->oxcf;
  SequenceHeader *const seq_params = cpi->common.seq_params;
  TileConfig *const tile_cfg = &oxcf->tile_cfg;
  RateControlCfg *const rc_cfg = &oxcf->rc_cfg;

  // Adjust target bitrate to be no larger than 70% of level limit.
  const BITSTREAM_PROFILE profile = seq_params->profile;
  const double level_bitrate_limit =
      av1_get_max_bitrate_for_level(target_level, tier, profile);
  const int64_t max_bitrate = (int64_t)(level_bitrate_limit * 0.70);
  rc_cfg->target_bandwidth = AOMMIN(rc_cfg->target_bandwidth, max_bitrate);
  // Also need to update cpi->ppi->twopass.bits_left.
  TWO_PASS *const twopass = &cpi->ppi->twopass;
  FIRSTPASS_STATS *stats = twopass->stats_buf_ctx->total_stats;
  if (stats != NULL)
    cpi->ppi->twopass.bits_left =
        (int64_t)(stats->duration * rc_cfg->target_bandwidth / 10000000.0);

  // Adjust max over-shoot percentage.
  rc_cfg->over_shoot_pct = 0;

  // Adjust max quantizer.
  rc_cfg->worst_allowed_q = 255;

  // Adjust number of tiles and tile columns to be under level limit.
  int max_tiles, max_tile_cols;
  av1_get_max_tiles_for_level(target_level, &max_tiles, &max_tile_cols);
  while (tile_cfg->tile_columns > 0 &&
         (1 << tile_cfg->tile_columns) > max_tile_cols) {
    --tile_cfg->tile_columns;
  }
  const int tile_cols = (1 << tile_cfg->tile_columns);
  while (tile_cfg->tile_rows > 0 &&
         tile_cols * (1 << tile_cfg->tile_rows) > max_tiles) {
    --tile_cfg->tile_rows;
  }

  // Adjust min compression ratio.
  const int still_picture = seq_params->still_picture;
  const double min_cr =
      av1_get_min_cr_for_level(target_level, tier, still_picture);
  rc_cfg->min_cr = AOMMAX(rc_cfg->min_cr, (unsigned int)(min_cr * 100));
}

#if !CONFIG_REALTIME_ONLY

/*!\brief Function to test for conditions that indicate we should loop
 * back and recode a frame.
 *
 * \ingroup rate_control
 *
 * \param[in]     cpi         Top-level encoder structure
 * \param[in]     high_limit  Upper rate threshold
 * \param[in]     low_limit   Lower rate threshold
 * \param[in]     q           Current q index
 * \param[in]     maxq        Maximum allowed q index
 * \param[in]     minq        Minimum allowed q index
 *
 * \return        Indicates if a recode is required.
 * \retval        1           Recode Required
 * \retval        0           No Recode required
 */
static AOM_INLINE int recode_loop_test(AV1_COMP *cpi, int high_limit,
                                       int low_limit, int q, int maxq,
                                       int minq) {
  const RATE_CONTROL *const rc = &cpi->rc;
  const AV1EncoderConfig *const oxcf = &cpi->oxcf;
  const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi);
  int force_recode = 0;

  if ((rc->projected_frame_size >= rc->max_frame_bandwidth) ||
      (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE) ||
      (frame_is_kfgfarf &&
       (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE_KFARFGF))) {
    // TODO(agrange) high_limit could be greater than the scale-down threshold.
    if ((rc->projected_frame_size > high_limit && q < maxq) ||
        (rc->projected_frame_size < low_limit && q > minq)) {
      force_recode = 1;
    } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) {
      // Deal with frame undershoot and whether or not we are
      // below the automatically set cq level.
      if (q > oxcf->rc_cfg.cq_level &&
          rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) {
        force_recode = 1;
      }
    }
  }
  return force_recode;
}

