summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/rdopt.c
blob: c17fbccf8cc688244e7c4ab32286f434ee9befe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <math.h>
#include <stdbool.h>

#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"

#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/blockd.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/common/txb_common.h"
#include "av1/common/warped_motion.h"

#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/compound_type.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/interp_search.h"
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/mode_prune_model_weights.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pustats.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/tx_search.h"
#include "av1/encoder/var_based_part.h"

#define LAST_NEW_MV_INDEX 6

// Mode_threshold multiplication factor table for prune_inter_modes_if_skippable
// The values are kept in Q12 format and equation used to derive is
// (2.5 - ((float)x->qindex / MAXQ) * 1.5)
#define MODE_THRESH_QBITS 12
static const int mode_threshold_mul_factor[QINDEX_RANGE] = {
  10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999,
  9975,  9951,  9927,  9903,  9879,  9854,  9830,  9806,  9782,  9758,  9734,
  9710,  9686,  9662,  9638,  9614,  9589,  9565,  9541,  9517,  9493,  9469,
  9445,  9421,  9397,  9373,  9349,  9324,  9300,  9276,  9252,  9228,  9204,
  9180,  9156,  9132,  9108,  9083,  9059,  9035,  9011,  8987,  8963,  8939,
  8915,  8891,  8867,  8843,  8818,  8794,  8770,  8746,  8722,  8698,  8674,
  8650,  8626,  8602,  8578,  8553,  8529,  8505,  8481,  8457,  8433,  8409,
  8385,  8361,  8337,  8312,  8288,  8264,  8240,  8216,  8192,  8168,  8144,
  8120,  8096,  8072,  8047,  8023,  7999,  7975,  7951,  7927,  7903,  7879,
  7855,  7831,  7806,  7782,  7758,  7734,  7710,  7686,  7662,  7638,  7614,
  7590,  7566,  7541,  7517,  7493,  7469,  7445,  7421,  7397,  7373,  7349,
  7325,  7301,  7276,  7252,  7228,  7204,  7180,  7156,  7132,  7108,  7084,
  7060,  7035,  7011,  6987,  6963,  6939,  6915,  6891,  6867,  6843,  6819,
  6795,  6770,  6746,  6722,  6698,  6674,  6650,  6626,  6602,  6578,  6554,
  6530,  6505,  6481,  6457,  6433,  6409,  6385,  6361,  6337,  6313,  6289,
  6264,  6240,  6216,  6192,  6168,  6144,  6120,  6096,  6072,  6048,  6024,
  5999,  5975,  5951,  5927,  5903,  5879,  5855,  5831,  5807,  5783,  5758,
  5734,  5710,  5686,  5662,  5638,  5614,  5590,  5566,  5542,  5518,  5493,
  5469,  5445,  5421,  5397,  5373,  5349,  5325,  5301,  5277,  5253,  5228,
  5204,  5180,  5156,  5132,  5108,  5084,  5060,  5036,  5012,  4987,  4963,
  4939,  4915,  4891,  4867,  4843,  4819,  4795,  4771,  4747,  4722,  4698,
  4674,  4650,  4626,  4602,  4578,  4554,  4530,  4506,  4482,  4457,  4433,
  4409,  4385,  4361,  4337,  4313,  4289,  4265,  4241,  4216,  4192,  4168,
  4144,  4120,  4096
};

static const THR_MODES av1_default_mode_order[MAX_MODES] = {
  THR_NEARESTMV,
  THR_NEARESTL2,
  THR_NEARESTL3,
  THR_NEARESTB,
  THR_NEARESTA2,
  THR_NEARESTA,
  THR_NEARESTG,

  THR_NEWMV,
  THR_NEWL2,
  THR_NEWL3,
  THR_NEWB,
  THR_NEWA2,
  THR_NEWA,
  THR_NEWG,

  THR_NEARMV,
  THR_NEARL2,
  THR_NEARL3,
  THR_NEARB,
  THR_NEARA2,
  THR_NEARA,
  THR_NEARG,

  THR_GLOBALMV,
  THR_GLOBALL2,
  THR_GLOBALL3,
  THR_GLOBALB,
  THR_GLOBALA2,
  THR_GLOBALA,
  THR_GLOBALG,

  THR_COMP_NEAREST_NEARESTLA,
  THR_COMP_NEAREST_NEARESTL2A,
  THR_COMP_NEAREST_NEARESTL3A,
  THR_COMP_NEAREST_NEARESTGA,
  THR_COMP_NEAREST_NEARESTLB,
  THR_COMP_NEAREST_NEARESTL2B,
  THR_COMP_NEAREST_NEARESTL3B,
  THR_COMP_NEAREST_NEARESTGB,
  THR_COMP_NEAREST_NEARESTLA2,
  THR_COMP_NEAREST_NEARESTL2A2,
  THR_COMP_NEAREST_NEARESTL3A2,
  THR_COMP_NEAREST_NEARESTGA2,
  THR_COMP_NEAREST_NEARESTLL2,
  THR_COMP_NEAREST_NEARESTLL3,
  THR_COMP_NEAREST_NEARESTLG,
  THR_COMP_NEAREST_NEARESTBA,

  THR_COMP_NEAR_NEARLB,
  THR_COMP_NEW_NEWLB,
  THR_COMP_NEW_NEARESTLB,
  THR_COMP_NEAREST_NEWLB,
  THR_COMP_NEW_NEARLB,
  THR_COMP_NEAR_NEWLB,
  THR_COMP_GLOBAL_GLOBALLB,

  THR_COMP_NEAR_NEARLA,
  THR_COMP_NEW_NEWLA,
  THR_COMP_NEW_NEARESTLA,
  THR_COMP_NEAREST_NEWLA,
  THR_COMP_NEW_NEARLA,
  THR_COMP_NEAR_NEWLA,
  THR_COMP_GLOBAL_GLOBALLA,

  THR_COMP_NEAR_NEARL2A,
  THR_COMP_NEW_NEWL2A,
  THR_COMP_NEW_NEARESTL2A,
  THR_COMP_NEAREST_NEWL2A,
  THR_COMP_NEW_NEARL2A,
  THR_COMP_NEAR_NEWL2A,
  THR_COMP_GLOBAL_GLOBALL2A,

  THR_COMP_NEAR_NEARL3A,
  THR_COMP_NEW_NEWL3A,
  THR_COMP_NEW_NEARESTL3A,
  THR_COMP_NEAREST_NEWL3A,
  THR_COMP_NEW_NEARL3A,
  THR_COMP_NEAR_NEWL3A,
  THR_COMP_GLOBAL_GLOBALL3A,

  THR_COMP_NEAR_NEARGA,
  THR_COMP_NEW_NEWGA,
  THR_COMP_NEW_NEARESTGA,
  THR_COMP_NEAREST_NEWGA,
  THR_COMP_NEW_NEARGA,
  THR_COMP_NEAR_NEWGA,
  THR_COMP_GLOBAL_GLOBALGA,

  THR_COMP_NEAR_NEARL2B,
  THR_COMP_NEW_NEWL2B,
  THR_COMP_NEW_NEARESTL2B,
  THR_COMP_NEAREST_NEWL2B,
  THR_COMP_NEW_NEARL2B,
  THR_COMP_NEAR_NEWL2B,
  THR_COMP_GLOBAL_GLOBALL2B,

  THR_COMP_NEAR_NEARL3B,
  THR_COMP_NEW_NEWL3B,
  THR_COMP_NEW_NEARESTL3B,
  THR_COMP_NEAREST_NEWL3B,
  THR_COMP_NEW_NEARL3B,
  THR_COMP_NEAR_NEWL3B,
  THR_COMP_GLOBAL_GLOBALL3B,

  THR_COMP_NEAR_NEARGB,
  THR_COMP_NEW_NEWGB,
  THR_COMP_NEW_NEARESTGB,
  THR_COMP_NEAREST_NEWGB,
  THR_COMP_NEW_NEARGB,
  THR_COMP_NEAR_NEWGB,
  THR_COMP_GLOBAL_GLOBALGB,

  THR_COMP_NEAR_NEARLA2,
  THR_COMP_NEW_NEWLA2,
  THR_COMP_NEW_NEARESTLA2,
  THR_COMP_NEAREST_NEWLA2,
  THR_COMP_NEW_NEARLA2,
  THR_COMP_NEAR_NEWLA2,
  THR_COMP_GLOBAL_GLOBALLA2,

  THR_COMP_NEAR_NEARL2A2,
  THR_COMP_NEW_NEWL2A2,
  THR_COMP_NEW_NEARESTL2A2,
  THR_COMP_NEAREST_NEWL2A2,
  THR_COMP_NEW_NEARL2A2,
  THR_COMP_NEAR_NEWL2A2,
  THR_COMP_GLOBAL_GLOBALL2A2,

  THR_COMP_NEAR_NEARL3A2,
  THR_COMP_NEW_NEWL3A2,
  THR_COMP_NEW_NEARESTL3A2,
  THR_COMP_NEAREST_NEWL3A2,
  THR_COMP_NEW_NEARL3A2,
  THR_COMP_NEAR_NEWL3A2,
  THR_COMP_GLOBAL_GLOBALL3A2,

  THR_COMP_NEAR_NEARGA2,
  THR_COMP_NEW_NEWGA2,
  THR_COMP_NEW_NEARESTGA2,
  THR_COMP_NEAREST_NEWGA2,
  THR_COMP_NEW_NEARGA2,
  THR_COMP_NEAR_NEWGA2,
  THR_COMP_GLOBAL_GLOBALGA2,

  THR_COMP_NEAR_NEARLL2,
  THR_COMP_NEW_NEWLL2,
  THR_COMP_NEW_NEARESTLL2,
  THR_COMP_NEAREST_NEWLL2,
  THR_COMP_NEW_NEARLL2,
  THR_COMP_NEAR_NEWLL2,
  THR_COMP_GLOBAL_GLOBALLL2,

  THR_COMP_NEAR_NEARLL3,
  THR_COMP_NEW_NEWLL3,
  THR_COMP_NEW_NEARESTLL3,
  THR_COMP_NEAREST_NEWLL3,
  THR_COMP_NEW_NEARLL3,
  THR_COMP_NEAR_NEWLL3,
  THR_COMP_GLOBAL_GLOBALLL3,

  THR_COMP_NEAR_NEARLG,
  THR_COMP_NEW_NEWLG,
  THR_COMP_NEW_NEARESTLG,
  THR_COMP_NEAREST_NEWLG,
  THR_COMP_NEW_NEARLG,
  THR_COMP_NEAR_NEWLG,
  THR_COMP_GLOBAL_GLOBALLG,

  THR_COMP_NEAR_NEARBA,
  THR_COMP_NEW_NEWBA,
  THR_COMP_NEW_NEARESTBA,
  THR_COMP_NEAREST_NEWBA,
  THR_COMP_NEW_NEARBA,
  THR_COMP_NEAR_NEWBA,
  THR_COMP_GLOBAL_GLOBALBA,

  THR_DC,
  THR_PAETH,
  THR_SMOOTH,
  THR_SMOOTH_V,
  THR_SMOOTH_H,
  THR_H_PRED,
  THR_V_PRED,
  THR_D135_PRED,
  THR_D203_PRED,
  THR_D157_PRED,
  THR_D67_PRED,
  THR_D113_PRED,
  THR_D45_PRED,
};

/*!\cond */
typedef struct SingleInterModeState {
  int64_t rd;
  MV_REFERENCE_FRAME ref_frame;
  int valid;
} SingleInterModeState;

typedef struct InterModeSearchState {
  int64_t best_rd;
  int64_t best_skip_rd[2];
  MB_MODE_INFO best_mbmode;
  int best_rate_y;
  int best_rate_uv;
  int best_mode_skippable;
  int best_skip2;
  THR_MODES best_mode_index;
  int num_available_refs;
  int64_t dist_refs[REF_FRAMES];
  int dist_order_refs[REF_FRAMES];
  int64_t mode_threshold[MAX_MODES];
  int64_t best_intra_rd;
  unsigned int best_pred_sse;

  /*!
   * \brief Keep track of best intra rd for use in compound mode.
   */
  int64_t best_pred_rd[REFERENCE_MODES];
  // Save a set of single_newmv for each checked ref_mv.
  int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES];
  int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES];
  int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES];
  int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
  // The rd of simple translation in single inter modes
  int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
  int64_t best_single_rd[REF_FRAMES];
  PREDICTION_MODE best_single_mode[REF_FRAMES];

  // Single search results by [directions][modes][reference frames]
  SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
  int single_state_cnt[2][SINGLE_INTER_MODE_NUM];
  SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM]
                                            [FWD_REFS];
  int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM];
  MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
  IntraModeSearchState intra_search_state;
  RD_STATS best_y_rdcost;
} InterModeSearchState;
/*!\endcond */

void av1_inter_mode_data_init(TileDataEnc *tile_data) {
  for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
    InterModeRdModel *md = &tile_data->inter_mode_rd_models[i];
    md->ready = 0;
    md->num = 0;
    md->dist_sum = 0;
    md->ld_sum = 0;
    md->sse_sum = 0;
    md->sse_sse_sum = 0;
    md->sse_ld_sum = 0;
  }
}

static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
                             int64_t sse, int *est_residue_cost,
                             int64_t *est_dist) {
  const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
  if (md->ready) {
    if (sse < md->dist_mean) {
      *est_residue_cost = 0;
      *est_dist = sse;
    } else {
      *est_dist = (int64_t)round(md->dist_mean);
      const double est_ld = md->a * sse + md->b;
      // Clamp estimated rate cost by INT_MAX / 2.
      // TODO(angiebird@google.com): find better solution than clamping.
      if (fabs(est_ld) < 1e-2) {
        *est_residue_cost = INT_MAX / 2;
      } else {
        double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
        if (est_residue_cost_dbl < 0) {
          *est_residue_cost = 0;
        } else {
          *est_residue_cost =
              (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
        }
      }
      if (*est_residue_cost <= 0) {
        *est_residue_cost = 0;
        *est_dist = sse;
      }
    }
    return 1;
  }
  return 0;
}

void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) {
  for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
    const int block_idx = inter_mode_data_block_idx(bsize);
    InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
    if (block_idx == -1) continue;
    if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) {
      continue;
    } else {
      if (md->ready == 0) {
        md->dist_mean = md->dist_sum / md->num;
        md->ld_mean = md->ld_sum / md->num;
        md->sse_mean = md->sse_sum / md->num;
        md->sse_sse_mean = md->sse_sse_sum / md->num;
        md->sse_ld_mean = md->sse_ld_sum / md->num;
      } else {
        const double factor = 3;
        md->dist_mean =
            (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1);
        md->ld_mean =
            (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1);
        md->sse_mean =
            (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1);
        md->sse_sse_mean =
            (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) /
            (factor + 1);
        md->sse_ld_mean =
            (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) /
            (factor + 1);
      }

      const double my = md->ld_mean;
      const double mx = md->sse_mean;
      const double dx = sqrt(md->sse_sse_mean);
      const double dxy = md->sse_ld_mean;

      md->a = (dxy - mx * my) / (dx * dx - mx * mx);
      md->b = my - md->a * mx;
      md->ready = 1;

      md->num = 0;
      md->dist_sum = 0;
      md->ld_sum = 0;
      md->sse_sum = 0;
      md->sse_sse_sum = 0;
      md->sse_ld_sum = 0;
    }
    (void)rdmult;
  }
}

static AOM_INLINE void inter_mode_data_push(TileDataEnc *tile_data,
                                            BLOCK_SIZE bsize, int64_t sse,
                                            int64_t dist, int residue_cost) {
  if (residue_cost == 0 || sse == dist) return;
  const int block_idx = inter_mode_data_block_idx(bsize);
  if (block_idx == -1) return;
  InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize];
  if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) {
    const double ld = (sse - dist) * 1. / residue_cost;
    ++rd_model->num;
    rd_model->dist_sum += dist;
    rd_model->ld_sum += ld;
    rd_model->sse_sum += sse;
    rd_model->sse_sse_sum += (double)sse * (double)sse;
    rd_model->sse_ld_sum += sse * ld;
  }
}

static AOM_INLINE void inter_modes_info_push(InterModesInfo *inter_modes_info,
                                             int mode_rate, int64_t sse,
                                             int64_t rd, RD_STATS *rd_cost,
                                             RD_STATS *rd_cost_y,
                                             RD_STATS *rd_cost_uv,
                                             const MB_MODE_INFO *mbmi) {
  const int num = inter_modes_info->num;
  assert(num < MAX_INTER_MODES);
  inter_modes_info->mbmi_arr[num] = *mbmi;
  inter_modes_info->mode_rate_arr[num] = mode_rate;
  inter_modes_info->sse_arr[num] = sse;
  inter_modes_info->est_rd_arr[num] = rd;
  inter_modes_info->rd_cost_arr[num] = *rd_cost;
  inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y;
  inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv;
  ++inter_modes_info->num;
}

static int compare_rd_idx_pair(const void *a, const void *b) {
  if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) {
    // To avoid inconsistency in qsort() ordering when two elements are equal,
    // using idx as tie breaker. Refer aomedia:2928
    if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx)
      return 0;
    else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx)
      return 1;
    else
      return -1;
  } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) {
    return 1;
  } else {
    return -1;
  }
}

static AOM_INLINE void inter_modes_info_sort(
    const InterModesInfo *inter_modes_info, RdIdxPair *rd_idx_pair_arr) {
  if (inter_modes_info->num == 0) {
    return;
  }
  for (int i = 0; i < inter_modes_info->num; ++i) {
    rd_idx_pair_arr[i].idx = i;
    rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i];
  }
  qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]),
        compare_rd_idx_pair);
}

// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
void av1_get_horver_correlation_full_c(const int16_t *diff, int stride,
                                       int width, int height, float *hcorr,
                                       float *vcorr) {
  // The following notation is used:
  // x - current pixel
  // y - left neighbor pixel
  // z - top neighbor pixel
  int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0;
  int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0;
  int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0;

  // First, process horizontal correlation on just the first row
  x_sum += diff[0];
  x2_sum += diff[0] * diff[0];
  x_firstrow += diff[0];
  x2_firstrow += diff[0] * diff[0];
  for (int j = 1; j < width; ++j) {
    const int16_t x = diff[j];
    const int16_t y = diff[j - 1];
    x_sum += x;
    x_firstrow += x;
    x2_sum += x * x;
    x2_firstrow += x * x;
    xy_sum += x * y;
  }

  // Process vertical correlation in the first column
  x_firstcol += diff[0];
  x2_firstcol += diff[0] * diff[0];
  for (int i = 1; i < height; ++i) {
    const int16_t x = diff[i * stride];
    const int16_t z = diff[(i - 1) * stride];
    x_sum += x;
    x_firstcol += x;
    x2_sum += x * x;
    x2_firstcol += x * x;
    xz_sum += x * z;
  }

  // Now process horiz and vert correlation through the rest unit
  for (int i = 1; i < height; ++i) {
    for (int j = 1; j < width; ++j) {
      const int16_t x = diff[i * stride + j];
      const int16_t y = diff[i * stride + j - 1];
      const int16_t z = diff[(i - 1) * stride + j];
      x_sum += x;
      x2_sum += x * x;
      xy_sum += x * y;
      xz_sum += x * z;
    }
  }

  for (int j = 0; j < width; ++j) {
    x_finalrow += diff[(height - 1) * stride + j];
    x2_finalrow +=
        diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j];
  }
  for (int i = 0; i < height; ++i) {
    x_finalcol += diff[i * stride + width - 1];
    x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1];
  }

  int64_t xhor_sum = x_sum - x_finalcol;
  int64_t xver_sum = x_sum - x_finalrow;
  int64_t y_sum = x_sum - x_firstcol;
  int64_t z_sum = x_sum - x_firstrow;
  int64_t x2hor_sum = x2_sum - x2_finalcol;
  int64_t x2ver_sum = x2_sum - x2_finalrow;
  int64_t y2_sum = x2_sum - x2_firstcol;
  int64_t z2_sum = x2_sum - x2_firstrow;

  const float num_hor = (float)(height * (width - 1));
  const float num_ver = (float)((height - 1) * width);

  const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
  const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;

  const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
  const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;

  const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
  const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;

  if (xhor_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  } else {
    *hcorr = 1.0;
  }
  if (xver_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  } else {
    *vcorr = 1.0;
  }
}

static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x,
                       int64_t *sse_y) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  int64_t total_sse = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    if (plane && !xd->is_chroma_ref) break;
    const struct macroblock_plane *const p = &x->plane[plane];
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE bs =
        get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
    unsigned int sse;

    cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
                            pd->dst.stride, &sse);
    total_sse += sse;
    if (!plane && sse_y) *sse_y = sse;
  }
  total_sse <<= 4;
  return total_sse;
}

int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
                          intptr_t block_size, int64_t *ssz) {
  int i;
  int64_t error = 0, sqcoeff = 0;

  for (i = 0; i < block_size; i++) {
    const int diff = coeff[i] - dqcoeff[i];
    error += diff * diff;
    sqcoeff += coeff[i] * coeff[i];
  }

  *ssz = sqcoeff;
  return error;
}

int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff,
                             intptr_t block_size) {
  int64_t error = 0;

  for (int i = 0; i < block_size; i++) {
    const int diff = coeff[i] - dqcoeff[i];
    error += diff * diff;
  }

  return error;
}

#if CONFIG_AV1_HIGHBITDEPTH
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
                                 const tran_low_t *dqcoeff, intptr_t block_size,
                                 int64_t *ssz, int bd) {
  int i;
  int64_t error = 0, sqcoeff = 0;
  int shift = 2 * (bd - 8);
  int rounding = shift > 0 ? 1 << (shift - 1) : 0;

  for (i = 0; i < block_size; i++) {
    const int64_t diff = coeff[i] - dqcoeff[i];
    error += diff * diff;
    sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
  }
  assert(error >= 0 && sqcoeff >= 0);
  error = (error + rounding) >> shift;
  sqcoeff = (sqcoeff + rounding) >> shift;

  *ssz = sqcoeff;
  return error;
}
#endif

static int conditional_skipintra(PREDICTION_MODE mode,
                                 PREDICTION_MODE best_intra_mode) {
  if (mode == D113_PRED && best_intra_mode != V_PRED &&
      best_intra_mode != D135_PRED)
    return 1;
  if (mode == D67_PRED && best_intra_mode != V_PRED &&
      best_intra_mode != D45_PRED)
    return 1;
  if (mode == D203_PRED && best_intra_mode != H_PRED &&
      best_intra_mode != D45_PRED)
    return 1;
  if (mode == D157_PRED && best_intra_mode != H_PRED &&
      best_intra_mode != D135_PRED)
    return 1;
  return 0;
}

static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
                       int16_t mode_context) {
  if (is_inter_compound_mode(mode)) {
    return mode_costs
        ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
  }

  int mode_cost = 0;
  int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;

  assert(is_inter_mode(mode));

  if (mode == NEWMV) {
    mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
    return mode_cost;
  } else {
    mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
    mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;

    if (mode == GLOBALMV) {
      mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
      return mode_cost;
    } else {
      mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
      mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
      mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
      return mode_cost;
    }
  }
}

static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode,
                                              int ref_idx) {
  return ref_idx ? compound_ref1_mode(this_mode)
                 : compound_ref0_mode(this_mode);
}

static AOM_INLINE void estimate_ref_frame_costs(
    const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
    int segment_id, unsigned int *ref_costs_single,
    unsigned int (*ref_costs_comp)[REF_FRAMES]) {
  int seg_ref_active =
      segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
  if (seg_ref_active) {
    memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
    int ref_frame;
    for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
      memset(ref_costs_comp[ref_frame], 0,
             REF_FRAMES * sizeof((*ref_costs_comp)[0]));
  } else {
    int intra_inter_ctx = av1_get_intra_inter_context(xd);
    ref_costs_single[INTRA_FRAME] =
        mode_costs->intra_inter_cost[intra_inter_ctx][0];
    unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];

    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
      ref_costs_single[i] = base_cost;

    const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
    const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
    const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
    const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
    const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
    const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);

    // Determine cost of a single ref frame, where frame types are represented
    // by a tree:
    // Level 0: add cost whether this ref is a forward or backward ref
    ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
    ref_costs_single[ALTREF2_FRAME] +=
        mode_costs->single_ref_cost[ctx_p1][0][1];
    ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];

    // Level 1: if this ref is forward ref,
    // add cost whether it is last/last2 or last3/golden
    ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
    ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
    ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
    ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];

    // Level 1: if this ref is backward ref
    // then add cost whether this ref is altref or backward ref
    ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0];
    ref_costs_single[ALTREF2_FRAME] +=
        mode_costs->single_ref_cost[ctx_p2][1][0];
    ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1];

    // Level 2: further add cost whether this ref is last or last2
    ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0];
    ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1];

    // Level 2: last3 or golden
    ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0];
    ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1];