static AOM_INLINE double av1_get_gfu_boost_projection_factor(double min_factor,
                                                             double max_factor,
                                                             int frame_count) {
  double factor = sqrt((double)frame_count);
  factor = AOMMIN(factor, max_factor);
  factor = AOMMAX(factor, min_factor);
  factor = (200.0 + 10.0 * factor);
  return factor;
}

static AOM_INLINE int get_gfu_boost_from_r0_lap(double min_factor,
                                                double max_factor, double r0,
                                                int frames_to_key) {
  double factor = av1_get_gfu_boost_projection_factor(min_factor, max_factor,
                                                      frames_to_key);
  const int boost = (int)rint(factor / r0);
  return boost;
}

static AOM_INLINE double av1_get_kf_boost_projection_factor(int frame_count) {
  double factor = sqrt((double)frame_count);
  factor = AOMMIN(factor, 10.0);
  factor = AOMMAX(factor, 4.0);
  factor = (75.0 + 14.0 * factor);
  return factor;
}

static AOM_INLINE int get_regulated_q_overshoot(AV1_COMP *const cpi,
                                                int is_encode_stage, int q_low,
                                                int q_high, int top_index,
                                                int bottom_index) {
  const AV1_COMMON *const cm = &cpi->common;
  const RATE_CONTROL *const rc = &cpi->rc;

  av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width,
                                        cm->height);

  int q_regulated =
      av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
                        AOMMAX(q_high, top_index), cm->width, cm->height);

  int retries = 0;
  while (q_regulated < q_low && retries < 10) {
    av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width,
                                          cm->height);
    q_regulated =
        av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
                          AOMMAX(q_high, top_index), cm->width, cm->height);
    retries++;
  }
  return q_regulated;
}

static AOM_INLINE int get_regulated_q_undershoot(AV1_COMP *const cpi,
                                                 int is_encode_stage,
                                                 int q_high, int top_index,
                                                 int bottom_index) {
  const AV1_COMMON *const cm = &cpi->common;
  const RATE_CONTROL *const rc = &cpi->rc;

  av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width,
                                        cm->height);
  int q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
                                      top_index, cm->width, cm->height);

  int retries = 0;
  while (q_regulated > q_high && retries < 10) {
    av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width,
                                          cm->height);
    q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index,
                                    top_index, cm->width, cm->height);
    retries++;
  }
  return q_regulated;
}

/*!\brief Called after encode_with_recode_loop() has just encoded a frame.
 * This function works out whether we undershot or overshot our bitrate
 *  target and adjusts q as appropriate. It also decides whether or not
 *  we need to recode the frame to get closer to the target rate.
 *
 * \ingroup rate_control
 *
 * \param[in]     cpi             Top-level encoder structure
 * \param[out]    loop            Should we go around the recode loop again
 * \param[in,out] q               New q index value
 * \param[in,out] q_low           Low q index limit for this loop itteration
 * \param[in,out] q_high          High q index limit for this loop itteration
 * \param[in]     top_index       Max permited new value for q index
 * \param[in]     bottom_index    Min permited new value for q index
 * \param[in,out] undershoot_seen Have we seen undershoot on this frame
 * \param[in,out] overshoot_seen  Have we seen overshoot on this frame
 * \param[in,out] low_cr_seen     Have we previously trriggered recode
 *                                because the compression ration was less
 *                                than a given minimum threshold.
 * \param[in]     loop_count      Loop itterations so far.
 *
 */
static AOM_INLINE void recode_loop_update_q(
    AV1_COMP *const cpi, int *const loop, int *const q, int *const q_low,
    int *const q_high, const int top_index, const int bottom_index,
    int *const undershoot_seen, int *const overshoot_seen,
    int *const low_cr_seen, const int loop_count) {
  AV1_COMMON *const cm = &cpi->common;
  RATE_CONTROL *const rc = &cpi->rc;
  PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
  const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg;
  *loop = 0;