    // Level 2: bwdref or altref2
    ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0];
    ref_costs_single[ALTREF2_FRAME] +=
        mode_costs->single_ref_cost[ctx_p6][5][1];

    if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
      // Similar to single ref, determine cost of compound ref frames.
      // cost_compound_refs = cost_first_ref + cost_second_ref
      const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
      const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
      const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
      const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
      const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);

      const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
      unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };

      ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
          ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
              base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
      ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
      ref_bicomp_costs[ALTREF_FRAME] = 0;

      // cost of first ref frame
      ref_bicomp_costs[LAST_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
      ref_bicomp_costs[LAST2_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
      ref_bicomp_costs[LAST3_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
      ref_bicomp_costs[GOLDEN_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];

      ref_bicomp_costs[LAST_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
      ref_bicomp_costs[LAST2_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];

      ref_bicomp_costs[LAST3_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
      ref_bicomp_costs[GOLDEN_FRAME] +=
          mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];

      // cost of second ref frame
      ref_bicomp_costs[BWDREF_FRAME] +=
          mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
      ref_bicomp_costs[ALTREF2_FRAME] +=
          mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
      ref_bicomp_costs[ALTREF_FRAME] +=
          mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];

      ref_bicomp_costs[BWDREF_FRAME] +=
          mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
      ref_bicomp_costs[ALTREF2_FRAME] +=
          mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];

      // cost: if one ref frame is forward ref, the other ref is backward ref
      int ref0, ref1;
      for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
        for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
          ref_costs_comp[ref0][ref1] =
              ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
        }
      }

      // cost: if both ref frames are the same side.
      const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
      const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
      const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
      ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
          base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
      ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
          base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
      ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
          base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
      ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
          base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
          mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
    } else {
      int ref0, ref1;
      for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
        for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
          ref_costs_comp[ref0][ref1] = 512;
      }
      ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
      ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
      ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
      ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
    }
  }
}

static AOM_INLINE void store_coding_context(
#if CONFIG_INTERNAL_STATS
    MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
#else
    MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
#endif  // CONFIG_INTERNAL_STATS
    int skippable) {
  MACROBLOCKD *const xd = &x->e_mbd;

  // Take a snapshot of the coding context so it can be
  // restored if we decide to encode this way
  ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm;
  ctx->skippable = skippable;
#if CONFIG_INTERNAL_STATS
  ctx->best_mode_index = mode_index;
#endif  // CONFIG_INTERNAL_STATS
  ctx->mic = *xd->mi[0];
  av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
                                      av1_ref_frame_type(xd->mi[0]->ref_frame));
}

static AOM_INLINE void setup_buffer_ref_mvs_inter(
    const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
    BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const YV12_BUFFER_CONFIG *scaled_ref_frame =
      av1_get_scaled_ref_frame(cpi, ref_frame);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const struct scale_factors *const sf =
      get_ref_scale_factors_const(cm, ref_frame);
  const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
  assert(yv12 != NULL);

  if (scaled_ref_frame) {
    // Setup pred block based on scaled reference, because av1_mv_pred() doesn't
    // support scaling.
    av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL,
                         num_planes);
  } else {
    av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
  }

  // Gets an initial list of candidate vectors from neighbours and orders them
  av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                   xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
                   mbmi_ext->mode_context);
  // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
  // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
  av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
  // Further refinement that is encode side only to test the top few candidates
  // in full and choose the best as the center point for subsequent searches.
  // The current implementation doesn't support scaling.
  av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride,
              ref_frame, block_size);

  // Go back to unscaled reference.
  if (scaled_ref_frame) {
    // We had temporarily setup pred block based on scaled reference above. Go
    // back to unscaled reference now, for subsequent use.
    av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
  }
}

#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)

// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
  const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN,
                                     xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
                                     xd->mb_to_top_edge - LEFT_TOP_MARGIN,
                                     xd->mb_to_bottom_edge +
                                         RIGHT_BOTTOM_MARGIN };
  clamp_mv(mv, &mv_limits);
}

/* If the current mode shares the same mv with other modes with higher cost,
 * skip this mode. */
static int skip_repeated_mv(const AV1_COMMON *const cm,
                            const MACROBLOCK *const x,
                            PREDICTION_MODE this_mode,
                            const MV_REFERENCE_FRAME ref_frames[2],
                            InterModeSearchState *search_state) {
  const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
  const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
  const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
  PREDICTION_MODE compare_mode = MB_MODE_COUNT;
  if (!is_comp_pred) {
    if (this_mode == NEARMV) {
      if (ref_mv_count == 0) {
        // NEARMV has the same motion vector as NEARESTMV
        compare_mode = NEARESTMV;
      }
      if (ref_mv_count == 1 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
        // NEARMV has the same motion vector as GLOBALMV
        compare_mode = GLOBALMV;
      }
    }
    if (this_mode == GLOBALMV) {
      if (ref_mv_count == 0 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
        // GLOBALMV has the same motion vector as NEARESTMV
        compare_mode = NEARESTMV;
      }
      if (ref_mv_count == 1) {
        // GLOBALMV has the same motion vector as NEARMV
        compare_mode = NEARMV;
      }
    }

    if (compare_mode != MB_MODE_COUNT) {
      // Use modelled_rd to check whether compare mode was searched
      if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] !=
          INT64_MAX) {
        const int16_t mode_ctx =
            av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames);
        const int compare_cost =
            cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx);
        const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx);

        // Only skip if the mode cost is larger than compare mode cost
        if (this_cost > compare_cost) {
          search_state->modelled_rd[this_mode][0][ref_frames[0]] =
              search_state->modelled_rd[compare_mode][0][ref_frames[0]];
          return 1;
        }
      }
    }
  }
  return 0;
}

static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
                                     const AV1_COMMON *cm,
                                     const MACROBLOCK *x) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  *out_mv = in_mv;
  lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv,
                     cm->features.cur_frame_force_integer_mv);
  clamp_mv2(&out_mv->as_mv, xd);
  return av1_is_fullmv_in_range(&x->mv_limits,
                                get_fullmv_from_mv(&out_mv->as_mv));
}

// To use single newmv directly for compound modes, need to clamp the mv to the
// valid mv range. Without this, encoder would generate out of range mv, and
// this is seen in 8k encoding.
static INLINE void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv,
                                     int ref_idx) {
  const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
  SubpelMvLimits mv_limits;

  av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv);
  clamp_mv(&mv->as_mv, &mv_limits);
}

static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
                            const BLOCK_SIZE bsize, int_mv *cur_mv,
                            int *const rate_mv, HandleInterModeArgs *const args,
                            inter_mode_info *mode_info) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);
  const PREDICTION_MODE this_mode = mbmi->mode;
  const int refs[2] = { mbmi->ref_frame[0],
                        mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
  const int ref_mv_idx = mbmi->ref_mv_idx;

  if (is_comp_pred) {
    const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]];
    const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]];
    if (this_mode == NEW_NEWMV) {
      if (valid_mv0) {
        cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
        clamp_mv_in_range(x, &cur_mv[0], 0);
      }
      if (valid_mv1) {
        cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
        clamp_mv_in_range(x, &cur_mv[1], 1);
      }
      *rate_mv = 0;
      for (int i = 0; i < 2; ++i) {
        const int_mv ref_mv = av1_get_ref_mv(x, i);
        *rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv,
                                    x->mv_costs->nmv_joint_cost,
                                    x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
      }
    } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
      if (valid_mv1) {
        cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
        clamp_mv_in_range(x, &cur_mv[1], 1);
      }
      const int_mv ref_mv = av1_get_ref_mv(x, 1);
      *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
                                 x->mv_costs->nmv_joint_cost,
                                 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
    } else {
      assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
      if (valid_mv0) {
        cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
        clamp_mv_in_range(x, &cur_mv[0], 0);
      }
      const int_mv ref_mv = av1_get_ref_mv(x, 0);
      *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
                                 x->mv_costs->nmv_joint_cost,
                                 x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
    }
  } else {
    // Single ref case.
    const int ref_idx = 0;
    int search_range = INT_MAX;

    if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) {
      const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
      int min_mv_diff = INT_MAX;
      int best_match = -1;
      MV prev_ref_mv[2] = { { 0 } };
      for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) {
        prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame,
                                                     idx, &x->mbmi_ext)
                               .as_mv;
        const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row),
                                       abs(ref_mv.col - prev_ref_mv[idx].col));

        if (min_mv_diff > ref_mv_diff) {
          min_mv_diff = ref_mv_diff;
          best_match = idx;
        }
      }

      if (min_mv_diff < (16 << 3)) {
        if (args->single_newmv_valid[best_match][refs[0]]) {
          search_range = min_mv_diff;
          search_range +=
              AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row -
                         prev_ref_mv[best_match].row),
                     abs(args->single_newmv[best_match][refs[0]].as_mv.col -
                         prev_ref_mv[best_match].col));
          // Get full pixel search range.
          search_range = (search_range + 4) >> 3;
        }
      }
    }

    int_mv best_mv;
    av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range,
                             mode_info, &best_mv, args);
    if (best_mv.as_int == INVALID_MV) return INT64_MAX;

    args->single_newmv[ref_mv_idx][refs[0]] = best_mv;
    args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
    args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;
    cur_mv[0].as_int = best_mv.as_int;

    // Return after single_newmv is set.
    if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX;
  }

  return 0;
}

static INLINE void update_mode_start_end_index(
    const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi,
    int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed,
    int interintra_allowed, int eval_motion_mode) {
  *mode_index_start = (int)SIMPLE_TRANSLATION;
  *mode_index_end = (int)last_motion_mode_allowed + interintra_allowed;
  if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) {
    if (!eval_motion_mode) {
      *mode_index_end = (int)SIMPLE_TRANSLATION;
    } else {
      // Set the start index appropriately to process motion modes other than
      // simple translation
      *mode_index_start = 1;
    }
  }
  if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16)
    *mode_index_end = SIMPLE_TRANSLATION;
}

/*!\brief AV1 motion mode search
 *
 * \ingroup inter_mode_search
 * Function to search over and determine the motion mode. It will update
 * mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or
 * WARPED_CAUSAL and determine any necessary side information for the selected
 * motion mode. It will also perform the full transform search, unless the
 * input parameter do_tx_search indicates to do an estimation of the RD rather
 * than an RD corresponding to a full transform search. It will return the
 * RD for the final motion_mode.
 * Do the RD search for a given inter mode and compute all information relevant
 * to the input mode. It will compute the best MV,
 * compound parameters (if the mode is a compound mode) and interpolation filter
 * parameters.
 *
 * \param[in]     cpi               Top-level encoder structure.
 * \param[in]     tile_data         Pointer to struct holding adaptive
 *                                  data/contexts/models for the tile during
 *                                  encoding.
 * \param[in]     x                 Pointer to struct holding all the data for
 *                                  the current macroblock.
 * \param[in]     bsize             Current block size.
 * \param[in,out] rd_stats          Struct to keep track of the overall RD
 *                                  information.
 * \param[in,out] rd_stats_y        Struct to keep track of the RD information
 *                                  for only the Y plane.
 * \param[in,out] rd_stats_uv       Struct to keep track of the RD information
 *                                  for only the UV planes.
 * \param[in]     args              HandleInterModeArgs struct holding
 *                                  miscellaneous arguments for inter mode
 *                                  search. See the documentation for this
 *                                  struct for a description of each member.
 * \param[in]     ref_best_rd       Best RD found so far for this block.
 *                                  It is used for early termination of this
 *                                  search if the RD exceeds this value.
 * \param[in,out] ref_skip_rd       A length 2 array, where skip_rd[0] is the
 *                                  best total RD for a skip mode so far, and
 *                                  skip_rd[1] is the best RD for a skip mode so
 *                                  far in luma. This is used as a speed feature
 *                                  to skip the transform search if the computed
 *                                  skip RD for the current mode is not better
 *                                  than the best skip_rd so far.
 * \param[in,out] rate_mv           The rate associated with the motion vectors.
 *                                  This will be modified if a motion search is
 *                                  done in the motion mode search.
 * \param[in,out] orig_dst          A prediction buffer to hold a computed
 *                                  prediction. This will eventually hold the
 *                                  final prediction, and the tmp_dst info will
 *                                  be copied here.
 * \param[in,out] best_est_rd       Estimated RD for motion mode search if
 *                                  do_tx_search (see below) is 0.
 * \param[in]     do_tx_search      Parameter to indicate whether or not to do
 *                                  a full transform search. This will compute
 *                                  an estimated RD for the modes without the
 *                                  transform search and later perform the full
 *                                  transform search on the best candidates.
 * \param[in]     inter_modes_info  InterModesInfo struct to hold inter mode
 *                                  information to perform a full transform
 *                                  search only on winning candidates searched
 *                                  with an estimate for transform coding RD.
 * \param[in]     eval_motion_mode  Boolean whether or not to evaluate motion
 *                                  motion modes other than SIMPLE_TRANSLATION.
 * \param[out]    yrd               Stores the rdcost corresponding to encoding
 *                                  the luma plane.
 * \return Returns INT64_MAX if the determined motion mode is invalid and the
 * current motion mode being tested should be skipped. It returns 0 if the
 * motion mode search is a success.
 */
static int64_t motion_mode_rd(
    const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x,
    BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd,
    int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst,
    int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info,
    int eval_motion_mode, int64_t *yrd) {
  const AV1_COMMON *const cm = &cpi->common;
  const FeatureFlags *const features = &cm->features;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);
  const PREDICTION_MODE this_mode = mbmi->mode;
  const int rate2_nocoeff = rd_stats->rate;
  int best_xskip_txfm = 0;
  RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
  const int rate_mv0 = *rate_mv;
  const int interintra_allowed = cm->seq_params->enable_interintra_compound &&
                                 is_interintra_allowed(mbmi) &&
                                 mbmi->compound_idx;
  WARP_SAMPLE_INFO *const warp_sample_info =
      &x->warp_sample_info[mbmi->ref_frame[0]];
  int *pts0 = warp_sample_info->pts;
  int *pts_inref0 = warp_sample_info->pts_inref;

  assert(mbmi->ref_frame[1] != INTRA_FRAME);
  const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];
  av1_invalid_rd_stats(&best_rd_stats);
  mbmi->num_proj_ref = 1;  // assume num_proj_ref >=1
  MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
  *yrd = INT64_MAX;
  if (features->switchable_motion_mode) {
    // Determine which motion modes to search if more than SIMPLE_TRANSLATION
    // is allowed.
    last_motion_mode_allowed = motion_mode_allowed(
        xd->global_motion, xd, mbmi, features->allow_warped_motion);
  }

  if (last_motion_mode_allowed == WARPED_CAUSAL) {
    // Collect projection samples used in least squares approximation of
    // the warped motion parameters if WARPED_CAUSAL is going to be searched.
    if (warp_sample_info->num < 0) {
      warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
    }
    mbmi->num_proj_ref = warp_sample_info->num;
  }
  const int total_samples = mbmi->num_proj_ref;
  if (total_samples == 0) {
    // Do not search WARPED_CAUSAL if there are no samples to use to determine
    // warped parameters.
    last_motion_mode_allowed = OBMC_CAUSAL;
  }

  const MB_MODE_INFO base_mbmi = *mbmi;
  MB_MODE_INFO best_mbmi;
  const int interp_filter = features->interp_filter;
  const int switchable_rate =
      av1_is_interp_needed(xd)
          ? av1_get_switchable_rate(x, xd, interp_filter,
                                    cm->seq_params->enable_dual_filter)
          : 0;
  int64_t best_rd = INT64_MAX;
  int best_rate_mv = rate_mv0;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  int mode_index_start, mode_index_end;
  const int txfm_rd_gate_level =
      get_txfm_rd_gate_level(cm->seq_params->enable_masked_compound,
                             cpi->sf.inter_sf.txfm_rd_gate_level, bsize,
                             TX_SEARCH_MOTION_MODE, eval_motion_mode);

  // Modify the start and end index according to speed features. For example,
  // if SIMPLE_TRANSLATION has already been searched according to
  // the motion_mode_for_winner_cand speed feature, update the mode_index_start
  // to avoid searching it again.
  update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end,
                              last_motion_mode_allowed, interintra_allowed,
                              eval_motion_mode);
  // Main function loop. This loops over all of the possible motion modes and
  // computes RD to determine the best one. This process includes computing
  // any necessary side information for the motion mode and performing the
  // transform search.
  for (int mode_index = mode_index_start; mode_index <= mode_index_end;
       mode_index++) {
    if (args->skip_motion_mode && mode_index) continue;
    int tmp_rate2 = rate2_nocoeff;
    const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
    int tmp_rate_mv = rate_mv0;

    *mbmi = base_mbmi;
    if (is_interintra_mode) {
      // Only use SIMPLE_TRANSLATION for interintra
      mbmi->motion_mode = SIMPLE_TRANSLATION;
    } else {
      mbmi->motion_mode = (MOTION_MODE)mode_index;
      assert(mbmi->ref_frame[1] != INTRA_FRAME);
    }

    // Do not search OBMC if the probability of selecting it is below a
    // predetermined threshold for this update_type and block size.
    const FRAME_UPDATE_TYPE update_type =
        get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
    int use_actual_frame_probs = 1;
    int prune_obmc;
#if CONFIG_FPMT_TEST
    use_actual_frame_probs =
        (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
    if (!use_actual_frame_probs) {
      prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
                   cpi->sf.inter_sf.prune_obmc_prob_thresh;
    }
#endif
    if (use_actual_frame_probs) {
      prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
                   cpi->sf.inter_sf.prune_obmc_prob_thresh;
    }
    if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) &&
        mbmi->motion_mode == OBMC_CAUSAL)
      continue;

    if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
      // SIMPLE_TRANSLATION mode: no need to recalculate.
      // The prediction is calculated before motion_mode_rd() is called in
      // handle_inter_mode()
    } else if (mbmi->motion_mode == OBMC_CAUSAL) {
      const uint32_t cur_mv = mbmi->mv[0].as_int;
      // OBMC_CAUSAL not allowed for compound prediction
      assert(!is_comp_pred);
      if (have_newmv_in_inter_mode(this_mode)) {
        av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL,
                                 &mbmi->mv[0], NULL);
        tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
      }
      if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) {
        // Build the predictor according to the current motion vector if it has
        // not already been built
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                      0, av1_num_planes(cm) - 1);
      }
      // Build the inter predictor by blending the predictor corresponding to
      // this MV, and the neighboring blocks using the OBMC model
      av1_build_obmc_inter_prediction(
          cm, xd, args->above_pred_buf, args->above_pred_stride,
          args->left_pred_buf, args->left_pred_stride);
#if !CONFIG_REALTIME_ONLY
    } else if (mbmi->motion_mode == WARPED_CAUSAL) {
      int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
      mbmi->motion_mode = WARPED_CAUSAL;
      mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
      mbmi->interp_filters =
          av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));

      memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
      memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
      // Select the samples according to motion vector difference
      if (mbmi->num_proj_ref > 1) {
        mbmi->num_proj_ref = av1_selectSamples(
            &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize);
      }

      // Compute the warped motion parameters with a least squares fit
      //  using the collected samples
      if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
                               mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
                               &mbmi->wm_params, mi_row, mi_col)) {
        assert(!is_comp_pred);
        if (have_newmv_in_inter_mode(this_mode)) {
          // Refine MV for NEWMV mode
          const int_mv mv0 = mbmi->mv[0];
          const WarpedMotionParams wm_params0 = mbmi->wm_params;
          const int num_proj_ref0 = mbmi->num_proj_ref;

          const int_mv ref_mv = av1_get_ref_mv(x, 0);
          SUBPEL_MOTION_SEARCH_PARAMS ms_params;
          av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
                                            &ref_mv.as_mv, NULL);

          // Refine MV in a small range.
          av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
                               total_samples, cpi->sf.mv_sf.warp_search_method,
                               cpi->sf.mv_sf.warp_search_iters);

          if (mv0.as_int != mbmi->mv[0].as_int) {
            // Keep the refined MV and WM parameters.
            tmp_rate_mv = av1_mv_bit_cost(
                &mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
                x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
            tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
          } else {
            // Restore the old MV and WM parameters.
            mbmi->mv[0] = mv0;
            mbmi->wm_params = wm_params0;
            mbmi->num_proj_ref = num_proj_ref0;
          }
        }

        // Build the warped predictor
        av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
                                      av1_num_planes(cm) - 1);
      } else {
        continue;
      }
#endif  // !CONFIG_REALTIME_ONLY
    } else if (is_interintra_mode) {
      const int ret =
          av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd,
                                      &tmp_rate_mv, &tmp_rate2, orig_dst);
      if (ret < 0) continue;
    }

    // If we are searching newmv and the mv is the same as refmv, skip the
    // current mode
    if (!av1_check_newmv_joint_nonzero(cm, x)) continue;

    // Update rd_stats for the current motion mode
    txfm_info->skip_txfm = 0;
    rd_stats->dist = 0;
    rd_stats->sse = 0;
    rd_stats->skip_txfm = 1;
    rd_stats->rate = tmp_rate2;
    const ModeCosts *mode_costs = &x->mode_costs;
    if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate;
    if (interintra_allowed) {
      rd_stats->rate +=
          mode_costs->interintra_cost[size_group_lookup[bsize]]
                                     [mbmi->ref_frame[1] == INTRA_FRAME];
    }
    if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
        (mbmi->ref_frame[1] != INTRA_FRAME)) {
      if (last_motion_mode_allowed == WARPED_CAUSAL) {
        rd_stats->rate +=
            mode_costs->motion_mode_cost[bsize][mbmi->motion_mode];
      } else {
        rd_stats->rate +=
            mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode];
      }
    }

    int64_t this_yrd = INT64_MAX;

    if (!do_tx_search) {
      // Avoid doing a transform search here to speed up the overall mode
      // search. It will be done later in the mode search if the current
      // motion mode seems promising.
      int64_t curr_sse = -1;
      int64_t sse_y = -1;
      int est_residue_cost = 0;
      int64_t est_dist = 0;
      int64_t est_rd = 0;
      if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
        curr_sse = get_sse(cpi, x, &sse_y);
        const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse,
                                                 &est_residue_cost, &est_dist);
        (void)has_est_rd;
        assert(has_est_rd);
      } else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 ||
                 cpi->sf.rt_sf.use_nonrd_pick_mode) {
        model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD](
            cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist,
            NULL, &curr_sse, NULL, NULL, NULL);
        sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]];
      }
      est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist);
      if (est_rd * 0.80 > *best_est_rd) {
        mbmi->ref_frame[1] = ref_frame_1;
        continue;
      }
      const int mode_rate = rd_stats->rate;
      rd_stats->rate += est_residue_cost;
      rd_stats->dist = est_dist;
      rd_stats->rdcost = est_rd;
      if (rd_stats->rdcost < *best_est_rd) {
        *best_est_rd = rd_stats->rdcost;
        assert(sse_y >= 0);
        ref_skip_rd[1] = txfm_rd_gate_level
                             ? RDCOST(x->rdmult, mode_rate, (sse_y << 4))
                             : INT64_MAX;
      }
      if (cm->current_frame.reference_mode == SINGLE_REFERENCE) {
        if (!is_comp_pred) {
          assert(curr_sse >= 0);
          inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
                                rd_stats->rdcost, rd_stats, rd_stats_y,
                                rd_stats_uv, mbmi);
        }
      } else {
        assert(curr_sse >= 0);
        inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
                              rd_stats->rdcost, rd_stats, rd_stats_y,
                              rd_stats_uv, mbmi);
      }
      mbmi->skip_txfm = 0;
    } else {
      // Perform full transform search
      int64_t skip_rd = INT64_MAX;
      int64_t skip_rdy = INT64_MAX;
      if (txfm_rd_gate_level) {
        // Check if the mode is good enough based on skip RD
        int64_t sse_y = INT64_MAX;
        int64_t curr_sse = get_sse(cpi, x, &sse_y);
        skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse);
        skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4));
        int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd,
                                        txfm_rd_gate_level, 0);
        if (!eval_txfm) continue;
      }

      // Do transform search
      const int mode_rate = rd_stats->rate;
      if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv,
                           rd_stats->rate, ref_best_rd)) {
        if (rd_stats_y->rate == INT_MAX && mode_index == 0) {
          return INT64_MAX;
        }
        continue;
      }
      const int skip_ctx = av1_get_skip_txfm_context(xd);
      const int y_rate =
          rd_stats->skip_txfm
              ? x->mode_costs.skip_txfm_cost[skip_ctx][1]
              : (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]);
      this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist);

      const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
      if (curr_rd < ref_best_rd) {
        ref_best_rd = curr_rd;
        ref_skip_rd[0] = skip_rd;
        ref_skip_rd[1] = skip_rdy;
      }
      if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
        inter_mode_data_push(
            tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist,
            rd_stats_y->rate + rd_stats_uv->rate +
                mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
      }
    }

    if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
      if (is_nontrans_global_motion(xd, xd->mi[0])) {
        mbmi->interp_filters =
            av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
      }
    }

    const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
    if (mode_index == 0) {
      args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd;
    }
    if (mode_index == 0 || tmp_rd < best_rd) {
      // Update best_rd data if this is the best motion mode so far
      best_mbmi = *mbmi;
      best_rd = tmp_rd;
      best_rd_stats = *rd_stats;
      best_rd_stats_y = *rd_stats_y;
      best_rate_mv = tmp_rate_mv;
      *yrd = this_yrd;
      if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
      memcpy(best_blk_skip, txfm_info->blk_skip,
             sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
      av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
      best_xskip_txfm = mbmi->skip_txfm;
    }
  }
  // Update RD and mbmi stats for selected motion mode
  mbmi->ref_frame[1] = ref_frame_1;
  *rate_mv = best_rate_mv;
  if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) {
    av1_invalid_rd_stats(rd_stats);
    restore_dst_buf(xd, *orig_dst, num_planes);
    return INT64_MAX;
  }
  *mbmi = best_mbmi;
  *rd_stats = best_rd_stats;
  *rd_stats_y = best_rd_stats_y;
  if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
  memcpy(txfm_info->blk_skip, best_blk_skip,
         sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
  av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
  txfm_info->skip_txfm = best_xskip_txfm;

  restore_dst_buf(xd, *orig_dst, num_planes);
  return 0;
}

static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
                            MACROBLOCK *const x, BLOCK_SIZE bsize,
                            const BUFFER_SET *const orig_dst, int64_t best_rd) {
  assert(bsize < BLOCK_SIZES_ALL);
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  int64_t total_sse = 0;
  int64_t this_rd = INT64_MAX;
  const int skip_mode_ctx = av1_get_skip_mode_context(xd);
  rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1];

  for (int plane = 0; plane < num_planes; ++plane) {
    // Call av1_enc_build_inter_predictor() for one plane at a time.
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                  plane, plane);
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);

    av1_subtract_plane(x, plane_bsize, plane);

    int64_t sse =
        av1_pixel_diff_dist(x, plane, 0, 0, plane_bsize, plane_bsize, NULL);
    if (is_cur_buf_hbd(xd)) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
    sse <<= 4;
    total_sse += sse;
    // When current rd cost is more than the best rd, skip evaluation of
    // remaining planes.
    this_rd = RDCOST(x->rdmult, rd_stats->rate, total_sse);
    if (this_rd > best_rd) break;
  }

  rd_stats->dist = rd_stats->sse = total_sse;
  rd_stats->rdcost = this_rd;

  restore_dst_buf(xd, *orig_dst, num_planes);
  return 0;
}

// Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant
// mode
// Note(rachelbarker): This speed feature currently does not interact correctly
// with global motion. The issue is that, when global motion is used, GLOBALMV
// produces a different prediction to NEARESTMV/NEARMV even if the motion
// vectors are the same. Thus GLOBALMV should not be pruned in this case.
static INLINE int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext,
                                      int ref_idx,
                                      const MV_REFERENCE_FRAME *ref_frame,
                                      PREDICTION_MODE single_mode) {
  const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
  const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
  assert(single_mode != NEWMV);
  if (single_mode == NEARESTMV) {
    return 0;
  } else if (single_mode == NEARMV) {
    // when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV
    // when ref_mv_count = 1, NEARMV is same as GLOBALMV
    if (ref_mv_count < 2) return 1;
  } else if (single_mode == GLOBALMV) {
    // when ref_mv_count == 0, GLOBALMV is same as NEARESTMV
    if (ref_mv_count == 0) return 1;
    // when ref_mv_count == 1, NEARMV is same as GLOBALMV
    else if (ref_mv_count == 1)
      return 0;

    int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count);
    // Check GLOBALMV is matching with any mv in ref_mv_stack
    for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) {
      int_mv this_mv;

      if (ref_idx == 0)
        this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
      else
        this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;

      if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int)
        return 1;
    }
  }
  return 0;
}

static INLINE int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
                              int ref_idx, int ref_mv_idx,
                              int skip_repeated_ref_mv,
                              const MV_REFERENCE_FRAME *ref_frame,
                              const MB_MODE_INFO_EXT *mbmi_ext) {
  const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
  assert(is_inter_singleref_mode(single_mode));
  if (single_mode == NEWMV) {
    this_mv->as_int = INVALID_MV;
  } else if (single_mode == GLOBALMV) {
    if (skip_repeated_ref_mv &&
        check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
      return 0;
    *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
  } else {
    assert(single_mode == NEARMV || single_mode == NEARESTMV);
    const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
    const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1;
    if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
      assert(ref_mv_offset >= 0);
      if (ref_idx == 0) {
        *this_mv =
            mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
      } else {
        *this_mv =
            mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
      }
    } else {
      if (skip_repeated_ref_mv &&
          check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
        return 0;
      *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
    }
  }
  return 1;
}

// Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list
// population
static INLINE int skip_nearest_near_mv_using_refmv_weight(
    const MACROBLOCK *const x, const PREDICTION_MODE this_mode,
    const int8_t ref_frame_type, PREDICTION_MODE best_mode) {
  if (this_mode != NEARESTMV && this_mode != NEARMV) return 0;
  // Do not skip the mode if the current block has not yet obtained a valid
  // inter mode.
  if (!is_inter_mode(best_mode)) return 0;

  const MACROBLOCKD *xd = &x->e_mbd;
  // Do not skip the mode if both the top and left neighboring blocks are not
  // available.
  if (!xd->left_available || !xd->up_available) return 0;
  const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type];
  const int ref_mv_count =
      AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]);

  if (ref_mv_count == 0) return 0;
  // If ref mv list has at least one nearest candidate do not prune NEARESTMV
  if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0;

  // Count number of ref mvs populated from nearest candidates
  int nearest_refmv_count = 0;
  for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) {
    if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++;
  }

  // nearest_refmv_count indicates the closeness of block motion characteristics
  // with respect to its spatial neighbor. Smaller value of nearest_refmv_count
  // w.r.t to ref_mv_count means less correlation with its spatial neighbors.
  // Hence less possibility for NEARESTMV and NEARMV modes becoming the best
  // mode since these modes work well for blocks that shares similar motion
  // characteristics with its neighbor. Thus, NEARMV mode is pruned when
  // nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV
  // mode is pruned if none of the ref mvs are populated from nearest candidate.
  const int prune_thresh = 1 + (ref_mv_count >= 2);
  if (nearest_refmv_count < prune_thresh) return 1;
  return 0;
}

// This function update the non-new mv for the current prediction mode
static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode,
                               const AV1_COMMON *cm, const MACROBLOCK *x,
                               int skip_repeated_ref_mv) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);

  int ret = 1;
  for (int i = 0; i < is_comp_pred + 1; ++i) {
    int_mv this_mv;
    this_mv.as_int = INVALID_MV;
    ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx,
                      skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext);
    if (!ret) return 0;
    const PREDICTION_MODE single_mode = get_single_mode(this_mode, i);
    if (single_mode == NEWMV) {
      const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
      cur_mv[i] =
          (i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
                         .this_mv
                   : x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
                         .comp_mv;
    } else {
      ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
    }
  }
  return ret;
}

static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi,
                               const MB_MODE_INFO_EXT *mbmi_ext,
                               const int (*const drl_mode_cost0)[2],
                               int8_t ref_frame_type) {
  int cost = 0;
  if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
    for (int idx = 0; idx < 2; ++idx) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
        cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
        if (mbmi->ref_mv_idx == idx) return cost;
      }
    }
    return cost;
  }

  if (have_nearmv_in_inter_mode(mbmi->mode)) {
    for (int idx = 1; idx < 3; ++idx) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
        cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
        if (mbmi->ref_mv_idx == (idx - 1)) return cost;
      }
    }
    return cost;
  }
  return cost;
}

static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args,
                                        const MB_MODE_INFO *const mbmi,
                                        PREDICTION_MODE this_mode) {
  for (int ref_idx = 0; ref_idx < 2; ++ref_idx) {
    const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
    const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx];
    if (single_mode == NEWMV &&
        args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) {
      return 0;
    }
  }
  return 1;
}

static int get_drl_refmv_count(const MACROBLOCK *const x,
                               const MV_REFERENCE_FRAME *ref_frame,
                               PREDICTION_MODE mode) {
  const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
  const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0;
  const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
  const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV);
  const int has_drl =
      (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1);
  const int ref_set =
      has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1;

  return ref_set;
}

// Checks if particular ref_mv_idx should be pruned.
static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes,
                                         const int qindex,
                                         const int ref_mv_idx) {
  if (reduce_inter_modes >= 3) return 1;
  // Q-index logic based pruning is enabled only for
  // reduce_inter_modes = 2.
  assert(reduce_inter_modes == 2);
  // When reduce_inter_modes=2, pruning happens as below based on q index.
  // For q index range between 0 and 85: prune if ref_mv_idx >= 1.
  // For q index range between 86 and 170: prune if ref_mv_idx == 2.
  // For q index range between 171 and 255: no pruning.
  const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1;
  return (ref_mv_idx >= min_prune_ref_mv_idx);
}

// Whether this reference motion vector can be skipped, based on initial
// heuristics.
static bool ref_mv_idx_early_breakout(
    const SPEED_FEATURES *const sf,
    const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x,
    const HandleInterModeArgs *const args, int64_t ref_best_rd,
    int ref_mv_idx) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  const int is_comp_pred = has_second_ref(mbmi);
  if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) {
    if (mbmi->ref_frame[0] == LAST2_FRAME ||
        mbmi->ref_frame[0] == LAST3_FRAME ||
        mbmi->ref_frame[1] == LAST2_FRAME ||
        mbmi->ref_frame[1] == LAST3_FRAME) {
      const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
      if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
          REF_CAT_LEVEL) {
        return true;
      }
    }
    // TODO(any): Experiment with reduce_inter_modes for compound prediction
    if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred &&
        have_newmv_in_inter_mode(mbmi->mode)) {
      if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref &&
          mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) {
        const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
        const int do_prune = prune_ref_mv_idx_using_qindex(
            sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx);
        if (do_prune &&
            (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
             REF_CAT_LEVEL)) {
          return true;
        }
      }
    }
  }

  mbmi->ref_mv_idx = ref_mv_idx;
  if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) {
    return true;
  }
  size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost;
  const int drl_cost = get_drl_cost(
      mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type);
  est_rd_rate += drl_cost;
  if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd &&
      mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
    return true;
  }
  return false;
}

// Compute the estimated RD cost for the motion vector with simple translation.
static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x,
                                          RD_STATS *rd_stats,
                                          HandleInterModeArgs *args,
                                          int ref_mv_idx, int64_t ref_best_rd,
                                          BLOCK_SIZE bsize) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  const AV1_COMMON *cm = &cpi->common;
  const int is_comp_pred = has_second_ref(mbmi);
  const ModeCosts *mode_costs = &x->mode_costs;

  struct macroblockd_plane *p = xd->plane;
  const BUFFER_SET orig_dst = {
    { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
    { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
  };
  av1_init_rd_stats(rd_stats);

  mbmi->interinter_comp.type = COMPOUND_AVERAGE;
  mbmi->comp_group_idx = 0;
  mbmi->compound_idx = 1;
  if (mbmi->ref_frame[1] == INTRA_FRAME) {
    mbmi->ref_frame[1] = NONE_FRAME;
  }
  int16_t mode_ctx =
      av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);

  mbmi->num_proj_ref = 0;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->ref_mv_idx = ref_mv_idx;

  rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
  const int drl_cost =
      get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
  rd_stats->rate += drl_cost;

  int_mv cur_mv[2];
  if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) {
    return INT64_MAX;
  }
  assert(have_nearmv_in_inter_mode(mbmi->mode));
  for (int i = 0; i < is_comp_pred + 1; ++i) {
    mbmi->mv[i].as_int = cur_mv[i].as_int;
  }
  const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx);
  rd_stats->rate += ref_mv_cost;

  if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) {
    return INT64_MAX;
  }

  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->num_proj_ref = 0;
  if (is_comp_pred) {
    // Only compound_average
    mbmi->interinter_comp.type = COMPOUND_AVERAGE;
    mbmi->comp_group_idx = 0;
    mbmi->compound_idx = 1;
  }
  set_default_interp_filters(mbmi, cm->features.interp_filter);

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
                                AOM_PLANE_Y, AOM_PLANE_Y);
  int est_rate;
  int64_t est_dist;
  model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist,
                                  NULL, NULL, NULL, NULL, NULL);
  return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist);
}

// Represents a set of integers, from 0 to sizeof(int) * 8, as bits in
// an integer. 0 for the i-th bit means that integer is excluded, 1 means
// it is included.
static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); }

static INLINE bool mask_check_bit(int mask, int index) {
  return (mask >> index) & 0x1;
}

// Before performing the full MV search in handle_inter_mode, do a simple
// translation search and see if we can eliminate any motion vectors.
// Returns an integer where, if the i-th bit is set, it means that the i-th
// motion vector should be searched. This is only set for NEAR_MV.
static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x,
                                RD_STATS *rd_stats,
                                HandleInterModeArgs *const args,
                                int64_t ref_best_rd, BLOCK_SIZE bsize,
                                const int ref_set) {
  // If the number of ref mv count is equal to 1, do not prune the same. It
  // is better to evaluate the same than to prune it.
  if (ref_set == 1) return 1;
  AV1_COMMON *const cm = &cpi->common;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const PREDICTION_MODE this_mode = mbmi->mode;

  // Only search indices if they have some chance of being good.
  int good_indices = 0;
  for (int i = 0; i < ref_set; ++i) {
    if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args,
                                  ref_best_rd, i)) {
      continue;
    }
    mask_set_bit(&good_indices, i);
  }

  // Only prune in NEARMV mode, if the speed feature is set, and the block size
  // is large enough. If these conditions are not met, return all good indices
  // found so far.
  if (!cpi->sf.inter_sf.prune_mode_search_simple_translation)
    return good_indices;
  if (!have_nearmv_in_inter_mode(this_mode)) return good_indices;
  if (num_pels_log2_lookup[bsize] <= 6) return good_indices;
  // Do not prune when there is internal resizing. TODO(elliottk) fix this
  // so b/2384 can be resolved.
  if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) ||
      (mbmi->ref_frame[1] > 0 &&
       av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) {
    return good_indices;
  }

  // Calculate the RD cost for the motion vectors using simple translation.
  int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX };
  for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
    // If this index is bad, ignore it.
    if (!mask_check_bit(good_indices, ref_mv_idx)) {
      continue;
    }
    idx_rdcost[ref_mv_idx] = simple_translation_pred_rd(
        cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize);
  }
  // Find the index with the best RD cost.
  int best_idx = 0;
  for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) {
    if (idx_rdcost[i] < idx_rdcost[best_idx]) {
      best_idx = i;
    }
  }
  // Only include indices that are good and within a % of the best.
  const double dth = has_second_ref(mbmi) ? 1.05 : 1.001;
  // If the simple translation cost is not within this multiple of the
  // best RD, skip it. Note that the cutoff is derived experimentally.
  const double ref_dth = 5;
  int result = 0;
  for (int i = 0; i < ref_set; ++i) {
    if (mask_check_bit(good_indices, i) &&
        (1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth &&
        (1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) {
      mask_set_bit(&result, i);
    }
  }
  return result;
}

/*!\brief Motion mode information for inter mode search speedup.
 *
 * Used in a speed feature to search motion modes other than
 * SIMPLE_TRANSLATION only on winning candidates.
 */
typedef struct motion_mode_candidate {
  /*!
   * Mode info for the motion mode candidate.
   */
  MB_MODE_INFO mbmi;
  /*!
   * Rate describing the cost of the motion vectors for this candidate.
   */
  int rate_mv;
  /*!
   * Rate before motion mode search and transform coding is applied.
   */
  int rate2_nocoeff;
  /*!
   * An integer value 0 or 1 which indicates whether or not to skip the motion
   * mode search and default to SIMPLE_TRANSLATION as a speed feature for this
   * candidate.
   */
  int skip_motion_mode;
  /*!
   * Total RD cost for this candidate.
   */
  int64_t rd_cost;
} motion_mode_candidate;

/*!\cond */
typedef struct motion_mode_best_st_candidate {
  motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES];
  int num_motion_mode_cand;
} motion_mode_best_st_candidate;

// Checks if the current reference frame matches with neighbouring block's
// (top/left) reference frames
static AOM_INLINE int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi,
                                                   MB_MODE_INFO *nb_mbmi) {
  MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0],
                                          nb_mbmi->ref_frame[1] };
  MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0],
                                           cur_mbmi->ref_frame[1] };
  const int is_cur_comp_pred = has_second_ref(cur_mbmi);
  int match_found = 0;

  for (int i = 0; i < (is_cur_comp_pred + 1); i++) {
    if ((cur_ref_frames[i] == nb_ref_frames[0]) ||
        (cur_ref_frames[i] == nb_ref_frames[1]))
      match_found = 1;
  }
  return match_found;
}

static AOM_INLINE int find_ref_match_in_above_nbs(const int total_mi_cols,
                                                  MACROBLOCKD *xd) {
  if (!xd->up_available) return 1;
  const int mi_col = xd->mi_col;
  MB_MODE_INFO **cur_mbmi = xd->mi;
  // prev_row_mi points into the mi array, starting at the beginning of the
  // previous row.
  MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride;
  const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols);
  uint8_t mi_step;
  for (int above_mi_col = mi_col; above_mi_col < end_col;
       above_mi_col += mi_step) {
    MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col;
    mi_step = mi_size_wide[above_mi[0]->bsize];
    int match_found = 0;
    if (is_inter_block(*above_mi))
      match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi);
    if (match_found) return 1;
  }
  return 0;
}

static AOM_INLINE int find_ref_match_in_left_nbs(const int total_mi_rows,
                                                 MACROBLOCKD *xd) {
  if (!xd->left_available) return 1;
  const int mi_row = xd->mi_row;
  MB_MODE_INFO **cur_mbmi = xd->mi;
  // prev_col_mi points into the mi array, starting at the top of the
  // previous column
  MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride;
  const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows);
  uint8_t mi_step;
  for (int left_mi_row = mi_row; left_mi_row < end_row;
       left_mi_row += mi_step) {
    MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride;
    mi_step = mi_size_high[left_mi[0]->bsize];
    int match_found = 0;
    if (is_inter_block(*left_mi))
      match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi);
    if (match_found) return 1;
  }
  return 0;
}
/*!\endcond */

/*! \brief Struct used to hold TPL data to
 * narrow down parts of the inter mode search.
 */
typedef struct {
  /*!
   * The best inter cost out of all of the reference frames.
   */
  int64_t best_inter_cost;
  /*!
   * The inter cost for each reference frame.
   */
  int64_t ref_inter_cost[INTER_REFS_PER_FRAME];
} PruneInfoFromTpl;

#if !CONFIG_REALTIME_ONLY
// TODO(Remya): Check if get_tpl_stats_b() can be reused
static AOM_INLINE void get_block_level_tpl_stats(
    AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs,
    PruneInfoFromTpl *inter_cost_info_from_tpl) {
  AV1_COMMON *const cm = &cpi->common;

  assert(IMPLIES(cpi->ppi->gf_group.size > 0,
                 cpi->gf_frame_index < cpi->ppi->gf_group.size));
  const int tpl_idx = cpi->gf_frame_index;
  TplParams *const tpl_data = &cpi->ppi->tpl_data;
  if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return;
  const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
  const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
  const int mi_wide = mi_size_wide[bsize];
  const int mi_high = mi_size_high[bsize];
  const int tpl_stride = tpl_frame->stride;
  const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
  const int mi_col_sr =
      coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
  const int mi_col_end_sr =
      coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
  const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);

  const int row_step = step;
  const int col_step_sr =
      coded_to_superres_mi(step, cm->superres_scale_denominator);
  for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows);
       row += row_step) {
    for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr);
         col += col_step_sr) {
      const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
          row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];

      // Sums up the inter cost of corresponding ref frames
      for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
        inter_cost_info_from_tpl->ref_inter_cost[ref_idx] +=
            this_stats->pred_error[ref_idx];
      }
    }
  }

  // Computes the best inter cost (minimum inter_cost)
  int64_t best_inter_cost = INT64_MAX;
  for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
    const int64_t cur_inter_cost =
        inter_cost_info_from_tpl->ref_inter_cost[ref_idx];
    // For invalid ref frames, cur_inter_cost = 0 and has to be handled while
    // calculating the minimum inter_cost
    if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) &&
        valid_refs[ref_idx])
      best_inter_cost = cur_inter_cost;
  }
  inter_cost_info_from_tpl->best_inter_cost = best_inter_cost;
}
#endif

static AOM_INLINE int prune_modes_based_on_tpl_stats(
    PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx,
    const PREDICTION_MODE this_mode, int prune_mode_level) {
  const int have_newmv = have_newmv_in_inter_mode(this_mode);
  if ((prune_mode_level < 2) && have_newmv) return 0;

  const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost;
  if (best_inter_cost == INT64_MAX) return 0;

  const int prune_level = prune_mode_level - 1;
  int64_t cur_inter_cost;

  const int is_globalmv =
      (this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV);
  const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx;

  // Thresholds used for pruning:
  // Lower value indicates aggressive pruning and higher value indicates
  // conservative pruning which is set based on ref_mv_idx and speed feature.
  // 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index
  // 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV
  static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = {
    { 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 }
  };

  const int is_comp_pred = (refs[1] > INTRA_FRAME);
  if (!is_comp_pred) {
    cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
  } else {
    const int64_t inter_cost_ref0 =
        inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
    const int64_t inter_cost_ref1 =
        inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1];
    // Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for
    // more aggressive pruning
    cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1);
  }

  // Prune the mode if cur_inter_cost is greater than threshold times
  // best_inter_cost
  if (cur_inter_cost >
      ((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] *
        best_inter_cost) >>
       2))
    return 1;
  return 0;
}

/*!\brief High level function to select parameters for compound mode.
 *
 * \ingroup inter_mode_search
 * The main search functionality is done in the call to av1_compound_type_rd().
 *
 * \param[in]     cpi               Top-level encoder structure.
 * \param[in]     x                 Pointer to struct holding all the data for
 *                                  the current macroblock.
 * \param[in]     args              HandleInterModeArgs struct holding
 *                                  miscellaneous arguments for inter mode
 *                                  search. See the documentation for this
 *                                  struct for a description of each member.
 * \param[in]     ref_best_rd       Best RD found so far for this block.
 *                                  It is used for early termination of this
 *                                  search if the RD exceeds this value.
 * \param[in,out] cur_mv            Current motion vector.
 * \param[in]     bsize             Current block size.
 * \param[in,out] compmode_interinter_cost  RD of the selected interinter
                                    compound mode.
 * \param[in,out] rd_buffers        CompoundTypeRdBuffers struct to hold all
 *                                  allocated buffers for the compound
 *                                  predictors and masks in the compound type
 *                                  search.
 * \param[in,out] orig_dst          A prediction buffer to hold a computed
 *                                  prediction. This will eventually hold the
 *                                  final prediction, and the tmp_dst info will
 *                                  be copied here.
 * \param[in]     tmp_dst           A temporary prediction buffer to hold a
 *                                  computed prediction.
 * \param[in,out] rate_mv           The rate associated with the motion vectors.
 *                                  This will be modified if a motion search is
 *                                  done in the motion mode search.
 * \param[in,out] rd_stats          Struct to keep track of the overall RD
 *                                  information.
 * \param[in,out] skip_rd           An array of length 2 where skip_rd[0] is the
 *                                  best total RD for a skip mode so far, and
 *                                  skip_rd[1] is the best RD for a skip mode so
 *                                  far in luma. This is used as a speed feature
 *                                  to skip the transform search if the computed
 *                                  skip RD for the current mode is not better
 *                                  than the best skip_rd so far.
 * \param[in,out] skip_build_pred   Indicates whether or not to build the inter
 *                                  predictor. If this is 0, the inter predictor
 *                                  has already been built and thus we can avoid
 *                                  repeating computation.
 * \return Returns 1 if this mode is worse than one already seen and 0 if it is
 * a viable candidate.
 */
static int process_compound_inter_mode(
    AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args,
    int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize,
    int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers,
    const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv,
    RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const AV1_COMMON *cm = &cpi->common;
  const int masked_compound_used = is_any_masked_compound_used(bsize) &&
                                   cm->seq_params->enable_masked_compound;
  int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) |
                         (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD);

  const int num_planes = av1_num_planes(cm);
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  int is_luma_interp_done = 0;
  set_default_interp_filters(mbmi, cm->features.interp_filter);

  int64_t best_rd_compound;
  int64_t rd_thresh;
  const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT;
  const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE;
  rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift),
                                         comp_type_rd_scale);
  // Select compound type and any parameters related to that type
  // (for example, the mask parameters if it is a masked mode) and compute
  // the RD
  *compmode_interinter_cost = av1_compound_type_rd(
      cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used,
      orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats,
      ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh);
  if (ref_best_rd < INT64_MAX &&
      (best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale >
          ref_best_rd) {
    restore_dst_buf(xd, *orig_dst, num_planes);
    return 1;
  }