  // Special case for overlay frame.
  if (rc->is_src_frame_alt_ref &&
      rc->projected_frame_size < rc->max_frame_bandwidth)
    return;

  const int min_cr = rc_cfg->min_cr;
  if (min_cr > 0) {
    const double compression_ratio =
        av1_get_compression_ratio(cm, rc->projected_frame_size >> 3);
    const double target_cr = min_cr / 100.0;
    if (compression_ratio < target_cr) {
      *low_cr_seen = 1;
      if (*q < rc->worst_quality) {
        const double cr_ratio = target_cr / compression_ratio;
        const int projected_q = AOMMAX(*q + 1, (int)(*q * cr_ratio * cr_ratio));
        *q = AOMMIN(AOMMIN(projected_q, *q + 32), rc->worst_quality);
        *q_low = AOMMAX(*q, *q_low);
        *q_high = AOMMAX(*q, *q_high);
        *loop = 1;
      }
    }
    if (*low_cr_seen) return;
  }

  if (cpi->ppi->level_params.keep_level_stats &&
      !is_stat_generation_stage(cpi)) {
    // Initialize level info. at the beginning of each sequence.
    if (cm->current_frame.frame_type == KEY_FRAME &&
        cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) {
      av1_init_level_info(cpi);
    }
    const AV1LevelParams *const level_params = &cpi->ppi->level_params;
    // TODO(any): currently only checking operating point 0
    const AV1LevelInfo *const level_info = level_params->level_info[0];
    const DECODER_MODEL *const decoder_models = level_info->decoder_models;
    const AV1_LEVEL target_level = level_params->target_seq_level_idx[0];

    if (target_level < SEQ_LEVELS &&
        decoder_models[target_level].status == DECODER_MODEL_OK) {
      DECODER_MODEL_STATUS status = av1_decoder_model_try_smooth_buf(
          cpi, rc->projected_frame_size, &decoder_models[target_level]);

      if ((status == SMOOTHING_BUFFER_UNDERFLOW ||
           status == SMOOTHING_BUFFER_OVERFLOW) &&
          *q < rc->worst_quality) {
        *q = AOMMIN(*q + 10, rc->worst_quality);
        *q_low = AOMMAX(*q, *q_low);
        *q_high = AOMMAX(*q, *q_high);
        *loop = 1;
        return;
      }
    }
  }

  if (rc_cfg->mode == AOM_Q) return;

  const int last_q = *q;
  int frame_over_shoot_limit = 0, frame_under_shoot_limit = 0;
  av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target,
                                   &frame_under_shoot_limit,
                                   &frame_over_shoot_limit);
  if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;

  if (cm->current_frame.frame_type == KEY_FRAME &&
      p_rc->this_key_frame_forced &&
      rc->projected_frame_size < rc->max_frame_bandwidth) {
    int64_t kf_err;
    const int64_t high_err_target = cpi->ambient_err;
    const int64_t low_err_target = cpi->ambient_err >> 1;

#if CONFIG_AV1_HIGHBITDEPTH
    if (cm->seq_params->use_highbitdepth) {
      kf_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf);
    } else {
      kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
    }
#else
    kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf);
#endif
    // Prevent possible divide by zero error below for perfect KF
    kf_err += !kf_err;

    // The key frame is not good enough or we can afford
    // to make it better without undue risk of popping.
    if ((kf_err > high_err_target &&
         rc->projected_frame_size <= frame_over_shoot_limit) ||
        (kf_err > low_err_target &&
         rc->projected_frame_size <= frame_under_shoot_limit)) {
      // Lower q_high
      *q_high = AOMMAX(*q - 1, *q_low);

      // Adjust Q
      *q = (int)((*q * high_err_target) / kf_err);
      *q = AOMMIN(*q, (*q_high + *q_low) >> 1);
    } else if (kf_err < low_err_target &&
               rc->projected_frame_size >= frame_under_shoot_limit) {
      // The key frame is much better than the previous frame
      // Raise q_low
      *q_low = AOMMIN(*q + 1, *q_high);