  // Build only uv predictor for COMPOUND_AVERAGE.
  // Note there is no need to call av1_enc_build_inter_predictor
  // for luma if COMPOUND_AVERAGE is selected because it is the first
  // candidate in av1_compound_type_rd, which means it used the dst_buf
  // rather than the tmp_buf.
  if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) {
    if (num_planes > 1) {
      av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
                                    AOM_PLANE_U, num_planes - 1);
    }
    *skip_build_pred = 1;
  }
  return 0;
}

// Speed feature to prune out MVs that are similar to previous MVs if they
// don't achieve the best RD advantage.
static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx,
                                   int_mv save_mv[MAX_REF_MV_SEARCH - 1][2],
                                   MB_MODE_INFO *mbmi, int pruning_factor) {
  int i;
  const int is_comp_pred = has_second_ref(mbmi);
  const int thr = (1 + is_comp_pred) << (pruning_factor + 1);

  // Skip the evaluation if an MV match is found.
  if (ref_mv_idx > 0) {
    for (int idx = 0; idx < ref_mv_idx; ++idx) {
      if (save_mv[idx][0].as_int == INVALID_MV) continue;

      int mv_diff = 0;
      for (i = 0; i < 1 + is_comp_pred; ++i) {
        mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) +
                   abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col);
      }

      // If this mode is not the best one, and current MV is similar to
      // previous stored MV, terminate this ref_mv_idx evaluation.
      if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1;
    }
  }

  if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) {
    for (i = 0; i < is_comp_pred + 1; ++i)
      save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int;
  }

  return 0;
}

/*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE
 *
 * \ingroup inter_mode_search
 *
 * Compares the sse of zero mv and the best sse found in single new_mv. If the
 * sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped.
 * Else returns 0.
 *
 * Note that the sse of here comes from single_motion_search. So it is
 * interpolated with the filter in motion search, not the actual interpolation
 * filter used in encoding.
 *
 * \param[in]     fn_ptr            A table of function pointers to compute SSE.
 * \param[in]     x                 Pointer to struct holding all the data for
 *                                  the current macroblock.
 * \param[in]     bsize             The current block_size.
 * \param[in]     args              The args to handle_inter_mode, used to track
 *                                  the best SSE.
 * \param[in]    prune_zero_mv_with_sse  The argument holds speed feature
 *                                       prune_zero_mv_with_sse value
 * \return Returns 1 if zero_mv is pruned, 0 otherwise.
 */
static AOM_INLINE int prune_zero_mv_with_sse(
    const aom_variance_fn_ptr_t *fn_ptr, const MACROBLOCK *x, BLOCK_SIZE bsize,
    const HandleInterModeArgs *args, int prune_zero_mv_with_sse) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];

  const int is_comp_pred = has_second_ref(mbmi);
  const MV_REFERENCE_FRAME *refs = mbmi->ref_frame;

  for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
    if (xd->global_motion[refs[idx]].wmtype != IDENTITY) {
      // Pruning logic only works for IDENTITY type models
      // Note: In theory we could apply similar logic for TRANSLATION
      // type models, but we do not code these due to a spec bug
      // (see comments in gm_get_motion_vector() in av1/common/mv.h)
      assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION);
      return 0;
    }

    // Don't prune if we have invalid data
    assert(mbmi->mv[idx].as_int == 0);
    if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) {
      return 0;
    }
  }

  // Sum up the sse of ZEROMV and best NEWMV
  unsigned int this_sse_sum = 0;
  unsigned int best_sse_sum = 0;
  for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
    const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
    const struct macroblockd_plane *pd = xd->plane;
    const struct buf_2d *src_buf = &p->src;
    const struct buf_2d *ref_buf = &pd->pre[idx];
    const uint8_t *src = src_buf->buf;
    const uint8_t *ref = ref_buf->buf;
    const int src_stride = src_buf->stride;
    const int ref_stride = ref_buf->stride;

    unsigned int this_sse;
    fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse);
    this_sse_sum += this_sse;

    const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]];
    best_sse_sum += best_sse;
  }

  const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25;
  if ((double)this_sse_sum > (mul * (double)best_sse_sum)) {
    return 1;
  }

  return 0;
}

/*!\brief Searches for interpolation filter in realtime mode during winner eval
 *
 * \ingroup inter_mode_search
 *
 * Does a simple interpolation filter search during winner mode evaluation. This
 * is currently only used by realtime mode as \ref
 * av1_interpolation_filter_search is not called during realtime encoding.
 *
 * This function only searches over two possible filters. EIGHTTAP_REGULAR is
 * always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For
 * higher  res slips (>240p), EIGHTTAP_SMOOTH is also searched.
 *  *
 * \param[in]     cpi               Pointer to the compressor. Used for feature
 *                                  flags.
 * \param[in,out] x                 Pointer to macroblock. This is primarily
 *                                  used to access the buffers.
 * \param[in]     mi_row            The current row in mi unit (4X4 pixels).
 * \param[in]     mi_col            The current col in mi unit (4X4 pixels).
 * \param[in]     bsize             The current block_size.
 * \return Returns true if a predictor is built in xd->dst, false otherwise.
 */
static AOM_INLINE bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x,
                                          int mi_row, int mi_col,
                                          BLOCK_SIZE bsize) {
  static const InterpFilters filters_ref_set[3] = {
    { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR },
    { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
    { MULTITAP_SHARP, MULTITAP_SHARP }
  };

  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mi = xd->mi[0];
  int64_t best_cost = INT64_MAX;
  int best_filter_index = -1;
  // dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best
  const int num_planes = av1_num_planes(cm);
  const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240;
  assert(is_inter_mode(mi->mode));
  assert(mi->motion_mode == SIMPLE_TRANSLATION);
  assert(!is_inter_compound_mode(mi->mode));

  if (!av1_is_interp_needed(xd)) {
    return false;
  }

  struct macroblockd_plane *pd = xd->plane;
  const BUFFER_SET orig_dst = {
    { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
    { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
  };
  uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
  const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
                                 tmp_buf + 2 * MAX_SB_SQUARE },
                               { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
  const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst };

  for (int i = 0; i < 3; ++i) {
    if (is_240p_or_lesser) {
      if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) {
        continue;
      }
    } else {
      if (filters_ref_set[i].x_filter == MULTITAP_SHARP) {
        continue;
      }
    }
    int64_t cost;
    RD_STATS tmp_rd = { 0 };

    mi->interp_filters.as_filters = filters_ref_set[i];
    av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);

    model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
                       ? MODELRD_LEGACY
                       : MODELRD_TYPE_INTERP_FILTER](
        cpi, bsize, x, xd, AOM_PLANE_Y, AOM_PLANE_Y, &tmp_rd.rate, &tmp_rd.dist,
        &tmp_rd.skip_txfm, &tmp_rd.sse, NULL, NULL, NULL);

    tmp_rd.rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter,
                                           cm->seq_params->enable_dual_filter);
    cost = RDCOST(x->rdmult, tmp_rd.rate, tmp_rd.dist);
    if (cost < best_cost) {
      best_filter_index = i;
      best_cost = cost;
      swap_dst_buf(xd, dst_bufs, num_planes);
    }
  }
  assert(best_filter_index >= 0);

  mi->interp_filters.as_filters = filters_ref_set[best_filter_index];

  const bool is_best_pred_in_orig = &orig_dst == dst_bufs[1];

  if (is_best_pred_in_orig) {
    swap_dst_buf(xd, dst_bufs, num_planes);
  } else {
    // Note that xd->pd's bufers are kept in sync with dst_bufs[0]. So if
    // is_best_pred_in_orig is false, that means the current buffer is the
    // original one.
    assert(&orig_dst == dst_bufs[0]);
    assert(xd->plane[AOM_PLANE_Y].dst.buf == orig_dst.plane[AOM_PLANE_Y]);
    const int width = block_size_wide[bsize];
    const int height = block_size_high[bsize];
#if CONFIG_AV1_HIGHBITDEPTH
    const bool is_hbd = is_cur_buf_hbd(xd);
    if (is_hbd) {
      aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(tmp_dst.plane[AOM_PLANE_Y]),
                               tmp_dst.stride[AOM_PLANE_Y],
                               CONVERT_TO_SHORTPTR(orig_dst.plane[AOM_PLANE_Y]),
                               orig_dst.stride[AOM_PLANE_Y], width, height);
    } else {
      aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
                        orig_dst.plane[AOM_PLANE_Y],
                        orig_dst.stride[AOM_PLANE_Y], width, height);
    }
#else
    aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
                      orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y],
                      width, height);
#endif
  }

  // Build the YUV predictor.
  if (num_planes > 1) {
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
                                  AOM_PLANE_U, AOM_PLANE_V);
  }

  return true;
}

/*!\brief AV1 inter mode RD computation
 *
 * \ingroup inter_mode_search
 * Do the RD search for a given inter mode and compute all information relevant
 * to the input mode. It will compute the best MV,
 * compound parameters (if the mode is a compound mode) and interpolation filter
 * parameters.
 *
 * \param[in]     cpi               Top-level encoder structure.
 * \param[in]     tile_data         Pointer to struct holding adaptive
 *                                  data/contexts/models for the tile during
 *                                  encoding.
 * \param[in]     x                 Pointer to structure holding all the data
 *                                  for the current macroblock.
 * \param[in]     bsize             Current block size.
 * \param[in,out] rd_stats          Struct to keep track of the overall RD
 *                                  information.
 * \param[in,out] rd_stats_y        Struct to keep track of the RD information
 *                                  for only the Y plane.
 * \param[in,out] rd_stats_uv       Struct to keep track of the RD information
 *                                  for only the UV planes.
 * \param[in]     args              HandleInterModeArgs struct holding
 *                                  miscellaneous arguments for inter mode
 *                                  search. See the documentation for this
 *                                  struct for a description of each member.
 * \param[in]     ref_best_rd       Best RD found so far for this block.
 *                                  It is used for early termination of this
 *                                  search if the RD exceeds this value.
 * \param[in]     tmp_buf           Temporary buffer used to hold predictors
 *                                  built in this search.
 * \param[in,out] rd_buffers        CompoundTypeRdBuffers struct to hold all
 *                                  allocated buffers for the compound
 *                                  predictors and masks in the compound type
 *                                  search.
 * \param[in,out] best_est_rd       Estimated RD for motion mode search if
 *                                  do_tx_search (see below) is 0.
 * \param[in]     do_tx_search      Parameter to indicate whether or not to do
 *                                  a full transform search. This will compute
 *                                  an estimated RD for the modes without the
 *                                  transform search and later perform the full
 *                                  transform search on the best candidates.
 * \param[in,out] inter_modes_info  InterModesInfo struct to hold inter mode
 *                                  information to perform a full transform
 *                                  search only on winning candidates searched
 *                                  with an estimate for transform coding RD.
 * \param[in,out] motion_mode_cand  A motion_mode_candidate struct to store
 *                                  motion mode information used in a speed
 *                                  feature to search motion modes other than
 *                                  SIMPLE_TRANSLATION only on winning
 *                                  candidates.
 * \param[in,out] skip_rd           A length 2 array, where skip_rd[0] is the
 *                                  best total RD for a skip mode so far, and
 *                                  skip_rd[1] is the best RD for a skip mode so
 *                                  far in luma. This is used as a speed feature
 *                                  to skip the transform search if the computed
 *                                  skip RD for the current mode is not better
 *                                  than the best skip_rd so far.
 * \param[in]     inter_cost_info_from_tpl A PruneInfoFromTpl struct used to
 *                                         narrow down the search based on data
 *                                         collected in the TPL model.
 * \param[out]    yrd               Stores the rdcost corresponding to encoding
 *                                  the luma plane.
 *
 * \return The RD cost for the mode being searched.
 */
static int64_t handle_inter_mode(
    AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x,
    BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
    RD_STATS *rd_stats_uv, HandleInterModeArgs *args, int64_t ref_best_rd,
    uint8_t *const tmp_buf, const CompoundTypeRdBuffers *rd_buffers,
    int64_t *best_est_rd, const int do_tx_search,
    InterModesInfo *inter_modes_info, motion_mode_candidate *motion_mode_cand,
    int64_t *skip_rd, PruneInfoFromTpl *inter_cost_info_from_tpl,
    int64_t *yrd) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  const int is_comp_pred = has_second_ref(mbmi);
  const PREDICTION_MODE this_mode = mbmi->mode;

#if CONFIG_REALTIME_ONLY
  const int prune_modes_based_on_tpl = 0;
#else   // CONFIG_REALTIME_ONLY
  const TplParams *const tpl_data = &cpi->ppi->tpl_data;
  const int prune_modes_based_on_tpl =
      cpi->sf.inter_sf.prune_inter_modes_based_on_tpl &&
      av1_tpl_stats_ready(tpl_data, cpi->gf_frame_index);
#endif  // CONFIG_REALTIME_ONLY
  int i;
  // Reference frames for this mode
  const int refs[2] = { mbmi->ref_frame[0],
                        (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
  int rate_mv = 0;
  int64_t rd = INT64_MAX;
  // Do first prediction into the destination buffer. Do the next
  // prediction into a temporary buffer. Then keep track of which one
  // of these currently holds the best predictor, and use the other
  // one for future predictions. In the end, copy from tmp_buf to
  // dst if necessary.
  struct macroblockd_plane *pd = xd->plane;
  const BUFFER_SET orig_dst = {
    { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
    { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
  };
  const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
                                 tmp_buf + 2 * MAX_SB_SQUARE },
                               { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };

  int64_t ret_val = INT64_MAX;
  const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
  int64_t best_rd = INT64_MAX;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
  int64_t best_yrd = INT64_MAX;
  MB_MODE_INFO best_mbmi = *mbmi;
  int best_xskip_txfm = 0;
  int64_t newmv_ret_val = INT64_MAX;
  inter_mode_info mode_info[MAX_REF_MV_SEARCH];

  // Do not prune the mode based on inter cost from tpl if the current ref frame
  // is the winner ref in neighbouring blocks.
  int ref_match_found_in_above_nb = 0;
  int ref_match_found_in_left_nb = 0;
  if (prune_modes_based_on_tpl) {
    ref_match_found_in_above_nb =
        find_ref_match_in_above_nbs(cm->mi_params.mi_cols, xd);
    ref_match_found_in_left_nb =
        find_ref_match_in_left_nbs(cm->mi_params.mi_rows, xd);
  }

  // First, perform a simple translation search for each of the indices. If
  // an index performs well, it will be fully searched in the main loop
  // of this function.
  const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
  // Save MV results from first 2 ref_mv_idx.
  int_mv save_mv[MAX_REF_MV_SEARCH - 1][2];
  int best_ref_mv_idx = -1;
  const int idx_mask =
      ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, bsize, ref_set);
  const int16_t mode_ctx =
      av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
  const ModeCosts *mode_costs = &x->mode_costs;
  const int ref_mv_cost = cost_mv_ref(mode_costs, this_mode, mode_ctx);
  const int base_rate =
      args->ref_frame_cost + args->single_comp_cost + ref_mv_cost;

  for (i = 0; i < MAX_REF_MV_SEARCH - 1; ++i) {
    save_mv[i][0].as_int = INVALID_MV;
    save_mv[i][1].as_int = INVALID_MV;
  }
  args->start_mv_cnt = 0;

  // Main loop of this function. This will  iterate over all of the ref mvs
  // in the dynamic reference list and do the following:
  //    1.) Get the current MV. Create newmv MV if necessary
  //    2.) Search compound type and parameters if applicable
  //    3.) Do interpolation filter search
  //    4.) Build the inter predictor
  //    5.) Pick the motion mode (SIMPLE_TRANSLATION, OBMC_CAUSAL,
  //        WARPED_CAUSAL)
  //    6.) Update stats if best so far
  for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
    mbmi->ref_mv_idx = ref_mv_idx;

    mode_info[ref_mv_idx].full_search_mv.as_int = INVALID_MV;
    mode_info[ref_mv_idx].full_mv_bestsme = INT_MAX;
    const int drl_cost = get_drl_cost(
        mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
    mode_info[ref_mv_idx].drl_cost = drl_cost;
    mode_info[ref_mv_idx].skip = 0;

    if (!mask_check_bit(idx_mask, ref_mv_idx)) {
      // MV did not perform well in simple translation search. Skip it.
      continue;
    }
    if (prune_modes_based_on_tpl && !ref_match_found_in_above_nb &&
        !ref_match_found_in_left_nb && (ref_best_rd != INT64_MAX)) {
      // Skip mode if TPL model indicates it will not be beneficial.
      if (prune_modes_based_on_tpl_stats(
              inter_cost_info_from_tpl, refs, ref_mv_idx, this_mode,
              cpi->sf.inter_sf.prune_inter_modes_based_on_tpl))
        continue;
    }
    av1_init_rd_stats(rd_stats);

    // Initialize compound mode data
    mbmi->interinter_comp.type = COMPOUND_AVERAGE;
    mbmi->comp_group_idx = 0;
    mbmi->compound_idx = 1;
    if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;

    mbmi->num_proj_ref = 0;
    mbmi->motion_mode = SIMPLE_TRANSLATION;

    // Compute cost for signalling this DRL index
    rd_stats->rate = base_rate;
    rd_stats->rate += drl_cost;

    int rs = 0;
    int compmode_interinter_cost = 0;

    int_mv cur_mv[2];

    // TODO(Cherma): Extend this speed feature to support compound mode
    int skip_repeated_ref_mv =
        is_comp_pred ? 0 : cpi->sf.inter_sf.skip_repeated_ref_mv;
    // Generate the current mv according to the prediction mode
    if (!build_cur_mv(cur_mv, this_mode, cm, x, skip_repeated_ref_mv)) {
      continue;
    }

    // The above call to build_cur_mv does not handle NEWMV modes. Build
    // the mv here if we have NEWMV for any predictors.
    if (have_newmv_in_inter_mode(this_mode)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
      start_timing(cpi, handle_newmv_time);
#endif
      newmv_ret_val =
          handle_newmv(cpi, x, bsize, cur_mv, &rate_mv, args, mode_info);
#if CONFIG_COLLECT_COMPONENT_TIMING
      end_timing(cpi, handle_newmv_time);
#endif

      if (newmv_ret_val != 0) continue;

      if (is_inter_singleref_mode(this_mode) &&
          cur_mv[0].as_int != INVALID_MV) {
        const MV_REFERENCE_FRAME ref = refs[0];
        const unsigned int this_sse = x->pred_sse[ref];
        if (this_sse < args->best_single_sse_in_refs[ref]) {
          args->best_single_sse_in_refs[ref] = this_sse;
        }

        if (cpi->sf.rt_sf.skip_newmv_mode_based_on_sse) {
          const int th_idx = cpi->sf.rt_sf.skip_newmv_mode_based_on_sse - 1;
          const int pix_idx = num_pels_log2_lookup[bsize] - 4;
          const double scale_factor[3][11] = {
            { 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9 },
            { 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1 },
            { 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1 }
          };
          assert(pix_idx >= 0);
          assert(th_idx <= 2);
          if (args->best_pred_sse < scale_factor[th_idx][pix_idx] * this_sse)
            continue;
        }
      }

      rd_stats->rate += rate_mv;
    }
    // Copy the motion vector for this mode into mbmi struct
    for (i = 0; i < is_comp_pred + 1; ++i) {
      mbmi->mv[i].as_int = cur_mv[i].as_int;
    }

    if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
        mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
      continue;
    }

    // Skip the rest of the search if prune_ref_mv_idx_search speed feature
    // is enabled, and the current MV is similar to a previous one.
    if (cpi->sf.inter_sf.prune_ref_mv_idx_search && is_comp_pred &&
        prune_ref_mv_idx_search(ref_mv_idx, best_ref_mv_idx, save_mv, mbmi,
                                cpi->sf.inter_sf.prune_ref_mv_idx_search))
      continue;

    if (cpi->sf.gm_sf.prune_zero_mv_with_sse &&
        (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV)) {
      if (prune_zero_mv_with_sse(cpi->ppi->fn_ptr, x, bsize, args,
                                 cpi->sf.gm_sf.prune_zero_mv_with_sse)) {
        continue;
      }
    }

    int skip_build_pred = 0;
    const int mi_row = xd->mi_row;
    const int mi_col = xd->mi_col;

    // Handle a compound predictor, continue if it is determined this
    // cannot be the best compound mode
    if (is_comp_pred) {
#if CONFIG_COLLECT_COMPONENT_TIMING
      start_timing(cpi, compound_type_rd_time);
#endif
      const int not_best_mode = process_compound_inter_mode(
          cpi, x, args, ref_best_rd, cur_mv, bsize, &compmode_interinter_cost,
          rd_buffers, &orig_dst, &tmp_dst, &rate_mv, rd_stats, skip_rd,
          &skip_build_pred);
#if CONFIG_COLLECT_COMPONENT_TIMING
      end_timing(cpi, compound_type_rd_time);
#endif
      if (not_best_mode) continue;
    }

    if (!args->skip_ifs) {
#if CONFIG_COLLECT_COMPONENT_TIMING
      start_timing(cpi, interpolation_filter_search_time);
#endif
      // Determine the interpolation filter for this mode
      ret_val = av1_interpolation_filter_search(
          x, cpi, tile_data, bsize, &tmp_dst, &orig_dst, &rd, &rs,
          &skip_build_pred, args, ref_best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
      end_timing(cpi, interpolation_filter_search_time);
#endif
      if (args->modelled_rd != NULL && !is_comp_pred) {
        args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd;
      }
      if (ret_val != 0) {
        restore_dst_buf(xd, orig_dst, num_planes);
        continue;
      } else if (cpi->sf.inter_sf.model_based_post_interp_filter_breakout &&
                 ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) {
        restore_dst_buf(xd, orig_dst, num_planes);
        continue;
      }

      // Compute modelled RD if enabled
      if (args->modelled_rd != NULL) {
        if (is_comp_pred) {
          const int mode0 = compound_ref0_mode(this_mode);
          const int mode1 = compound_ref1_mode(this_mode);
          const int64_t mrd =
              AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
                     args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
          if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) {
            restore_dst_buf(xd, orig_dst, num_planes);
            continue;
          }
        }
      }
    }

    rd_stats->rate += compmode_interinter_cost;
    if (skip_build_pred != 1) {
      // Build this inter predictor if it has not been previously built
      av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0,
                                    av1_num_planes(cm) - 1);
    }

#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, motion_mode_rd_time);
#endif
    int rate2_nocoeff = rd_stats->rate;
    // Determine the motion mode. This will be one of SIMPLE_TRANSLATION,
    // OBMC_CAUSAL or WARPED_CAUSAL
    int64_t this_yrd;
    ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y,
                             rd_stats_uv, args, ref_best_rd, skip_rd, &rate_mv,
                             &orig_dst, best_est_rd, do_tx_search,
                             inter_modes_info, 0, &this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, motion_mode_rd_time);
#endif
    assert(
        IMPLIES(!av1_check_newmv_joint_nonzero(cm, x), ret_val == INT64_MAX));

    if (ret_val != INT64_MAX) {
      int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
      const THR_MODES mode_enum = get_prediction_mode_idx(
          mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
      // Collect mode stats for multiwinner mode processing
      store_winner_mode_stats(&cpi->common, x, mbmi, rd_stats, rd_stats_y,
                              rd_stats_uv, mode_enum, NULL, bsize, tmp_rd,
                              cpi->sf.winner_mode_sf.multi_winner_mode_type,
                              do_tx_search);
      if (tmp_rd < best_rd) {
        best_yrd = this_yrd;
        // Update the best rd stats if we found the best mode so far
        best_rd_stats = *rd_stats;
        best_rd_stats_y = *rd_stats_y;
        best_rd_stats_uv = *rd_stats_uv;
        best_rd = tmp_rd;
        best_mbmi = *mbmi;
        best_xskip_txfm = txfm_info->skip_txfm;
        memcpy(best_blk_skip, txfm_info->blk_skip,
               sizeof(best_blk_skip[0]) * xd->height * xd->width);
        av1_copy_array(best_tx_type_map, xd->tx_type_map,
                       xd->height * xd->width);
        motion_mode_cand->rate_mv = rate_mv;
        motion_mode_cand->rate2_nocoeff = rate2_nocoeff;
      }

      if (tmp_rd < ref_best_rd) {
        ref_best_rd = tmp_rd;
        best_ref_mv_idx = ref_mv_idx;
      }
    }
    restore_dst_buf(xd, orig_dst, num_planes);
  }

  if (best_rd == INT64_MAX) return INT64_MAX;

  // re-instate status of the best choice
  *rd_stats = best_rd_stats;
  *rd_stats_y = best_rd_stats_y;
  *rd_stats_uv = best_rd_stats_uv;
  *yrd = best_yrd;
  *mbmi = best_mbmi;
  txfm_info->skip_txfm = best_xskip_txfm;
  assert(IMPLIES(mbmi->comp_group_idx == 1,
                 mbmi->interinter_comp.type != COMPOUND_AVERAGE));
  memcpy(txfm_info->blk_skip, best_blk_skip,
         sizeof(best_blk_skip[0]) * xd->height * xd->width);
  av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);

  rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);

  return rd_stats->rdcost;
}

/*!\brief Search for the best intrabc predictor
 *
 * \ingroup intra_mode_search
 * \callergraph
 * This function performs a motion search to find the best intrabc predictor.
 *
 * \returns Returns the best overall rdcost (including the non-intrabc modes
 * search before this function).
 */
static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
                                       PICK_MODE_CONTEXT *ctx,
                                       RD_STATS *rd_stats, BLOCK_SIZE bsize,
                                       int64_t best_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  if (!av1_allow_intrabc(cm) || !cpi->oxcf.kf_cfg.enable_intrabc ||
      !cpi->sf.mv_sf.use_intrabc || cpi->sf.rt_sf.use_nonrd_pick_mode)
    return INT64_MAX;
  const int num_planes = av1_num_planes(cm);

  MACROBLOCKD *const xd = &x->e_mbd;
  const TileInfo *tile = &xd->tile;
  MB_MODE_INFO *mbmi = xd->mi[0];
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  const int w = block_size_wide[bsize];
  const int h = block_size_high[bsize];
  const int sb_row = mi_row >> cm->seq_params->mib_size_log2;
  const int sb_col = mi_col >> cm->seq_params->mib_size_log2;

  MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  const MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
  av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                   xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
                   mbmi_ext->mode_context);
  // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
  // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
  av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
  int_mv nearestmv, nearmv;
  av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
                                   0);

  if (nearestmv.as_int == INVALID_MV) {
    nearestmv.as_int = 0;
  }
  if (nearmv.as_int == INVALID_MV) {
    nearmv.as_int = 0;
  }

  int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
  if (dv_ref.as_int == 0) {
    av1_find_ref_dv(&dv_ref, tile, cm->seq_params->mib_size, mi_row);
  }
  // Ref DV should not have sub-pel.
  assert((dv_ref.as_mv.col & 7) == 0);
  assert((dv_ref.as_mv.row & 7) == 0);
  mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;

  struct buf_2d yv12_mb[MAX_MB_PLANE];
  av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, NULL, NULL, num_planes);
  for (int i = 0; i < num_planes; ++i) {
    xd->plane[i].pre[0] = yv12_mb[i];
  }

  enum IntrabcMotionDirection {
    IBC_MOTION_ABOVE,
    IBC_MOTION_LEFT,
    IBC_MOTION_DIRECTIONS
  };

  MB_MODE_INFO best_mbmi = *mbmi;
  RD_STATS best_rdstats = *rd_stats;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
  uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
  av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);

  FULLPEL_MOTION_SEARCH_PARAMS fullms_params;
  const SEARCH_METHODS search_method =
      av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize);
  const search_site_config *lookahead_search_sites =
      cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
  const FULLPEL_MV start_mv = get_fullmv_from_mv(&dv_ref.as_mv);
  av1_make_default_fullpel_ms_params(&fullms_params, cpi, x, bsize,
                                     &dv_ref.as_mv, start_mv,
                                     lookahead_search_sites, search_method,
                                     /*fine_search_interval=*/0);
  const IntraBCMVCosts *const dv_costs = x->dv_costs;
  av1_set_ms_to_intra_mode(&fullms_params, dv_costs);

  for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE;
       dir < IBC_MOTION_DIRECTIONS; ++dir) {
    switch (dir) {
      case IBC_MOTION_ABOVE:
        fullms_params.mv_limits.col_min =
            (tile->mi_col_start - mi_col) * MI_SIZE;
        fullms_params.mv_limits.col_max =
            (tile->mi_col_end - mi_col) * MI_SIZE - w;
        fullms_params.mv_limits.row_min =
            (tile->mi_row_start - mi_row) * MI_SIZE;
        fullms_params.mv_limits.row_max =
            (sb_row * cm->seq_params->mib_size - mi_row) * MI_SIZE - h;
        break;
      case IBC_MOTION_LEFT:
        fullms_params.mv_limits.col_min =
            (tile->mi_col_start - mi_col) * MI_SIZE;
        fullms_params.mv_limits.col_max =
            (sb_col * cm->seq_params->mib_size - mi_col) * MI_SIZE - w;
        // TODO(aconverse@google.com): Minimize the overlap between above and
        // left areas.
        fullms_params.mv_limits.row_min =
            (tile->mi_row_start - mi_row) * MI_SIZE;
        int bottom_coded_mi_edge =
            AOMMIN((sb_row + 1) * cm->seq_params->mib_size, tile->mi_row_end);
        fullms_params.mv_limits.row_max =
            (bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
        break;
      default: assert(0);
    }
    assert(fullms_params.mv_limits.col_min >= fullms_params.mv_limits.col_min);
    assert(fullms_params.mv_limits.col_max <= fullms_params.mv_limits.col_max);
    assert(fullms_params.mv_limits.row_min >= fullms_params.mv_limits.row_min);
    assert(fullms_params.mv_limits.row_max <= fullms_params.mv_limits.row_max);

    av1_set_mv_search_range(&fullms_params.mv_limits, &dv_ref.as_mv);

    if (fullms_params.mv_limits.col_max < fullms_params.mv_limits.col_min ||
        fullms_params.mv_limits.row_max < fullms_params.mv_limits.row_min) {
      continue;
    }

    const int step_param = cpi->mv_search_params.mv_step_param;
    IntraBCHashInfo *intrabc_hash_info = &x->intrabc_hash_info;
    int_mv best_mv, best_hash_mv;
    FULLPEL_MV_STATS best_mv_stats;

    int bestsme =
        av1_full_pixel_search(start_mv, &fullms_params, step_param, NULL,
                              &best_mv.as_fullmv, &best_mv_stats, NULL);
    const int hashsme = av1_intrabc_hash_search(
        cpi, xd, &fullms_params, intrabc_hash_info, &best_hash_mv.as_fullmv);
    if (hashsme < bestsme) {
      best_mv = best_hash_mv;
      bestsme = hashsme;
    }

    if (bestsme == INT_MAX) continue;
    const MV dv = get_mv_from_fullmv(&best_mv.as_fullmv);
    if (!av1_is_fullmv_in_range(&fullms_params.mv_limits,
                                get_fullmv_from_mv(&dv)))
      continue;
    if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
                         cm->seq_params->mib_size_log2))
      continue;

    // DV should not have sub-pel.
    assert((dv.col & 7) == 0);
    assert((dv.row & 7) == 0);
    memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
    mbmi->filter_intra_mode_info.use_filter_intra = 0;
    mbmi->use_intrabc = 1;
    mbmi->mode = DC_PRED;
    mbmi->uv_mode = UV_DC_PRED;
    mbmi->motion_mode = SIMPLE_TRANSLATION;
    mbmi->mv[0].as_mv = dv;
    mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
    mbmi->skip_txfm = 0;
    av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
                                  av1_num_planes(cm) - 1);

    // TODO(aconverse@google.com): The full motion field defining discount
    // in MV_COST_WEIGHT is too large. Explore other values.
    const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, dv_costs->joint_mv,
                                        dv_costs->dv_costs, MV_COST_WEIGHT_SUB);
    const int rate_mode = x->mode_costs.intrabc_cost[1];
    RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv;
    if (!av1_txfm_search(cpi, x, bsize, &rd_stats_yuv, &rd_stats_y,
                         &rd_stats_uv, rate_mode + rate_mv, INT64_MAX))
      continue;
    rd_stats_yuv.rdcost =
        RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist);
    if (rd_stats_yuv.rdcost < best_rd) {
      best_rd = rd_stats_yuv.rdcost;
      best_mbmi = *mbmi;
      best_rdstats = rd_stats_yuv;
      memcpy(best_blk_skip, txfm_info->blk_skip,
             sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
      av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
    }
  }
  *mbmi = best_mbmi;
  *rd_stats = best_rdstats;
  memcpy(txfm_info->blk_skip, best_blk_skip,
         sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
  av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
#if CONFIG_RD_DEBUG
  mbmi->rd_stats = *rd_stats;
#endif
  return best_rd;
}

// TODO(chiyotsai@google.com): We are using struct $struct_name instead of their
// typedef here because Doxygen doesn't know about the typedefs yet. So using
// the typedef will prevent doxygen from finding this function and generating
// the callgraph. Once documents for AV1_COMP and MACROBLOCK are added to
// doxygen, we can revert back to using the typedefs.
void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x,
                               struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
                               PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int num_planes = av1_num_planes(cm);
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
  uint8_t y_skip_txfm = 0, uv_skip_txfm = 0;
  int64_t dist_y = 0, dist_uv = 0;

  ctx->rd_stats.skip_txfm = 0;
  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->use_intrabc = 0;
  mbmi->mv[0].as_int = 0;
  mbmi->skip_mode = 0;

  const int64_t intra_yrd =
      av1_rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
                                 &y_skip_txfm, bsize, best_rd, ctx);

  // Initialize default mode evaluation params
  set_mode_eval_params(cpi, x, DEFAULT_EVAL);

  if (intra_yrd < best_rd) {
    // Search intra modes for uv planes if needed
    if (num_planes > 1) {
      // Set up the tx variables for reproducing the y predictions in case we
      // need it for chroma-from-luma.
      if (xd->is_chroma_ref && store_cfl_required_rdo(cm, x)) {
        memcpy(txfm_info->blk_skip, ctx->blk_skip,
               sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
        av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
      }
      const TX_SIZE max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
      av1_rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
                                  &dist_uv, &uv_skip_txfm, bsize,
                                  max_uv_tx_size);
    }

    // Intra block is always coded as non-skip
    rd_cost->rate =
        rate_y + rate_uv +
        x->mode_costs.skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
    rd_cost->dist = dist_y + dist_uv;
    rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
    rd_cost->skip_txfm = 0;
  } else {
    rd_cost->rate = INT_MAX;
  }

  if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
    best_rd = rd_cost->rdcost;
  if (rd_pick_intrabc_mode_sb(cpi, x, ctx, rd_cost, bsize, best_rd) < best_rd) {
    ctx->rd_stats.skip_txfm = mbmi->skip_txfm;
    memcpy(ctx->blk_skip, txfm_info->blk_skip,
           sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
    assert(rd_cost->rate != INT_MAX);
  }
  if (rd_cost->rate == INT_MAX) return;

  ctx->mic = *xd->mi[0];
  av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
                                      av1_ref_frame_type(xd->mi[0]->ref_frame));
  av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}

static AOM_INLINE void calc_target_weighted_pred(
    const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
    const uint8_t *above, int above_stride, const uint8_t *left,
    int left_stride);

static AOM_INLINE void rd_pick_skip_mode(
    RD_STATS *rd_cost, InterModeSearchState *search_state,
    const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
  const AV1_COMMON *const cm = &cpi->common;
  const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];

  x->compound_idx = 1;  // COMPOUND_AVERAGE
  RD_STATS skip_mode_rd_stats;
  av1_invalid_rd_stats(&skip_mode_rd_stats);

  if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX ||
      skip_mode_info->ref_frame_idx_1 == INVALID_IDX) {
    return;
  }

  const MV_REFERENCE_FRAME ref_frame =
      LAST_FRAME + skip_mode_info->ref_frame_idx_0;
  const MV_REFERENCE_FRAME second_ref_frame =
      LAST_FRAME + skip_mode_info->ref_frame_idx_1;
  const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
  const THR_MODES mode_index =
      get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);

  if (mode_index == THR_INVALID) {
    return;
  }

  if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
       cpi->sf.inter_sf.disable_onesided_comp) &&
      cpi->all_one_sided_refs) {
    return;
  }

  mbmi->mode = this_mode;
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->ref_frame[0] = ref_frame;
  mbmi->ref_frame[1] = second_ref_frame;
  const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  if (x->mbmi_ext.ref_mv_count[ref_frame_type] == UINT8_MAX) {
    MB_MODE_INFO_EXT *mbmi_ext = &x->mbmi_ext;
    if (mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX ||
        mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) {
      return;
    }
    av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count,
                     xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
                     mbmi_ext->mode_context);
    // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
    // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
    av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_type);
  }

  assert(this_mode == NEAREST_NEARESTMV);
  if (!build_cur_mv(mbmi->mv, this_mode, cm, x, 0)) {
    return;
  }

  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
  mbmi->comp_group_idx = 0;
  mbmi->compound_idx = x->compound_idx;
  mbmi->interinter_comp.type = COMPOUND_AVERAGE;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->ref_mv_idx = 0;
  mbmi->skip_mode = mbmi->skip_txfm = 1;
  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;

  set_default_interp_filters(mbmi, cm->features.interp_filter);

  set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
  for (int i = 0; i < num_planes; i++) {
    xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
    xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
  }

  BUFFER_SET orig_dst;
  for (int i = 0; i < num_planes; i++) {
    orig_dst.plane[i] = xd->plane[i].dst.buf;
    orig_dst.stride[i] = xd->plane[i].dst.stride;
  }

  // Compare the use of skip_mode with the best intra/inter mode obtained.
  const int skip_mode_ctx = av1_get_skip_mode_context(xd);
  int64_t best_intra_inter_mode_cost = INT64_MAX;
  if (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) {
    const ModeCosts *mode_costs = &x->mode_costs;
    best_intra_inter_mode_cost = RDCOST(
        x->rdmult, rd_cost->rate + mode_costs->skip_mode_cost[skip_mode_ctx][0],
        rd_cost->dist);
    // Account for non-skip mode rate in total rd stats
    rd_cost->rate += mode_costs->skip_mode_cost[skip_mode_ctx][0];
    av1_rd_cost_update(x->rdmult, rd_cost);
  }

  // Obtain the rdcost for skip_mode.
  skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, &orig_dst,
               best_intra_inter_mode_cost);

  if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost &&
      (!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) {
    assert(mode_index != THR_INVALID);
    search_state->best_mbmode.skip_mode = 1;
    search_state->best_mbmode = *mbmi;
    memset(search_state->best_mbmode.inter_tx_size,
           search_state->best_mbmode.tx_size,
           sizeof(search_state->best_mbmode.inter_tx_size));
    set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->width, xd->height,
                  search_state->best_mbmode.skip_txfm && is_inter_block(mbmi),
                  xd);
    search_state->best_mode_index = mode_index;

    // Update rd_cost
    rd_cost->rate = skip_mode_rd_stats.rate;
    rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
    rd_cost->rdcost = skip_mode_rd_stats.rdcost;

    search_state->best_rd = rd_cost->rdcost;
    search_state->best_skip2 = 1;
    search_state->best_mode_skippable = 1;

    x->txfm_search_info.skip_txfm = 1;
  }
}

// Get winner mode stats of given mode index
static AOM_INLINE MB_MODE_INFO *get_winner_mode_stats(
    MACROBLOCK *x, MB_MODE_INFO *best_mbmode, RD_STATS *best_rd_cost,
    int best_rate_y, int best_rate_uv, THR_MODES *best_mode_index,
    RD_STATS **winner_rd_cost, int *winner_rate_y, int *winner_rate_uv,
    THR_MODES *winner_mode_index, MULTI_WINNER_MODE_TYPE multi_winner_mode_type,
    int mode_idx) {
  MB_MODE_INFO *winner_mbmi;
  if (multi_winner_mode_type) {
    assert(mode_idx >= 0 && mode_idx < x->winner_mode_count);
    WinnerModeStats *winner_mode_stat = &x->winner_mode_stats[mode_idx];
    winner_mbmi = &winner_mode_stat->mbmi;

    *winner_rd_cost = &winner_mode_stat->rd_cost;
    *winner_rate_y = winner_mode_stat->rate_y;
    *winner_rate_uv = winner_mode_stat->rate_uv;
    *winner_mode_index = winner_mode_stat->mode_index;
  } else {
    winner_mbmi = best_mbmode;
    *winner_rd_cost = best_rd_cost;
    *winner_rate_y = best_rate_y;
    *winner_rate_uv = best_rate_uv;
    *winner_mode_index = *best_mode_index;
  }
  return winner_mbmi;
}

// speed feature: fast intra/inter transform type search
// Used for speed >= 2
// When this speed feature is on, in rd mode search, only DCT is used.
// After the mode is determined, this function is called, to select
// transform types and get accurate rdcost.
static AOM_INLINE void refine_winner_mode_tx(
    const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize,
    PICK_MODE_CONTEXT *ctx, THR_MODES *best_mode_index,
    MB_MODE_INFO *best_mbmode, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
    int best_rate_y, int best_rate_uv, int *best_skip2, int winner_mode_count) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  TxfmSearchParams *txfm_params = &x->txfm_search_params;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  int64_t best_rd;
  const int num_planes = av1_num_planes(cm);

  if (!is_winner_mode_processing_enabled(cpi, x, best_mbmode,
                                         rd_cost->skip_txfm))
    return;

  // Set params for winner mode evaluation
  set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);

  // No best mode identified so far
  if (*best_mode_index == THR_INVALID) return;

  best_rd = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
  for (int mode_idx = 0; mode_idx < winner_mode_count; mode_idx++) {
    RD_STATS *winner_rd_stats = NULL;
    int winner_rate_y = 0, winner_rate_uv = 0;
    THR_MODES winner_mode_index = 0;

    // TODO(any): Combine best mode and multi-winner mode processing paths
    // Get winner mode stats for current mode index
    MB_MODE_INFO *winner_mbmi = get_winner_mode_stats(
        x, best_mbmode, rd_cost, best_rate_y, best_rate_uv, best_mode_index,
        &winner_rd_stats, &winner_rate_y, &winner_rate_uv, &winner_mode_index,
        cpi->sf.winner_mode_sf.multi_winner_mode_type, mode_idx);

    if (xd->lossless[winner_mbmi->segment_id] == 0 &&
        winner_mode_index != THR_INVALID &&
        is_winner_mode_processing_enabled(cpi, x, winner_mbmi,
                                          rd_cost->skip_txfm)) {
      RD_STATS rd_stats = *winner_rd_stats;
      int skip_blk = 0;
      RD_STATS rd_stats_y, rd_stats_uv;
      const int skip_ctx = av1_get_skip_txfm_context(xd);

      *mbmi = *winner_mbmi;

      set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);

      // Select prediction reference frames.
      for (int i = 0; i < num_planes; i++) {
        xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
        if (has_second_ref(mbmi))
          xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
      }

      if (is_inter_mode(mbmi->mode)) {
        const int mi_row = xd->mi_row;
        const int mi_col = xd->mi_col;
        bool is_predictor_built = false;
        const PREDICTION_MODE prediction_mode = mbmi->mode;
        // Do interpolation filter search for realtime mode if applicable.
        if (cpi->sf.winner_mode_sf.winner_mode_ifs &&
            cpi->oxcf.mode == REALTIME &&
            cm->current_frame.reference_mode == SINGLE_REFERENCE &&
            is_inter_mode(prediction_mode) &&
            mbmi->motion_mode == SIMPLE_TRANSLATION &&
            !is_inter_compound_mode(prediction_mode)) {
          is_predictor_built =
              fast_interp_search(cpi, x, mi_row, mi_col, bsize);
        }
        if (!is_predictor_built) {
          av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
                                        av1_num_planes(cm) - 1);
        }
        if (mbmi->motion_mode == OBMC_CAUSAL)
          av1_build_obmc_inter_predictors_sb(cm, xd);

        av1_subtract_plane(x, bsize, 0);
        if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
            !xd->lossless[mbmi->segment_id]) {
          av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
                                              INT64_MAX);
          assert(rd_stats_y.rate != INT_MAX);
        } else {
          av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
                                            INT64_MAX);
          memset(mbmi->inter_tx_size, mbmi->tx_size,
                 sizeof(mbmi->inter_tx_size));
          for (int i = 0; i < xd->height * xd->width; ++i)
            set_blk_skip(txfm_info->blk_skip, 0, i, rd_stats_y.skip_txfm);
        }
      } else {
        av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
                                          INT64_MAX);
      }

      if (num_planes > 1) {
        av1_txfm_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
      } else {
        av1_init_rd_stats(&rd_stats_uv);
      }

      const ModeCosts *mode_costs = &x->mode_costs;
      if (is_inter_mode(mbmi->mode) &&
          RDCOST(x->rdmult,
                 mode_costs->skip_txfm_cost[skip_ctx][0] + rd_stats_y.rate +
                     rd_stats_uv.rate,
                 (rd_stats_y.dist + rd_stats_uv.dist)) >
              RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][1],
                     (rd_stats_y.sse + rd_stats_uv.sse))) {
        skip_blk = 1;
        rd_stats_y.rate = mode_costs->skip_txfm_cost[skip_ctx][1];
        rd_stats_uv.rate = 0;
        rd_stats_y.dist = rd_stats_y.sse;
        rd_stats_uv.dist = rd_stats_uv.sse;
      } else {
        skip_blk = 0;
        rd_stats_y.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
      }
      int this_rate = rd_stats.rate + rd_stats_y.rate + rd_stats_uv.rate -
                      winner_rate_y - winner_rate_uv;
      int64_t this_rd =
          RDCOST(x->rdmult, this_rate, (rd_stats_y.dist + rd_stats_uv.dist));
      if (best_rd > this_rd) {
        *best_mbmode = *mbmi;
        *best_mode_index = winner_mode_index;
        av1_copy_array(ctx->blk_skip, txfm_info->blk_skip, ctx->num_4x4_blk);
        av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
        rd_cost->rate = this_rate;
        rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
        rd_cost->sse = rd_stats_y.sse + rd_stats_uv.sse;
        rd_cost->rdcost = this_rd;
        best_rd = this_rd;
        *best_skip2 = skip_blk;
      }
    }
  }
}

/*!\cond */
typedef struct {
  // Mask for each reference frame, specifying which prediction modes to NOT try
  // during search.
  uint32_t pred_modes[REF_FRAMES];
  // If ref_combo[i][j + 1] is true, do NOT try prediction using combination of
  // reference frames (i, j).
  // Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1
  // (NONE_FRAME).
  bool ref_combo[REF_FRAMES][REF_FRAMES + 1];
} mode_skip_mask_t;
/*!\endcond */

// Update 'ref_combo' mask to disable given 'ref' in single and compound modes.
static AOM_INLINE void disable_reference(
    MV_REFERENCE_FRAME ref, bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
  for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
    ref_combo[ref][ref2 + 1] = true;
  }
}

// Update 'ref_combo' mask to disable all inter references except ALTREF.
static AOM_INLINE void disable_inter_references_except_altref(
    bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
  disable_reference(LAST_FRAME, ref_combo);
  disable_reference(LAST2_FRAME, ref_combo);
  disable_reference(LAST3_FRAME, ref_combo);
  disable_reference(GOLDEN_FRAME, ref_combo);
  disable_reference(BWDREF_FRAME, ref_combo);
  disable_reference(ALTREF2_FRAME, ref_combo);
}

static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = {
  { LAST_FRAME, NONE_FRAME },     { ALTREF_FRAME, NONE_FRAME },
  { LAST_FRAME, ALTREF_FRAME },   { GOLDEN_FRAME, NONE_FRAME },
  { INTRA_FRAME, NONE_FRAME },    { GOLDEN_FRAME, ALTREF_FRAME },
  { LAST_FRAME, GOLDEN_FRAME },   { LAST_FRAME, INTRA_FRAME },
  { LAST_FRAME, BWDREF_FRAME },   { LAST_FRAME, LAST3_FRAME },
  { GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME },
  { BWDREF_FRAME, NONE_FRAME },   { BWDREF_FRAME, ALTREF_FRAME },
  { ALTREF_FRAME, INTRA_FRAME },  { BWDREF_FRAME, INTRA_FRAME },
};

typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET;

static AOM_INLINE void default_skip_mask(mode_skip_mask_t *mask,
                                         REF_SET ref_set) {
  if (ref_set == REF_SET_FULL) {
    // Everything available by default.
    memset(mask, 0, sizeof(*mask));
  } else {
    // All modes available by default.
    memset(mask->pred_modes, 0, sizeof(mask->pred_modes));
    // All references disabled first.
    for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) {
      for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
        mask->ref_combo[ref1][ref2 + 1] = true;
      }
    }
    const MV_REFERENCE_FRAME(*ref_set_combos)[2];
    int num_ref_combos;