      // Adjust Q
      *q = (int)((*q * low_err_target) / kf_err);
      *q = AOMMIN(*q, (*q_high + *q_low + 1) >> 1);
    }

    // Clamp Q to upper and lower limits:
    *q = clamp(*q, *q_low, *q_high);
    *loop = (*q != last_q);
    return;
  }

  if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, *q,
                       AOMMAX(*q_high, top_index), bottom_index)) {
    // Is the projected frame size out of range and are we allowed
    // to attempt to recode.

    // Frame size out of permitted range:
    // Update correction factor & compute new Q to try...
    // Frame is too large
    if (rc->projected_frame_size > rc->this_frame_target) {
      // Special case if the projected size is > the max allowed.
      if (*q == *q_high &&
          rc->projected_frame_size >= rc->max_frame_bandwidth) {
        const double q_val_high_current =
            av1_convert_qindex_to_q(*q_high, cm->seq_params->bit_depth);
        const double q_val_high_new =
            q_val_high_current *
            ((double)rc->projected_frame_size / rc->max_frame_bandwidth);
        *q_high = av1_find_qindex(q_val_high_new, cm->seq_params->bit_depth,
                                  rc->best_quality, rc->worst_quality);
      }

      // Raise Qlow as to at least the current value
      *q_low = AOMMIN(*q + 1, *q_high);

      if (*undershoot_seen || loop_count > 2 ||
          (loop_count == 2 && !frame_is_intra_only(cm))) {
        av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height);

        *q = (*q_high + *q_low + 1) / 2;
      } else if (loop_count == 2 && frame_is_intra_only(cm)) {
        const int q_mid = (*q_high + *q_low + 1) / 2;
        const int q_regulated = get_regulated_q_overshoot(
            cpi, 1, *q_low, *q_high, top_index, bottom_index);
        // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth
        // transition between loop_count < 2 and loop_count > 2.
        *q = (q_mid + q_regulated + 1) / 2;
      } else {
        *q = get_regulated_q_overshoot(cpi, 1, *q_low, *q_high, top_index,
                                       bottom_index);
      }

      *overshoot_seen = 1;
    } else {
      // Frame is too small
      *q_high = AOMMAX(*q - 1, *q_low);

      if (*overshoot_seen || loop_count > 2 ||
          (loop_count == 2 && !frame_is_intra_only(cm))) {
        av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height);
        *q = (*q_high + *q_low) / 2;
      } else if (loop_count == 2 && frame_is_intra_only(cm)) {
        const int q_mid = (*q_high + *q_low) / 2;
        const int q_regulated = get_regulated_q_undershoot(
            cpi, 1, *q_high, top_index, bottom_index);
        // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth
        // transition between loop_count < 2 and loop_count > 2.
        *q = (q_mid + q_regulated) / 2;

        // Special case reset for qlow for constrained quality.
        // This should only trigger where there is very substantial
        // undershoot on a frame and the auto cq level is above
        // the user passsed in value.
        if (rc_cfg->mode == AOM_CQ && q_regulated < *q_low) {
          *q_low = *q;
        }
      } else {
        *q = get_regulated_q_undershoot(cpi, 1, *q_high, top_index,
                                        bottom_index);

        // Special case reset for qlow for constrained quality.
        // This should only trigger where there is very substantial
        // undershoot on a frame and the auto cq level is above
        // the user passsed in value.
        if (rc_cfg->mode == AOM_CQ && *q < *q_low) {
          *q_low = *q;
        }
      }

      *undershoot_seen = 1;
    }

    // Clamp Q to upper and lower limits:
    *q = clamp(*q, *q_low, *q_high);
  }

  *loop = (*q != last_q);
}
#endif

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AOM_AV1_ENCODER_RC_UTILS_H_