    // Then enable reduced set of references explicitly.
    switch (ref_set) {
      case REF_SET_REDUCED:
        ref_set_combos = reduced_ref_combos;
        num_ref_combos =
            (int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]);
        break;
      case REF_SET_REALTIME:
        ref_set_combos = real_time_ref_combos;
        num_ref_combos =
            (int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]);
        break;
      default: assert(0); num_ref_combos = 0;
    }

    for (int i = 0; i < num_ref_combos; ++i) {
      const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i];
      mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false;
    }
  }
}

static AOM_INLINE void init_mode_skip_mask(mode_skip_mask_t *mask,
                                           const AV1_COMP *cpi, MACROBLOCK *x,
                                           BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const struct segmentation *const seg = &cm->seg;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  unsigned char segment_id = mbmi->segment_id;
  const SPEED_FEATURES *const sf = &cpi->sf;
  const INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf;
  REF_SET ref_set = REF_SET_FULL;

  if (sf->rt_sf.use_real_time_ref_set)
    ref_set = REF_SET_REALTIME;
  else if (cpi->oxcf.ref_frm_cfg.enable_reduced_reference_set)
    ref_set = REF_SET_REDUCED;

  default_skip_mask(mask, ref_set);

  int min_pred_mv_sad = INT_MAX;
  MV_REFERENCE_FRAME ref_frame;
  if (ref_set == REF_SET_REALTIME) {
    // For real-time encoding, we only look at a subset of ref frames. So the
    // threshold for pruning should be computed from this subset as well.
    const int num_rt_refs =
        sizeof(real_time_ref_combos) / sizeof(*real_time_ref_combos);
    for (int r_idx = 0; r_idx < num_rt_refs; r_idx++) {
      const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
      if (ref != INTRA_FRAME) {
        min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref]);
      }
    }
  } else {
    for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
      min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);
  }

  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) {
      // Skip checking missing reference in both single and compound reference
      // modes.
      disable_reference(ref_frame, mask->ref_combo);
    } else {
      // Skip fixed mv modes for poor references
      if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
        mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
      }
    }
    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
        get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
      // Reference not used for the segment.
      disable_reference(ref_frame, mask->ref_combo);
    }
  }
  // Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature
  // is disabled for this segment. This is to prevent the possibility that we
  // end up unable to pick any mode.
  if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
    // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
    // unless ARNR filtering is enabled in which case we want
    // an unfiltered alternative. We allow near/nearest as well
    // because they may result in zero-zero MVs but be cheaper.
    if (cpi->rc.is_src_frame_alt_ref &&
        (cpi->oxcf.algo_cfg.arnr_max_frames == 0)) {
      disable_inter_references_except_altref(mask->ref_combo);

      mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
      const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
      int_mv near_mv, nearest_mv, global_mv;
      get_this_mv(&nearest_mv, NEARESTMV, 0, 0, 0, tmp_ref_frames,
                  &x->mbmi_ext);
      get_this_mv(&near_mv, NEARMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
      get_this_mv(&global_mv, GLOBALMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);

      if (near_mv.as_int != global_mv.as_int)
        mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV);
      if (nearest_mv.as_int != global_mv.as_int)
        mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV);
    }
  }

  if (cpi->rc.is_src_frame_alt_ref) {
    if (inter_sf->alt_ref_search_fp &&
        (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME])) {
      mask->pred_modes[ALTREF_FRAME] = 0;
      disable_inter_references_except_altref(mask->ref_combo);
      disable_reference(INTRA_FRAME, mask->ref_combo);
    }
  }

  if (inter_sf->alt_ref_search_fp) {
    if (!cm->show_frame && x->best_pred_mv_sad[0] < INT_MAX) {
      int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 3);
      // Conservatively skip the modes w.r.t. BWDREF, ALTREF2 and ALTREF, if
      // those are past frames
      MV_REFERENCE_FRAME start_frame =
          inter_sf->alt_ref_search_fp == 1 ? ALTREF2_FRAME : BWDREF_FRAME;
      for (ref_frame = start_frame; ref_frame <= ALTREF_FRAME; ref_frame++) {
        if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
            0) {
          // Prune inter modes when relative dist of ALTREF2 and ALTREF is close
          // to the relative dist of LAST_FRAME.
          if (inter_sf->alt_ref_search_fp == 1 &&
              (abs(cpi->ref_frame_dist_info
                       .ref_relative_dist[ref_frame - LAST_FRAME]) >
               1.5 * abs(cpi->ref_frame_dist_info
                             .ref_relative_dist[LAST_FRAME - LAST_FRAME]))) {
            continue;
          }
          if (x->pred_mv_sad[ref_frame] > sad_thresh)
            mask->pred_modes[ref_frame] |= INTER_ALL;
        }
      }
    }
  }

  if (sf->rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
    if (x->best_pred_mv_sad[0] < INT_MAX) {
      int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 1);
      const int prune_ref_list[2] = { GOLDEN_FRAME, ALTREF_FRAME };

      // Conservatively skip the modes w.r.t. GOLDEN and ALTREF references
      for (int ref_idx = 0; ref_idx < 2; ref_idx++) {
        ref_frame = prune_ref_list[ref_idx];
        if (x->pred_mv_sad[ref_frame] > sad_thresh)
          mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
      }
    }
  }

  if (bsize > sf->part_sf.max_intra_bsize) {
    disable_reference(INTRA_FRAME, mask->ref_combo);
  }

  if (!cpi->oxcf.tool_cfg.enable_global_motion) {
    for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
      mask->pred_modes[ref_frame] |= (1 << GLOBALMV);
      mask->pred_modes[ref_frame] |= (1 << GLOBAL_GLOBALMV);
    }
  }

  mask->pred_modes[INTRA_FRAME] |=
      ~(uint32_t)sf->intra_sf.intra_y_mode_mask[max_txsize_lookup[bsize]];

  // Prune reference frames which are not the closest to the current
  // frame and with large pred_mv_sad.
  if (inter_sf->prune_single_ref) {
    assert(inter_sf->prune_single_ref > 0 && inter_sf->prune_single_ref < 3);
    const double prune_threshes[2] = { 1.20, 1.05 };

    for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
      const RefFrameDistanceInfo *const ref_frame_dist_info =
          &cpi->ref_frame_dist_info;
      const int is_closest_ref =
          (ref_frame == ref_frame_dist_info->nearest_past_ref) ||
          (ref_frame == ref_frame_dist_info->nearest_future_ref);

      if (!is_closest_ref) {
        const int dir =
            (ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] < 0)
                ? 0
                : 1;
        if (x->best_pred_mv_sad[dir] < INT_MAX &&
            x->pred_mv_sad[ref_frame] >
                prune_threshes[inter_sf->prune_single_ref - 1] *
                    x->best_pred_mv_sad[dir])
          mask->pred_modes[ref_frame] |= INTER_SINGLE_ALL;
      }
    }
  }
}

static AOM_INLINE void init_neighbor_pred_buf(
    const OBMCBuffer *const obmc_buffer, HandleInterModeArgs *const args,
    int is_hbd) {
  if (is_hbd) {
    const int len = sizeof(uint16_t);
    args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred);
    args->above_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred +
                                                 (MAX_SB_SQUARE >> 1) * len);
    args->above_pred_buf[2] =
        CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + MAX_SB_SQUARE * len);
    args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred);
    args->left_pred_buf[1] =
        CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1) * len);
    args->left_pred_buf[2] =
        CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + MAX_SB_SQUARE * len);
  } else {
    args->above_pred_buf[0] = obmc_buffer->above_pred;
    args->above_pred_buf[1] = obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1);
    args->above_pred_buf[2] = obmc_buffer->above_pred + MAX_SB_SQUARE;
    args->left_pred_buf[0] = obmc_buffer->left_pred;
    args->left_pred_buf[1] = obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1);
    args->left_pred_buf[2] = obmc_buffer->left_pred + MAX_SB_SQUARE;
  }
}

static AOM_INLINE int prune_ref_frame(const AV1_COMP *cpi, const MACROBLOCK *x,
                                      MV_REFERENCE_FRAME ref_frame) {
  const AV1_COMMON *const cm = &cpi->common;
  MV_REFERENCE_FRAME rf[2];
  av1_set_ref_frame(rf, ref_frame);

  if ((cpi->prune_ref_frame_mask >> ref_frame) & 1) return 1;

  if (prune_ref_by_selective_ref_frame(cpi, x, rf,
                                       cm->cur_frame->ref_display_order_hint)) {
    return 1;
  }

  return 0;
}

static AOM_INLINE int is_ref_frame_used_by_compound_ref(
    int ref_frame, int skip_ref_frame_mask) {
  for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
    if (!(skip_ref_frame_mask & (1 << r))) {
      const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
      if (rf[0] == ref_frame || rf[1] == ref_frame) {
        return 1;
      }
    }
  }
  return 0;
}

static AOM_INLINE int is_ref_frame_used_in_cache(MV_REFERENCE_FRAME ref_frame,
                                                 const MB_MODE_INFO *mi_cache) {
  if (!mi_cache) {
    return 0;
  }

  if (ref_frame < REF_FRAMES) {
    return (ref_frame == mi_cache->ref_frame[0] ||
            ref_frame == mi_cache->ref_frame[1]);
  }

  // if we are here, then the current mode is compound.
  MV_REFERENCE_FRAME cached_ref_type = av1_ref_frame_type(mi_cache->ref_frame);
  return ref_frame == cached_ref_type;
}

// Please add/modify parameter setting in this function, making it consistent
// and easy to read and maintain.
static AOM_INLINE void set_params_rd_pick_inter_mode(
    const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
    BLOCK_SIZE bsize, mode_skip_mask_t *mode_skip_mask, int skip_ref_frame_mask,
    unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES],
    struct buf_2d (*yv12_mb)[MAX_MB_PLANE]) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
  unsigned char segment_id = mbmi->segment_id;

  init_neighbor_pred_buf(&x->obmc_buffer, args, is_cur_buf_hbd(&x->e_mbd));
  av1_collect_neighbors_ref_counts(xd);
  estimate_ref_frame_costs(cm, xd, &x->mode_costs, segment_id, ref_costs_single,
                           ref_costs_comp);

  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  x->best_pred_mv_sad[0] = INT_MAX;
  x->best_pred_mv_sad[1] = INT_MAX;

  for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME;
       ++ref_frame) {
    x->pred_mv_sad[ref_frame] = INT_MAX;
    mbmi_ext->mode_context[ref_frame] = 0;
    mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
    if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
      // Skip the ref frame if the mask says skip and the ref is not used by
      // compound ref.
      if (skip_ref_frame_mask & (1 << ref_frame) &&
          !is_ref_frame_used_by_compound_ref(ref_frame, skip_ref_frame_mask) &&
          !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
        continue;
      }
      assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL);
      setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, yv12_mb);
    }
    if (cpi->sf.inter_sf.alt_ref_search_fp ||
        cpi->sf.inter_sf.prune_single_ref ||
        cpi->sf.rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
      // Store the best pred_mv_sad across all past frames
      if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
          0)
        x->best_pred_mv_sad[0] =
            AOMMIN(x->best_pred_mv_sad[0], x->pred_mv_sad[ref_frame]);
      else
        // Store the best pred_mv_sad across all future frames
        x->best_pred_mv_sad[1] =
            AOMMIN(x->best_pred_mv_sad[1], x->pred_mv_sad[ref_frame]);
    }
  }

  if (!cpi->sf.rt_sf.use_real_time_ref_set && is_comp_ref_allowed(bsize)) {
    // No second reference on RT ref set, so no need to initialize
    for (MV_REFERENCE_FRAME ref_frame = EXTREF_FRAME;
         ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
      mbmi_ext->mode_context[ref_frame] = 0;
      mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
      const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES];
      if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) &&
            (cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) {
        continue;
      }

      if (skip_ref_frame_mask & (1 << ref_frame) &&
          !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
        continue;
      }
      // Ref mv list population is not required, when compound references are
      // pruned.
      if (prune_ref_frame(cpi, x, ref_frame)) continue;

      av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                       xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
                       mbmi_ext->mode_context);
      // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
      // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
      av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
    }
  }

  av1_count_overlappable_neighbors(cm, xd);
  const FRAME_UPDATE_TYPE update_type =
      get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
  int use_actual_frame_probs = 1;
  int prune_obmc;
#if CONFIG_FPMT_TEST
  use_actual_frame_probs =
      (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
  if (!use_actual_frame_probs) {
    prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
                 cpi->sf.inter_sf.prune_obmc_prob_thresh;
  }
#endif
  if (use_actual_frame_probs) {
    prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
                 cpi->sf.inter_sf.prune_obmc_prob_thresh;
  }
  if (cpi->oxcf.motion_mode_cfg.enable_obmc && !prune_obmc) {
    if (check_num_overlappable_neighbors(mbmi) &&
        is_motion_variation_allowed_bsize(bsize)) {
      int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
      int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
                                       MAX_SB_SIZE >> 1 };
      int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
                                        MAX_SB_SIZE >> 1 };
      int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
      av1_build_prediction_by_above_preds(cm, xd, args->above_pred_buf,
                                          dst_width1, dst_height1,
                                          args->above_pred_stride);
      av1_build_prediction_by_left_preds(cm, xd, args->left_pred_buf,
                                         dst_width2, dst_height2,
                                         args->left_pred_stride);
      const int num_planes = av1_num_planes(cm);
      av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row,
                           mi_col, 0, num_planes);
      calc_target_weighted_pred(
          cm, x, xd, args->above_pred_buf[0], args->above_pred_stride[0],
          args->left_pred_buf[0], args->left_pred_stride[0]);
    }
  }

  init_mode_skip_mask(mode_skip_mask, cpi, x, bsize);

  // Set params for mode evaluation
  set_mode_eval_params(cpi, x, MODE_EVAL);

  x->comp_rd_stats_idx = 0;

  for (int idx = 0; idx < REF_FRAMES; idx++) {
    args->best_single_sse_in_refs[idx] = INT32_MAX;
  }
}

static AOM_INLINE void init_single_inter_mode_search_state(
    InterModeSearchState *search_state) {
  for (int dir = 0; dir < 2; ++dir) {
    for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
      for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
        SingleInterModeState *state;

        state = &search_state->single_state[dir][mode][ref_frame];
        state->ref_frame = NONE_FRAME;
        state->rd = INT64_MAX;

        state = &search_state->single_state_modelled[dir][mode][ref_frame];
        state->ref_frame = NONE_FRAME;
        state->rd = INT64_MAX;

        search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME;
      }
    }
  }

  for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
    search_state->best_single_rd[ref_frame] = INT64_MAX;
    search_state->best_single_mode[ref_frame] = PRED_MODE_INVALID;
  }
  av1_zero(search_state->single_state_cnt);
  av1_zero(search_state->single_state_modelled_cnt);
}

static AOM_INLINE void init_inter_mode_search_state(
    InterModeSearchState *search_state, const AV1_COMP *cpi,
    const MACROBLOCK *x, BLOCK_SIZE bsize, int64_t best_rd_so_far) {
  init_intra_mode_search_state(&search_state->intra_search_state);
  av1_invalid_rd_stats(&search_state->best_y_rdcost);

  search_state->best_rd = best_rd_so_far;
  search_state->best_skip_rd[0] = INT64_MAX;
  search_state->best_skip_rd[1] = INT64_MAX;

  av1_zero(search_state->best_mbmode);

  search_state->best_rate_y = INT_MAX;

  search_state->best_rate_uv = INT_MAX;

  search_state->best_mode_skippable = 0;

  search_state->best_skip2 = 0;

  search_state->best_mode_index = THR_INVALID;

  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const unsigned char segment_id = mbmi->segment_id;

  search_state->num_available_refs = 0;
  memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
  memset(search_state->dist_order_refs, -1,
         sizeof(search_state->dist_order_refs));

  for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
    search_state->mode_threshold[i] = 0;
  const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
  for (int i = LAST_NEW_MV_INDEX + 1; i < SINGLE_REF_MODE_END; ++i)
    search_state->mode_threshold[i] =
        ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
        RD_THRESH_FAC_FRAC_BITS;

  search_state->best_intra_rd = INT64_MAX;

  search_state->best_pred_sse = UINT_MAX;

  av1_zero(search_state->single_newmv);
  av1_zero(search_state->single_newmv_rate);
  av1_zero(search_state->single_newmv_valid);
  for (int i = SINGLE_INTER_MODE_START; i < SINGLE_INTER_MODE_END; ++i) {
    for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
      for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
        search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
        search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
      }
    }
  }

  for (int i = 0; i < REFERENCE_MODES; ++i) {
    search_state->best_pred_rd[i] = INT64_MAX;
  }

  if (cpi->common.current_frame.reference_mode != SINGLE_REFERENCE) {
    for (int i = SINGLE_REF_MODE_END; i < THR_INTER_MODE_END; ++i)
      search_state->mode_threshold[i] =
          ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
          RD_THRESH_FAC_FRAC_BITS;

    for (int i = COMP_INTER_MODE_START; i < COMP_INTER_MODE_END; ++i) {
      for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
        for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
          search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
          search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
        }
      }
    }

    init_single_inter_mode_search_state(search_state);
  }
}

static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask,
                           const MV_REFERENCE_FRAME *ref_frame,
                           const PREDICTION_MODE this_mode) {
  if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) {
    return true;
  }

  return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1];
}

static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x,
                                      BLOCK_SIZE bsize,
                                      PREDICTION_MODE curr_mode,
                                      const MV_REFERENCE_FRAME *ref_frames) {
  const int comp_pred = ref_frames[1] > INTRA_FRAME;
  if (comp_pred) {
    if (!is_comp_ref_allowed(bsize)) return 1;
    if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frames[1]])) {
      return 1;
    }

    const AV1_COMMON *const cm = &cpi->common;
    if (frame_is_intra_only(cm)) return 1;

    const CurrentFrame *const current_frame = &cm->current_frame;
    if (current_frame->reference_mode == SINGLE_REFERENCE) return 1;

    const struct segmentation *const seg = &cm->seg;
    const unsigned char segment_id = x->e_mbd.mi[0]->segment_id;
    // Do not allow compound prediction if the segment level reference frame
    // feature is in use as in this case there can only be one reference.
    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
  }

  if (ref_frames[0] > INTRA_FRAME && ref_frames[1] == INTRA_FRAME) {
    // Mode must be compatible
    if (!is_interintra_allowed_bsize(bsize)) return 1;
    if (!is_interintra_allowed_mode(curr_mode)) return 1;
  }

  return 0;
}

static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x,
                                        BLOCK_SIZE bsize, int mib_size) {
  const int sb_size_mask = mib_size - 1;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;
  const int mi_row_in_sb = mi_row & sb_size_mask;
  const int mi_col_in_sb = mi_col & sb_size_mask;
  const int mi_w = mi_size_wide[bsize];
  const int mi_h = mi_size_high[bsize];
  int picked_ref_frames_mask = 0;
  for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) {
    for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) {
      picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j];
    }
  }
  return picked_ref_frames_mask;
}

// Check if reference frame pair of the current block matches with the given
// block.
static INLINE int match_ref_frame_pair(const MB_MODE_INFO *mbmi,
                                       const MV_REFERENCE_FRAME *ref_frames) {
  return ((ref_frames[0] == mbmi->ref_frame[0]) &&
          (ref_frames[1] == mbmi->ref_frame[1]));
}

// Case 1: return 0, means don't skip this mode
// Case 2: return 1, means skip this mode completely
// Case 3: return 2, means skip compound only, but still try single motion modes
static int inter_mode_search_order_independent_skip(
    const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask,
    InterModeSearchState *search_state, int skip_ref_frame_mask,
    PREDICTION_MODE mode, const MV_REFERENCE_FRAME *ref_frame) {
  if (mask_says_skip(mode_skip_mask, ref_frame, mode)) {
    return 1;
  }

  const int ref_type = av1_ref_frame_type(ref_frame);
  if (!cpi->sf.rt_sf.use_real_time_ref_set)
    if (prune_ref_frame(cpi, x, ref_type)) return 1;

  // This is only used in motion vector unit test.
  if (cpi->oxcf.unit_test_cfg.motion_vector_unit_test &&
      ref_frame[0] == INTRA_FRAME)
    return 1;

  const AV1_COMMON *const cm = &cpi->common;
  if (skip_repeated_mv(cm, x, mode, ref_frame, search_state)) {
    return 1;
  }

  // Reuse the prediction mode in cache
  if (x->use_mb_mode_cache) {
    const MB_MODE_INFO *cached_mi = x->mb_mode_cache;
    const PREDICTION_MODE cached_mode = cached_mi->mode;
    const MV_REFERENCE_FRAME *cached_frame = cached_mi->ref_frame;
    const int cached_mode_is_single = cached_frame[1] <= INTRA_FRAME;

    // If the cached mode is intra, then we just need to match the mode.
    if (is_mode_intra(cached_mode) && mode != cached_mode) {
      return 1;
    }

    // If the cached mode is single inter mode, then we match the mode and
    // reference frame.
    if (cached_mode_is_single) {
      if (mode != cached_mode || ref_frame[0] != cached_frame[0]) {
        return 1;
      }
    } else {
      // If the cached mode is compound, then we need to consider several cases.
      const int mode_is_single = ref_frame[1] <= INTRA_FRAME;
      if (mode_is_single) {
        // If the mode is single, we know the modes can't match. But we might
        // still want to search it if compound mode depends on the current mode.
        int skip_motion_mode_only = 0;
        if (cached_mode == NEW_NEARMV || cached_mode == NEW_NEARESTMV) {
          skip_motion_mode_only = (ref_frame[0] == cached_frame[0]);
        } else if (cached_mode == NEAR_NEWMV || cached_mode == NEAREST_NEWMV) {
          skip_motion_mode_only = (ref_frame[0] == cached_frame[1]);
        } else if (cached_mode == NEW_NEWMV) {
          skip_motion_mode_only = (ref_frame[0] == cached_frame[0] ||
                                   ref_frame[0] == cached_frame[1]);
        }

        return 1 + skip_motion_mode_only;
      } else {
        // If both modes are compound, then everything must match.
        if (mode != cached_mode || ref_frame[0] != cached_frame[0] ||
            ref_frame[1] != cached_frame[1]) {
          return 1;
        }
      }
    }
  }

  const MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
  // If no valid mode has been found so far in PARTITION_NONE when finding a
  // valid partition is required, do not skip mode.
  if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE &&
      x->must_find_valid_partition)
    return 0;

  const SPEED_FEATURES *const sf = &cpi->sf;
  // Prune NEARMV and NEAR_NEARMV based on q index and neighbor's reference
  // frames
  if (sf->inter_sf.prune_nearmv_using_neighbors &&
      (mode == NEAR_NEARMV || mode == NEARMV)) {
    const MACROBLOCKD *const xd = &x->e_mbd;
    if (search_state->best_rd != INT64_MAX && xd->left_available &&
        xd->up_available) {
      const int thresholds[PRUNE_NEARMV_MAX][3] = { { 1, 0, 0 },
                                                    { 1, 1, 0 },
                                                    { 2, 1, 0 } };
      const int qindex_sub_range = x->qindex * 3 / QINDEX_RANGE;

      assert(sf->inter_sf.prune_nearmv_using_neighbors <= PRUNE_NEARMV_MAX &&
             qindex_sub_range < 3);
      const int num_ref_frame_pair_match_thresh =
          thresholds[sf->inter_sf.prune_nearmv_using_neighbors - 1]
                    [qindex_sub_range];

      assert(num_ref_frame_pair_match_thresh <= 2 &&
             num_ref_frame_pair_match_thresh >= 0);
      int num_ref_frame_pair_match = 0;

      num_ref_frame_pair_match = match_ref_frame_pair(xd->left_mbmi, ref_frame);
      num_ref_frame_pair_match +=
          match_ref_frame_pair(xd->above_mbmi, ref_frame);

      // Pruning based on ref frame pair match with neighbors.
      if (num_ref_frame_pair_match < num_ref_frame_pair_match_thresh) return 1;
    }
  }

  int skip_motion_mode = 0;
  if (mbmi->partition != PARTITION_NONE) {
    int skip_ref = skip_ref_frame_mask & (1 << ref_type);
    if (ref_type <= ALTREF_FRAME && skip_ref) {
      // Since the compound ref modes depends on the motion estimation result of
      // two single ref modes (best mv of single ref modes as the start point),
      // if current single ref mode is marked skip, we need to check if it will
      // be used in compound ref modes.
      if (is_ref_frame_used_by_compound_ref(ref_type, skip_ref_frame_mask)) {
        // Found a not skipped compound ref mode which contains current
        // single ref. So this single ref can't be skipped completely
        // Just skip its motion mode search, still try its simple
        // transition mode.
        skip_motion_mode = 1;
        skip_ref = 0;
      }
    }
    // If we are reusing the prediction from cache, and the current frame is
    // required by the cache, then we cannot prune it.
    if (is_ref_frame_used_in_cache(ref_type, x->mb_mode_cache)) {
      skip_ref = 0;
      // If the cache only needs the current reference type for compound
      // prediction, then we can skip motion mode search.
      skip_motion_mode = (ref_type <= ALTREF_FRAME &&
                          x->mb_mode_cache->ref_frame[1] > INTRA_FRAME);
    }
    if (skip_ref) return 1;
  }

  if (ref_frame[0] == INTRA_FRAME) {
    if (mode != DC_PRED) {
      // Disable intra modes other than DC_PRED for blocks with low variance
      // Threshold for intra skipping based on source variance
      // TODO(debargha): Specialize the threshold for super block sizes
      const unsigned int skip_intra_var_thresh = 64;
      if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
          x->source_variance < skip_intra_var_thresh)
        return 1;
    }
  }

  if (skip_motion_mode) return 2;

  return 0;
}

static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE curr_mode,
                             const MV_REFERENCE_FRAME *ref_frames,
                             const AV1_COMMON *cm) {
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  mbmi->ref_mv_idx = 0;
  mbmi->mode = curr_mode;
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->ref_frame[0] = ref_frames[0];
  mbmi->ref_frame[1] = ref_frames[1];
  pmi->palette_size[0] = 0;
  pmi->palette_size[1] = 0;
  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
  set_default_interp_filters(mbmi, cm->features.interp_filter);
}

static AOM_INLINE void collect_single_states(MACROBLOCK *x,
                                             InterModeSearchState *search_state,
                                             const MB_MODE_INFO *const mbmi) {
  int i, j;
  const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
  const PREDICTION_MODE this_mode = mbmi->mode;
  const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1;
  const int mode_offset = INTER_OFFSET(this_mode);
  const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);

  // Simple rd
  int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame];
  for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
    const int64_t rd =
        search_state->simple_rd[this_mode][ref_mv_idx][ref_frame];
    if (rd < simple_rd) simple_rd = rd;
  }

  // Insertion sort of single_state
  const SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 };
  SingleInterModeState *state_s = search_state->single_state[dir][mode_offset];
  i = search_state->single_state_cnt[dir][mode_offset];
  for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j)
    state_s[j] = state_s[j - 1];
  state_s[j] = this_state_s;
  search_state->single_state_cnt[dir][mode_offset]++;

  // Modelled rd
  int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame];
  for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
    const int64_t rd =
        search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame];
    if (rd < modelled_rd) modelled_rd = rd;
  }

  // Insertion sort of single_state_modelled
  const SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 };
  SingleInterModeState *state_m =
      search_state->single_state_modelled[dir][mode_offset];
  i = search_state->single_state_modelled_cnt[dir][mode_offset];
  for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j)
    state_m[j] = state_m[j - 1];
  state_m[j] = this_state_m;
  search_state->single_state_modelled_cnt[dir][mode_offset]++;
}

static AOM_INLINE void analyze_single_states(
    const AV1_COMP *cpi, InterModeSearchState *search_state) {
  const int prune_level = cpi->sf.inter_sf.prune_comp_search_by_single_result;
  assert(prune_level >= 1);
  int i, j, dir, mode;

  for (dir = 0; dir < 2; ++dir) {
    int64_t best_rd;
    SingleInterModeState(*state)[FWD_REFS];
    const int prune_factor = prune_level >= 2 ? 6 : 5;

    // Use the best rd of GLOBALMV or NEWMV to prune the unlikely
    // reference frames for all the modes (NEARESTMV and NEARMV may not
    // have same motion vectors). Always keep the best of each mode
    // because it might form the best possible combination with other mode.
    state = search_state->single_state[dir];
    best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
                     state[INTER_OFFSET(GLOBALMV)][0].rd);
    for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
      for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) {
        if (state[mode][i].rd != INT64_MAX &&
            (state[mode][i].rd >> 3) * prune_factor > best_rd) {
          state[mode][i].valid = 0;
        }
      }
    }

    state = search_state->single_state_modelled[dir];
    best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
                     state[INTER_OFFSET(GLOBALMV)][0].rd);
    for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
      for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; ++i) {
        if (state[mode][i].rd != INT64_MAX &&
            (state[mode][i].rd >> 3) * prune_factor > best_rd) {
          state[mode][i].valid = 0;
        }
      }
    }
  }

  // Ordering by simple rd first, then by modelled rd
  for (dir = 0; dir < 2; ++dir) {
    for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
      const int state_cnt_s = search_state->single_state_cnt[dir][mode];
      const int state_cnt_m =
          search_state->single_state_modelled_cnt[dir][mode];
      SingleInterModeState *state_s = search_state->single_state[dir][mode];
      SingleInterModeState *state_m =
          search_state->single_state_modelled[dir][mode];
      int count = 0;
      const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m);
      for (i = 0; i < state_cnt_s; ++i) {
        if (state_s[i].rd == INT64_MAX) break;
        if (state_s[i].valid) {
          search_state->single_rd_order[dir][mode][count++] =
              state_s[i].ref_frame;
        }
      }
      if (count >= max_candidates) continue;

      for (i = 0; i < state_cnt_m && count < max_candidates; ++i) {
        if (state_m[i].rd == INT64_MAX) break;
        if (!state_m[i].valid) continue;
        const int ref_frame = state_m[i].ref_frame;
        int match = 0;
        // Check if existing already
        for (j = 0; j < count; ++j) {
          if (search_state->single_rd_order[dir][mode][j] == ref_frame) {
            match = 1;
            break;
          }
        }
        if (match) continue;
        // Check if this ref_frame is removed in simple rd
        int valid = 1;
        for (j = 0; j < state_cnt_s; ++j) {
          if (ref_frame == state_s[j].ref_frame) {
            valid = state_s[j].valid;
            break;
          }
        }
        if (valid) {
          search_state->single_rd_order[dir][mode][count++] = ref_frame;
        }
      }
    }
  }
}

static int compound_skip_get_candidates(
    const AV1_COMP *cpi, const InterModeSearchState *search_state,
    const int dir, const PREDICTION_MODE mode) {
  const int mode_offset = INTER_OFFSET(mode);
  const SingleInterModeState *state =
      search_state->single_state[dir][mode_offset];
  const SingleInterModeState *state_modelled =
      search_state->single_state_modelled[dir][mode_offset];

  int max_candidates = 0;
  for (int i = 0; i < FWD_REFS; ++i) {
    if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break;
    max_candidates++;
  }

  int candidates = max_candidates;
  if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 2) {
    candidates = AOMMIN(2, max_candidates);
  }
  if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 3) {
    if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX &&
        state[0].ref_frame == state_modelled[0].ref_frame)
      candidates = 1;
    if (mode == NEARMV || mode == GLOBALMV) candidates = 1;
  }

  if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 4) {
    // Limit the number of candidates to 1 in each direction for compound
    // prediction
    candidates = AOMMIN(1, candidates);
  }
  return candidates;
}

static int compound_skip_by_single_states(
    const AV1_COMP *cpi, const InterModeSearchState *search_state,
    const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame,
    const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) {
  const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame };
  const int mode[2] = { compound_ref0_mode(this_mode),
                        compound_ref1_mode(this_mode) };
  const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) };
  const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1,
                            refs[1] <= GOLDEN_FRAME ? 0 : 1 };
  int ref_searched[2] = { 0, 0 };
  int ref_mv_match[2] = { 1, 1 };
  int i, j;

  for (i = 0; i < 2; ++i) {
    const SingleInterModeState *state =
        search_state->single_state[mode_dir[i]][mode_offset[i]];
    const int state_cnt =
        search_state->single_state_cnt[mode_dir[i]][mode_offset[i]];
    for (j = 0; j < state_cnt; ++j) {
      if (state[j].ref_frame == refs[i]) {
        ref_searched[i] = 1;
        break;
      }
    }
  }

  const int ref_set = get_drl_refmv_count(x, refs, this_mode);
  for (i = 0; i < 2; ++i) {
    if (!ref_searched[i] || (mode[i] != NEARESTMV && mode[i] != NEARMV)) {
      continue;
    }
    const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME };
    for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) {
      int_mv single_mv;
      int_mv comp_mv;
      get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, 0, single_refs,
                  &x->mbmi_ext);
      get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, 0, refs, &x->mbmi_ext);
      if (single_mv.as_int != comp_mv.as_int) {
        ref_mv_match[i] = 0;
        break;
      }
    }
  }

  for (i = 0; i < 2; ++i) {
    if (!ref_searched[i] || !ref_mv_match[i]) continue;
    const int candidates =
        compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]);
    const MV_REFERENCE_FRAME *ref_order =
        search_state->single_rd_order[mode_dir[i]][mode_offset[i]];
    int match = 0;
    for (j = 0; j < candidates; ++j) {
      if (refs[i] == ref_order[j]) {
        match = 1;
        break;
      }
    }
    if (!match) return 1;
  }

  return 0;
}

// Check if ref frames of current block matches with given block.
static INLINE void match_ref_frame(const MB_MODE_INFO *const mbmi,
                                   const MV_REFERENCE_FRAME *ref_frames,
                                   int *const is_ref_match) {
  if (is_inter_block(mbmi)) {
    is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[0];
    is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[0];
    if (has_second_ref(mbmi)) {
      is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[1];
      is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[1];
    }
  }
}

// Prune compound mode using ref frames of neighbor blocks.
static INLINE int compound_skip_using_neighbor_refs(
    MACROBLOCKD *const xd, const PREDICTION_MODE this_mode,
    const MV_REFERENCE_FRAME *ref_frames, int prune_ext_comp_using_neighbors) {
  // Exclude non-extended compound modes from pruning
  if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
      this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
    return 0;

  if (prune_ext_comp_using_neighbors >= 3) return 1;

  int is_ref_match[2] = { 0 };  // 0 - match for forward refs
                                // 1 - match for backward refs
  // Check if ref frames of this block matches with left neighbor.
  if (xd->left_available)
    match_ref_frame(xd->left_mbmi, ref_frames, is_ref_match);

  // Check if ref frames of this block matches with above neighbor.
  if (xd->up_available)
    match_ref_frame(xd->above_mbmi, ref_frames, is_ref_match);

  // Combine ref frame match with neighbors in forward and backward refs.
  const int track_ref_match = is_ref_match[0] + is_ref_match[1];

  // Pruning based on ref frame match with neighbors.
  if (track_ref_match >= prune_ext_comp_using_neighbors) return 0;
  return 1;
}

// Update best single mode for the given reference frame based on simple rd.
static INLINE void update_best_single_mode(InterModeSearchState *search_state,
                                           const PREDICTION_MODE this_mode,
                                           const MV_REFERENCE_FRAME ref_frame,
                                           int64_t this_rd) {
  if (this_rd < search_state->best_single_rd[ref_frame]) {
    search_state->best_single_rd[ref_frame] = this_rd;
    search_state->best_single_mode[ref_frame] = this_mode;
  }
}

// Prune compound mode using best single mode for the same reference.
static INLINE int skip_compound_using_best_single_mode_ref(
    const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames,
    const PREDICTION_MODE *best_single_mode,
    int prune_comp_using_best_single_mode_ref) {
  // Exclude non-extended compound modes from pruning
  if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
      this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
    return 0;

  assert(this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV);
  const PREDICTION_MODE comp_mode_ref0 = compound_ref0_mode(this_mode);
  // Get ref frame direction corresponding to NEWMV
  // 0 - NEWMV corresponding to forward direction
  // 1 - NEWMV corresponding to backward direction
  const int newmv_dir = comp_mode_ref0 != NEWMV;

  // Avoid pruning the compound mode when ref frame corresponding to NEWMV
  // have NEWMV as single mode winner.
  // Example: For an extended-compound mode,
  // {mode, {fwd_frame, bwd_frame}} = {NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}}
  // - Ref frame corresponding to NEWMV is ALTREF_FRAME
  // - Avoid pruning this mode, if best single mode corresponding to ref frame
  //   ALTREF_FRAME is NEWMV
  const PREDICTION_MODE single_mode = best_single_mode[ref_frames[newmv_dir]];
  if (single_mode == NEWMV) return 0;

  // Avoid pruning the compound mode when best single mode is not available
  if (prune_comp_using_best_single_mode_ref == 1)
    if (single_mode == MB_MODE_COUNT) return 0;
  return 1;
}

static int compare_int64(const void *a, const void *b) {
  int64_t a64 = *((int64_t *)a);
  int64_t b64 = *((int64_t *)b);
  if (a64 < b64) {
    return -1;
  } else if (a64 == b64) {
    return 0;
  } else {
    return 1;
  }
}

static INLINE void update_search_state(
    InterModeSearchState *search_state, RD_STATS *best_rd_stats_dst,
    PICK_MODE_CONTEXT *ctx, const RD_STATS *new_best_rd_stats,
    const RD_STATS *new_best_rd_stats_y, const RD_STATS *new_best_rd_stats_uv,
    THR_MODES new_best_mode, const MACROBLOCK *x, int txfm_search_done) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  const int skip_ctx = av1_get_skip_txfm_context(xd);
  const int skip_txfm =
      mbmi->skip_txfm && !is_mode_intra(av1_mode_defs[new_best_mode].mode);
  const TxfmSearchInfo *txfm_info = &x->txfm_search_info;

  search_state->best_rd = new_best_rd_stats->rdcost;
  search_state->best_mode_index = new_best_mode;
  *best_rd_stats_dst = *new_best_rd_stats;
  search_state->best_mbmode = *mbmi;
  search_state->best_skip2 = skip_txfm;
  search_state->best_mode_skippable = new_best_rd_stats->skip_txfm;
  // When !txfm_search_done, new_best_rd_stats won't provide correct rate_y and
  // rate_uv because av1_txfm_search process is replaced by rd estimation.
  // Therefore, we should avoid updating best_rate_y and best_rate_uv here.
  // These two values will be updated when av1_txfm_search is called.
  if (txfm_search_done) {
    search_state->best_rate_y =
        new_best_rd_stats_y->rate +
        x->mode_costs.skip_txfm_cost[skip_ctx]
                                    [new_best_rd_stats->skip_txfm || skip_txfm];
    search_state->best_rate_uv = new_best_rd_stats_uv->rate;
  }
  search_state->best_y_rdcost = *new_best_rd_stats_y;
  memcpy(ctx->blk_skip, txfm_info->blk_skip,
         sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
  av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}

// Find the best RD for a reference frame (among single reference modes)
// and store +10% of it in the 0-th element in ref_frame_rd.
static AOM_INLINE void find_top_ref(int64_t ref_frame_rd[REF_FRAMES]) {
  assert(ref_frame_rd[0] == INT64_MAX);
  int64_t ref_copy[REF_FRAMES - 1];
  memcpy(ref_copy, ref_frame_rd + 1,
         sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1));
  qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64);

  int64_t cutoff = ref_copy[0];
  // The cut-off is within 10% of the best.
  if (cutoff != INT64_MAX) {
    assert(cutoff < INT64_MAX / 200);
    cutoff = (110 * cutoff) / 100;
  }
  ref_frame_rd[0] = cutoff;
}

// Check if either frame is within the cutoff.
static INLINE bool in_single_ref_cutoff(int64_t ref_frame_rd[REF_FRAMES],
                                        MV_REFERENCE_FRAME frame1,
                                        MV_REFERENCE_FRAME frame2) {
  assert(frame2 > 0);
  return ref_frame_rd[frame1] <= ref_frame_rd[0] ||
         ref_frame_rd[frame2] <= ref_frame_rd[0];
}

static AOM_INLINE void evaluate_motion_mode_for_winner_candidates(
    const AV1_COMP *const cpi, MACROBLOCK *const x, RD_STATS *const rd_cost,
    HandleInterModeArgs *const args, TileDataEnc *const tile_data,
    PICK_MODE_CONTEXT *const ctx,
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
    const motion_mode_best_st_candidate *const best_motion_mode_cands,
    int do_tx_search, const BLOCK_SIZE bsize, int64_t *const best_est_rd,
    InterModeSearchState *const search_state, int64_t *yrd) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  InterModesInfo *const inter_modes_info = x->inter_modes_info;
  const int num_best_cand = best_motion_mode_cands->num_motion_mode_cand;

  for (int cand = 0; cand < num_best_cand; cand++) {
    RD_STATS rd_stats;
    RD_STATS rd_stats_y;
    RD_STATS rd_stats_uv;
    av1_init_rd_stats(&rd_stats);
    av1_init_rd_stats(&rd_stats_y);
    av1_init_rd_stats(&rd_stats_uv);
    int rate_mv;

    rate_mv = best_motion_mode_cands->motion_mode_cand[cand].rate_mv;
    args->skip_motion_mode =
        best_motion_mode_cands->motion_mode_cand[cand].skip_motion_mode;
    *mbmi = best_motion_mode_cands->motion_mode_cand[cand].mbmi;
    rd_stats.rate =
        best_motion_mode_cands->motion_mode_cand[cand].rate2_nocoeff;

    // Continue if the best candidate is compound.
    if (!is_inter_singleref_mode(mbmi->mode)) continue;

    x->txfm_search_info.skip_txfm = 0;
    struct macroblockd_plane *pd = xd->plane;
    const BUFFER_SET orig_dst = {
      { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
      { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
    };

    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
    // Initialize motion mode to simple translation
    // Calculation of switchable rate depends on it.
    mbmi->motion_mode = 0;
    const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
    for (int i = 0; i < num_planes; i++) {
      xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
      if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
    }

    int64_t skip_rd[2] = { search_state->best_skip_rd[0],
                           search_state->best_skip_rd[1] };
    int64_t this_yrd = INT64_MAX;
    int64_t ret_value = motion_mode_rd(
        cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, args,
        search_state->best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd,
        do_tx_search, inter_modes_info, 1, &this_yrd);

    if (ret_value != INT64_MAX) {
      rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
      const THR_MODES mode_enum = get_prediction_mode_idx(
          mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
      // Collect mode stats for multiwinner mode processing
      store_winner_mode_stats(
          &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv,
          mode_enum, NULL, bsize, rd_stats.rdcost,
          cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search);
      if (rd_stats.rdcost < search_state->best_rd) {
        *yrd = this_yrd;
        update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
                            &rd_stats_uv, mode_enum, x, do_tx_search);
        if (do_tx_search) search_state->best_skip_rd[0] = skip_rd[0];
      }
    }
  }
}

/*!\cond */
// Arguments for speed feature pruning of inter mode search
typedef struct {
  int *skip_motion_mode;
  mode_skip_mask_t *mode_skip_mask;
  InterModeSearchState *search_state;
  int skip_ref_frame_mask;
  int reach_first_comp_mode;
  int mode_thresh_mul_fact;
  int num_single_modes_processed;
  int prune_cpd_using_sr_stats_ready;
} InterModeSFArgs;
/*!\endcond */

static int skip_inter_mode(AV1_COMP *cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
                           int64_t *ref_frame_rd, int midx,
                           InterModeSFArgs *args, int is_low_temp_var) {
  const SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  // Get the actual prediction mode we are trying in this iteration
  const THR_MODES mode_enum = av1_default_mode_order[midx];
  const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
  const PREDICTION_MODE this_mode = mode_def->mode;
  const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
  const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
  const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
  const int comp_pred = second_ref_frame > INTRA_FRAME;

  if (ref_frame == INTRA_FRAME) return 1;

  const FRAME_UPDATE_TYPE update_type =
      get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
  if (sf->inter_sf.skip_arf_compound && update_type == ARF_UPDATE &&
      comp_pred) {
    return 1;
  }

  // This is for real time encoding.
  if (is_low_temp_var && !comp_pred && ref_frame != LAST_FRAME &&
      this_mode != NEARESTMV)
    return 1;

  // Check if this mode should be skipped because it is incompatible with the
  // current frame
  if (inter_mode_compatible_skip(cpi, x, bsize, this_mode, ref_frames))
    return 1;
  const int ret = inter_mode_search_order_independent_skip(
      cpi, x, args->mode_skip_mask, args->search_state,
      args->skip_ref_frame_mask, this_mode, mode_def->ref_frame);
  if (ret == 1) return 1;
  *(args->skip_motion_mode) = (ret == 2);

  // We've reached the first compound prediction mode, get stats from the
  // single reference predictors to help with pruning.
  // Disable this pruning logic if interpolation filter search was skipped for
  // single prediction modes as it can result in aggressive pruning of compound
  // prediction modes due to the absence of modelled_rd populated by
  // av1_interpolation_filter_search().
  // TODO(Remya): Check the impact of the sf
  // 'prune_comp_search_by_single_result' if compound prediction modes are
  // enabled in future for REALTIME encode.
  if (!sf->interp_sf.skip_interp_filter_search &&
      sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred &&
      args->reach_first_comp_mode == 0) {
    analyze_single_states(cpi, args->search_state);
    args->reach_first_comp_mode = 1;
  }

  // Prune aggressively when best mode is skippable.
  int mul_fact = args->search_state->best_mode_skippable
                     ? args->mode_thresh_mul_fact
                     : (1 << MODE_THRESH_QBITS);
  int64_t mode_threshold =
      (args->search_state->mode_threshold[mode_enum] * mul_fact) >>
      MODE_THRESH_QBITS;

  if (args->search_state->best_rd < mode_threshold) return 1;

  // Skip this compound mode based on the RD results from the single prediction
  // modes
  if (!sf->interp_sf.skip_interp_filter_search &&
      sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred) {
    if (compound_skip_by_single_states(cpi, args->search_state, this_mode,
                                       ref_frame, second_ref_frame, x))
      return 1;
  }

  if (sf->inter_sf.prune_compound_using_single_ref && comp_pred) {
    // After we done with single reference modes, find the 2nd best RD
    // for a reference frame. Only search compound modes that have a reference
    // frame at least as good as the 2nd best.
    if (!args->prune_cpd_using_sr_stats_ready &&
        args->num_single_modes_processed == NUM_SINGLE_REF_MODES) {
      find_top_ref(ref_frame_rd);
      args->prune_cpd_using_sr_stats_ready = 1;
    }
    if (args->prune_cpd_using_sr_stats_ready &&
        !in_single_ref_cutoff(ref_frame_rd, ref_frame, second_ref_frame))
      return 1;
  }

  // Skip NEW_NEARMV and NEAR_NEWMV extended compound modes
  if (sf->inter_sf.skip_ext_comp_nearmv_mode &&
      (this_mode == NEW_NEARMV || this_mode == NEAR_NEWMV)) {
    return 1;
  }

  if (sf->inter_sf.prune_ext_comp_using_neighbors && comp_pred) {
    if (compound_skip_using_neighbor_refs(
            xd, this_mode, ref_frames,
            sf->inter_sf.prune_ext_comp_using_neighbors))
      return 1;
  }

  if (sf->inter_sf.prune_comp_using_best_single_mode_ref && comp_pred) {
    if (skip_compound_using_best_single_mode_ref(
            this_mode, ref_frames, args->search_state->best_single_mode,
            sf->inter_sf.prune_comp_using_best_single_mode_ref))
      return 1;
  }

  if (sf->inter_sf.prune_nearest_near_mv_using_refmv_weight && !comp_pred) {
    const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
    if (skip_nearest_near_mv_using_refmv_weight(
            x, this_mode, ref_frame_type,
            args->search_state->best_mbmode.mode)) {
      // Ensure the mode is pruned only when the current block has obtained a
      // valid inter mode.
      assert(is_inter_mode(args->search_state->best_mbmode.mode));
      return 1;
    }
  }

  if (sf->rt_sf.prune_inter_modes_with_golden_ref &&
      ref_frame == GOLDEN_FRAME && !comp_pred) {
    const int subgop_size = AOMMIN(cpi->ppi->gf_group.size, FIXED_GF_INTERVAL);
    if (cpi->rc.frames_since_golden > (subgop_size >> 2) &&
        args->search_state->best_mbmode.ref_frame[0] != GOLDEN_FRAME) {
      if ((bsize > BLOCK_16X16 && this_mode == NEWMV) || this_mode == NEARMV)
        return 1;
    }
  }

  return 0;
}

static void record_best_compound(REFERENCE_MODE reference_mode,
                                 RD_STATS *rd_stats, int comp_pred, int rdmult,
                                 InterModeSearchState *search_state,
                                 int compmode_cost) {
  int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;

  if (reference_mode == REFERENCE_MODE_SELECT) {
    single_rate = rd_stats->rate - compmode_cost;
    hybrid_rate = rd_stats->rate;
  } else {
    single_rate = rd_stats->rate;
    hybrid_rate = rd_stats->rate + compmode_cost;
  }

  single_rd = RDCOST(rdmult, single_rate, rd_stats->dist);
  hybrid_rd = RDCOST(rdmult, hybrid_rate, rd_stats->dist);

  if (!comp_pred) {
    if (single_rd < search_state->best_pred_rd[SINGLE_REFERENCE])
      search_state->best_pred_rd[SINGLE_REFERENCE] = single_rd;
  } else {
    if (single_rd < search_state->best_pred_rd[COMPOUND_REFERENCE])
      search_state->best_pred_rd[COMPOUND_REFERENCE] = single_rd;
  }
  if (hybrid_rd < search_state->best_pred_rd[REFERENCE_MODE_SELECT])
    search_state->best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}

// Does a transform search over a list of the best inter mode candidates.
// This is called if the original mode search computed an RD estimate
// for the transform search rather than doing a full search.
static void tx_search_best_inter_candidates(
    AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x,
    int64_t best_rd_so_far, BLOCK_SIZE bsize,
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int mi_row, int mi_col,
    InterModeSearchState *search_state, RD_STATS *rd_cost,
    PICK_MODE_CONTEXT *ctx, int64_t *yrd) {
  AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int num_planes = av1_num_planes(cm);
  const int skip_ctx = av1_get_skip_txfm_context(xd);
  MB_MODE_INFO *const mbmi = xd->mi[0];
  InterModesInfo *inter_modes_info = x->inter_modes_info;
  inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr);
  search_state->best_rd = best_rd_so_far;
  search_state->best_mode_index = THR_INVALID;
  // Initialize best mode stats for winner mode processing
  x->winner_mode_count = 0;
  store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
                          NULL, bsize, best_rd_so_far,
                          cpi->sf.winner_mode_sf.multi_winner_mode_type, 0);
  inter_modes_info->num =
      inter_modes_info->num < cpi->sf.rt_sf.num_inter_modes_for_tx_search
          ? inter_modes_info->num
          : cpi->sf.rt_sf.num_inter_modes_for_tx_search;
  const int64_t top_est_rd =
      inter_modes_info->num > 0
          ? inter_modes_info
                ->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]
          : INT64_MAX;
  *yrd = INT64_MAX;
  int64_t best_rd_in_this_partition = INT64_MAX;
  int num_inter_mode_cands = inter_modes_info->num;
  int newmv_mode_evaled = 0;
  int max_allowed_cands = INT_MAX;
  if (cpi->sf.inter_sf.limit_inter_mode_cands) {
    // The bound on the no. of inter mode candidates, beyond which the
    // candidates are limited if a newmv mode got evaluated, is set as
    // max_allowed_cands + 1.
    const int num_allowed_cands[5] = { INT_MAX, 10, 9, 6, 2 };
    assert(cpi->sf.inter_sf.limit_inter_mode_cands <= 4);
    max_allowed_cands =
        num_allowed_cands[cpi->sf.inter_sf.limit_inter_mode_cands];
  }

  int num_mode_thresh = INT_MAX;
  if (cpi->sf.inter_sf.limit_txfm_eval_per_mode) {
    // Bound the no. of transform searches per prediction mode beyond a
    // threshold.
    const int num_mode_thresh_ary[4] = { INT_MAX, 4, 3, 0 };
    assert(cpi->sf.inter_sf.limit_txfm_eval_per_mode <= 3);
    num_mode_thresh =
        num_mode_thresh_ary[cpi->sf.inter_sf.limit_txfm_eval_per_mode];
  }

  int num_tx_cands = 0;
  int num_tx_search_modes[INTER_MODE_END - INTER_MODE_START] = { 0 };
  // Iterate over best inter mode candidates and perform tx search
  for (int j = 0; j < num_inter_mode_cands; ++j) {
    const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx;
    *mbmi = inter_modes_info->mbmi_arr[data_idx];
    const PREDICTION_MODE prediction_mode = mbmi->mode;
    int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx];
    if (curr_est_rd * 0.80 > top_est_rd) break;

    if (num_tx_cands > num_mode_thresh) {
      if ((prediction_mode != NEARESTMV &&
           num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 1) ||
          (prediction_mode == NEARESTMV &&
           num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 2))
        continue;
    }

    txfm_info->skip_txfm = 0;
    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);

    // Select prediction reference frames.
    const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
    for (int i = 0; i < num_planes; i++) {
      xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
      if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
    }

    bool is_predictor_built = false;

    // Initialize RD stats
    RD_STATS rd_stats;
    RD_STATS rd_stats_y;
    RD_STATS rd_stats_uv;
    const int mode_rate = inter_modes_info->mode_rate_arr[data_idx];
    int64_t skip_rd = INT64_MAX;
    const int txfm_rd_gate_level = get_txfm_rd_gate_level(
        cm->seq_params->enable_masked_compound,
        cpi->sf.inter_sf.txfm_rd_gate_level, bsize, TX_SEARCH_DEFAULT,
        /*eval_motion_mode=*/0);
    if (txfm_rd_gate_level) {
      // Check if the mode is good enough based on skip RD
      int64_t curr_sse = inter_modes_info->sse_arr[data_idx];
      skip_rd = RDCOST(x->rdmult, mode_rate, curr_sse);
      int eval_txfm = check_txfm_eval(x, bsize, search_state->best_skip_rd[0],
                                      skip_rd, txfm_rd_gate_level, 0);
      if (!eval_txfm) continue;
    }

    // Build the prediction for this mode
    if (!is_predictor_built) {
      av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
                                    av1_num_planes(cm) - 1);
    }
    if (mbmi->motion_mode == OBMC_CAUSAL) {
      av1_build_obmc_inter_predictors_sb(cm, xd);
    }

    num_tx_cands++;
    if (have_newmv_in_inter_mode(prediction_mode)) newmv_mode_evaled = 1;
    num_tx_search_modes[prediction_mode - INTER_MODE_START]++;
    int64_t this_yrd = INT64_MAX;
    // Do the transform search
    if (!av1_txfm_search(cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv,
                         mode_rate, search_state->best_rd)) {
      continue;
    } else {
      const int y_rate =
          rd_stats.skip_txfm
              ? mode_costs->skip_txfm_cost[skip_ctx][1]
              : (rd_stats_y.rate + mode_costs->skip_txfm_cost[skip_ctx][0]);
      this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y.dist);

      if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
        inter_mode_data_push(
            tile_data, mbmi->bsize, rd_stats.sse, rd_stats.dist,
            rd_stats_y.rate + rd_stats_uv.rate +
                mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
      }
    }
    rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
    if (rd_stats.rdcost < best_rd_in_this_partition) {
      best_rd_in_this_partition = rd_stats.rdcost;
      *yrd = this_yrd;
    }

    const THR_MODES mode_enum = get_prediction_mode_idx(
        prediction_mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);

    // Collect mode stats for multiwinner mode processing
    const int txfm_search_done = 1;
    store_winner_mode_stats(
        &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum,
        NULL, bsize, rd_stats.rdcost,
        cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);

    if (rd_stats.rdcost < search_state->best_rd) {
      update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
                          &rd_stats_uv, mode_enum, x, txfm_search_done);
      search_state->best_skip_rd[0] = skip_rd;
      // Limit the total number of modes to be evaluated if the first is valid
      // and transform skip or compound
      if (cpi->sf.inter_sf.inter_mode_txfm_breakout) {
        if (!j && (search_state->best_mbmode.skip_txfm || rd_stats.skip_txfm)) {
          // Evaluate more candidates at high quantizers where occurrence of
          // transform skip is high.
          const int max_cands_cap[5] = { 2, 3, 5, 7, 9 };
          const int qindex_band = (5 * x->qindex) >> QINDEX_BITS;
          num_inter_mode_cands =
              AOMMIN(max_cands_cap[qindex_band], inter_modes_info->num);
        } else if (!j && has_second_ref(&search_state->best_mbmode)) {
          const int aggr = cpi->sf.inter_sf.inter_mode_txfm_breakout - 1;
          // Evaluate more candidates at low quantizers where occurrence of
          // single reference mode is high.
          const int max_cands_cap_cmp[2][4] = { { 10, 7, 5, 4 },
                                                { 10, 7, 5, 3 } };
          const int qindex_band_cmp = (4 * x->qindex) >> QINDEX_BITS;
          num_inter_mode_cands = AOMMIN(
              max_cands_cap_cmp[aggr][qindex_band_cmp], inter_modes_info->num);
        }
      }
    }
    // If the number of candidates evaluated exceeds max_allowed_cands, break if
    // a newmv mode was evaluated already.
    if ((num_tx_cands > max_allowed_cands) && newmv_mode_evaled) break;
  }
}

// Indicates number of winner simple translation modes to be used
static const unsigned int num_winner_motion_modes[3] = { 0, 10, 3 };

// Adds a motion mode to the candidate list for motion_mode_for_winner_cand
// speed feature. This list consists of modes that have only searched
// SIMPLE_TRANSLATION. The final list will be used to search other motion
// modes after the initial RD search.
static void handle_winner_cand(
    MB_MODE_INFO *const mbmi,
    motion_mode_best_st_candidate *best_motion_mode_cands,
    int max_winner_motion_mode_cand, int64_t this_rd,
    motion_mode_candidate *motion_mode_cand, int skip_motion_mode) {
  // Number of current motion mode candidates in list
  const int num_motion_mode_cand = best_motion_mode_cands->num_motion_mode_cand;
  int valid_motion_mode_cand_loc = num_motion_mode_cand;

  // find the best location to insert new motion mode candidate
  for (int j = 0; j < num_motion_mode_cand; j++) {
    if (this_rd < best_motion_mode_cands->motion_mode_cand[j].rd_cost) {
      valid_motion_mode_cand_loc = j;
      break;
    }
  }

  // Insert motion mode if location is found
  if (valid_motion_mode_cand_loc < max_winner_motion_mode_cand) {
    if (num_motion_mode_cand > 0 &&
        valid_motion_mode_cand_loc < max_winner_motion_mode_cand - 1)
      memmove(
          &best_motion_mode_cands
               ->motion_mode_cand[valid_motion_mode_cand_loc + 1],
          &best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc],
          (AOMMIN(num_motion_mode_cand, max_winner_motion_mode_cand - 1) -
           valid_motion_mode_cand_loc) *
              sizeof(best_motion_mode_cands->motion_mode_cand[0]));
    motion_mode_cand->mbmi = *mbmi;
    motion_mode_cand->rd_cost = this_rd;
    motion_mode_cand->skip_motion_mode = skip_motion_mode;
    best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc] =
        *motion_mode_cand;
    best_motion_mode_cands->num_motion_mode_cand =
        AOMMIN(max_winner_motion_mode_cand,
               best_motion_mode_cands->num_motion_mode_cand + 1);
  }
}

/*!\brief Search intra modes in interframes
 *
 * \ingroup intra_mode_search
 *
 * This function searches for the best intra mode when the current frame is an
 * interframe. This function however does *not* handle luma palette mode.
 * Palette mode is currently handled by \ref av1_search_palette_mode.
 *
 * This function will first iterate through the luma mode candidates to find the
 * best luma intra mode. Once the best luma mode it's found, it will then search
 * for the best chroma mode. Because palette mode is currently not handled by
 * here, a cache of uv mode is stored in
 * InterModeSearchState::intra_search_state so it can be reused later by \ref
 * av1_search_palette_mode.
 *
 * \param[in,out] search_state      Struct keep track of the prediction mode
 *                                  search state in interframe.
 *
 * \param[in]     cpi               Top-level encoder structure.
 * \param[in,out] x                 Pointer to struct holding all the data for
 *                                  the current prediction block.
 * \param[out]    rd_cost           Stores the best rd_cost among all the
 *                                  prediction modes searched.
 * \param[in]     bsize             Current block size.
 * \param[in,out] ctx               Structure to hold the number of 4x4 blks to
 *                                  copy the tx_type and txfm_skip arrays.
 *                                  for only the Y plane.
 * \param[in]     sf_args           Stores the list of intra mode candidates
 *                                  to be searched.
 * \param[in]     intra_ref_frame_cost  The entropy cost for signaling that the
 *                                      current ref frame is an intra frame.
 * \param[in]     yrd_threshold     The rdcost threshold for luma intra mode to
 *                                  terminate chroma intra mode search.
 *
 * \remark If a new best mode is found, search_state and rd_costs are updated
 * correspondingly. While x is also modified, it is only used as a temporary
 * buffer, and the final decisions are stored in search_state.
 */
static AOM_INLINE void search_intra_modes_in_interframe(
    InterModeSearchState *search_state, const AV1_COMP *cpi, MACROBLOCK *x,
    RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
    const InterModeSFArgs *sf_args, unsigned int intra_ref_frame_cost,
    int64_t yrd_threshold) {
  const AV1_COMMON *const cm = &cpi->common;
  const SPEED_FEATURES *const sf = &cpi->sf;
  const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  IntraModeSearchState *intra_search_state = &search_state->intra_search_state;

  int is_best_y_mode_intra = 0;
  RD_STATS best_intra_rd_stats_y;
  int64_t best_rd_y = INT64_MAX;
  int best_mode_cost_y = -1;
  MB_MODE_INFO best_mbmi = *xd->mi[0];
  THR_MODES best_mode_enum = THR_INVALID;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
  const int num_4x4 = bsize_to_num_blk(bsize);

  // Performs luma search
  int64_t best_model_rd = INT64_MAX;
  int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
  for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
    top_intra_model_rd[i] = INT64_MAX;
  }
  for (int mode_idx = 0; mode_idx < LUMA_MODE_COUNT; ++mode_idx) {
    if (sf->intra_sf.skip_intra_in_interframe &&
        search_state->intra_search_state.skip_intra_modes)
      break;
    set_y_mode_and_delta_angle(
        mode_idx, mbmi, sf->intra_sf.prune_luma_odd_delta_angles_in_intra);
    assert(mbmi->mode < INTRA_MODE_END);

    // Use intra_y_mode_mask speed feature to skip intra mode evaluation.
    if (sf_args->mode_skip_mask->pred_modes[INTRA_FRAME] & (1 << mbmi->mode))
      continue;

    const THR_MODES mode_enum =
        get_prediction_mode_idx(mbmi->mode, INTRA_FRAME, NONE_FRAME);
    if ((!intra_mode_cfg->enable_smooth_intra ||
         cpi->sf.intra_sf.disable_smooth_intra) &&
        (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
         mbmi->mode == SMOOTH_V_PRED))
      continue;
    if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED)
      continue;
    if (av1_is_directional_mode(mbmi->mode) &&
        !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) &&
        mbmi->angle_delta[PLANE_TYPE_Y] != 0)
      continue;
    const PREDICTION_MODE this_mode = mbmi->mode;

    assert(av1_mode_defs[mode_enum].ref_frame[0] == INTRA_FRAME);
    assert(av1_mode_defs[mode_enum].ref_frame[1] == NONE_FRAME);
    init_mbmi(mbmi, this_mode, av1_mode_defs[mode_enum].ref_frame, cm);
    x->txfm_search_info.skip_txfm = 0;

    if (this_mode != DC_PRED) {
      // Only search the oblique modes if the best so far is
      // one of the neighboring directional modes
      if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
          (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
        if (search_state->best_mode_index != THR_INVALID &&
            search_state->best_mbmode.ref_frame[0] > INTRA_FRAME)
          continue;
      }
      if (sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
        if (conditional_skipintra(
                this_mode, search_state->intra_search_state.best_intra_mode))
          continue;
      }
    }

    RD_STATS intra_rd_stats_y;
    int mode_cost_y;
    int64_t intra_rd_y = INT64_MAX;
    const int is_luma_result_valid = av1_handle_intra_y_mode(
        intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx,
        &intra_rd_stats_y, search_state->best_rd, &mode_cost_y, &intra_rd_y,
        &best_model_rd, top_intra_model_rd);
    if (is_luma_result_valid && intra_rd_y < yrd_threshold) {
      is_best_y_mode_intra = 1;
      if (intra_rd_y < best_rd_y) {
        best_intra_rd_stats_y = intra_rd_stats_y;
        best_mode_cost_y = mode_cost_y;
        best_rd_y = intra_rd_y;
        best_mbmi = *mbmi;
        best_mode_enum = mode_enum;
        memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
               sizeof(best_blk_skip[0]) * num_4x4);
        av1_copy_array(best_tx_type_map, xd->tx_type_map, num_4x4);
      }
    }
  }

  if (!is_best_y_mode_intra) {
    return;
  }

  assert(best_rd_y < INT64_MAX);

  // Restores the best luma mode
  *mbmi = best_mbmi;
  memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
         sizeof(best_blk_skip[0]) * num_4x4);
  av1_copy_array(xd->tx_type_map, best_tx_type_map, num_4x4);

  // Performs chroma search
  RD_STATS intra_rd_stats, intra_rd_stats_uv;
  av1_init_rd_stats(&intra_rd_stats);
  av1_init_rd_stats(&intra_rd_stats_uv);
  const int num_planes = av1_num_planes(cm);
  if (num_planes > 1) {
    const int intra_uv_mode_valid = av1_search_intra_uv_modes_in_interframe(
        intra_search_state, cpi, x, bsize, &intra_rd_stats,
        &best_intra_rd_stats_y, &intra_rd_stats_uv, search_state->best_rd);

    if (!intra_uv_mode_valid) {
      return;
    }
  }

  // Merge the luma and chroma rd stats
  assert(best_mode_cost_y >= 0);
  intra_rd_stats.rate = best_intra_rd_stats_y.rate + best_mode_cost_y;
  if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
    // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size
    // in the tokenonly rate, but for intra blocks, tx_size is always coded
    // (prediction granularity), so we account for it in the full rate,
    // not the tokenonly rate.
    best_intra_rd_stats_y.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
  }

  const ModeCosts *mode_costs = &x->mode_costs;
  const PREDICTION_MODE mode = mbmi->mode;
  if (num_planes > 1 && xd->is_chroma_ref) {
    const int uv_mode_cost =
        mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
    intra_rd_stats.rate +=
        intra_rd_stats_uv.rate +
        intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
  }

  // Intra block is always coded as non-skip
  intra_rd_stats.skip_txfm = 0;
  intra_rd_stats.dist = best_intra_rd_stats_y.dist + intra_rd_stats_uv.dist;
  // Add in the cost of the no skip flag.
  const int skip_ctx = av1_get_skip_txfm_context(xd);
  intra_rd_stats.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
  // Calculate the final RD estimate for this mode.
  const int64_t this_rd =
      RDCOST(x->rdmult, intra_rd_stats.rate, intra_rd_stats.dist);
  // Keep record of best intra rd
  if (this_rd < search_state->best_intra_rd) {
    search_state->best_intra_rd = this_rd;
    intra_search_state->best_intra_mode = mode;
  }

  for (int i = 0; i < REFERENCE_MODES; ++i) {
    search_state->best_pred_rd[i] =
        AOMMIN(search_state->best_pred_rd[i], this_rd);
  }

  intra_rd_stats.rdcost = this_rd;

  // Collect mode stats for multiwinner mode processing
  const int txfm_search_done = 1;
  store_winner_mode_stats(
      &cpi->common, x, mbmi, &intra_rd_stats, &best_intra_rd_stats_y,
      &intra_rd_stats_uv, best_mode_enum, NULL, bsize, intra_rd_stats.rdcost,
      cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
  if (intra_rd_stats.rdcost < search_state->best_rd) {
    update_search_state(search_state, rd_cost, ctx, &intra_rd_stats,
                        &best_intra_rd_stats_y, &intra_rd_stats_uv,
                        best_mode_enum, x, txfm_search_done);
  }
}

#if !CONFIG_REALTIME_ONLY
// Prepare inter_cost and intra_cost from TPL stats, which are used as ML
// features in intra mode pruning.
static AOM_INLINE void calculate_cost_from_tpl_data(
    const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
    int mi_col, int64_t *inter_cost, int64_t *intra_cost) {
  const AV1_COMMON *const cm = &cpi->common;
  // Only consider full SB.
  const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
  const int tpl_bsize_1d = cpi->ppi->tpl_data.tpl_bsize_1d;
  const int len = (block_size_wide[sb_size] / tpl_bsize_1d) *
                  (block_size_high[sb_size] / tpl_bsize_1d);
  SuperBlockEnc *sb_enc = &x->sb_enc;
  if (sb_enc->tpl_data_count == len) {
    const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_bsize_1d);
    const int tpl_stride = sb_enc->tpl_stride;
    const int tplw = mi_size_wide[tpl_bsize];
    const int tplh = mi_size_high[tpl_bsize];
    const int nw = mi_size_wide[bsize] / tplw;
    const int nh = mi_size_high[bsize] / tplh;
    if (nw >= 1 && nh >= 1) {
      const int of_h = mi_row % mi_size_high[sb_size];
      const int of_w = mi_col % mi_size_wide[sb_size];
      const int start = of_h / tplh * tpl_stride + of_w / tplw;

      for (int k = 0; k < nh; k++) {
        for (int l = 0; l < nw; l++) {
          *inter_cost += sb_enc->tpl_inter_cost[start + k * tpl_stride + l];
          *intra_cost += sb_enc->tpl_intra_cost[start + k * tpl_stride + l];
        }
      }
      *inter_cost /= nw * nh;
      *intra_cost /= nw * nh;
    }
  }
}
#endif  // !CONFIG_REALTIME_ONLY

// When the speed feature skip_intra_in_interframe > 0, enable ML model to prune
// intra mode search.
static AOM_INLINE void skip_intra_modes_in_interframe(
    AV1_COMMON *const cm, struct macroblock *x, BLOCK_SIZE bsize,
    InterModeSearchState *search_state, const SPEED_FEATURES *const sf,
    int64_t inter_cost, int64_t intra_cost) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const int comp_pred = search_state->best_mbmode.ref_frame[1] > INTRA_FRAME;
  if (sf->rt_sf.prune_intra_mode_based_on_mv_range &&
      bsize > sf->part_sf.max_intra_bsize && !comp_pred) {
    const MV best_mv = search_state->best_mbmode.mv[0].as_mv;
    const int mv_thresh = 16 << sf->rt_sf.prune_intra_mode_based_on_mv_range;
    if (abs(best_mv.row) < mv_thresh && abs(best_mv.col) < mv_thresh &&
        x->source_variance > 128) {
      search_state->intra_search_state.skip_intra_modes = 1;
      return;
    }
  }

  const unsigned int src_var_thresh_intra_skip = 1;
  const int skip_intra_in_interframe = sf->intra_sf.skip_intra_in_interframe;
  if (!(skip_intra_in_interframe &&
        (x->source_variance > src_var_thresh_intra_skip)))
    return;

  // Prune intra search based on best inter mode being transfrom skip.
  if ((skip_intra_in_interframe >= 2) && search_state->best_mbmode.skip_txfm) {
    const int qindex_thresh[2] = { 200, MAXQ };
    const int ind = (skip_intra_in_interframe >= 3) ? 1 : 0;
    if (!have_newmv_in_inter_mode(search_state->best_mbmode.mode) &&
        (x->qindex <= qindex_thresh[ind])) {
      search_state->intra_search_state.skip_intra_modes = 1;
      return;
    } else if ((skip_intra_in_interframe >= 4) &&
               (inter_cost < 0 || intra_cost < 0)) {
      search_state->intra_search_state.skip_intra_modes = 1;
      return;
    }
  }
  // Use ML model to prune intra search.
  if (inter_cost >= 0 && intra_cost >= 0) {
    const NN_CONFIG *nn_config = (AOMMIN(cm->width, cm->height) <= 480)
                                     ? &av1_intrap_nn_config
                                     : &av1_intrap_hd_nn_config;
    float nn_features[6];
    float scores[2] = { 0.0f };

    nn_features[0] = (float)search_state->best_mbmode.skip_txfm;
    nn_features[1] = (float)mi_size_wide_log2[bsize];
    nn_features[2] = (float)mi_size_high_log2[bsize];
    nn_features[3] = (float)intra_cost;
    nn_features[4] = (float)inter_cost;
    const int ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
    const int ac_q_max = av1_ac_quant_QTX(255, 0, xd->bd);
    nn_features[5] = (float)(ac_q_max / ac_q);

    av1_nn_predict(nn_features, nn_config, 1, scores);

    // For two parameters, the max prob returned from av1_nn_softmax equals
    // 1.0 / (1.0 + e^(-|diff_score|)). Here use scores directly to avoid the
    // calling of av1_nn_softmax.
    const float thresh[5] = { 1.4f, 1.4f, 1.4f, 1.4f, 1.4f };
    assert(skip_intra_in_interframe <= 5);
    if (scores[1] > scores[0] + thresh[skip_intra_in_interframe - 1]) {
      search_state->intra_search_state.skip_intra_modes = 1;
    }
  }
}

static AOM_INLINE bool skip_interp_filter_search(const AV1_COMP *cpi,
                                                 int is_single_pred) {
  const MODE encoding_mode = cpi->oxcf.mode;
  if (encoding_mode == REALTIME) {
    return (cpi->common.current_frame.reference_mode == SINGLE_REFERENCE &&
            (cpi->sf.interp_sf.skip_interp_filter_search ||
             cpi->sf.winner_mode_sf.winner_mode_ifs));
  } else if (encoding_mode == GOOD) {
    // Skip interpolation filter search for single prediction modes.
    return (cpi->sf.interp_sf.skip_interp_filter_search && is_single_pred);
  }
  return false;
}

static AOM_INLINE int get_block_temp_var(const AV1_COMP *cpi,
                                         const MACROBLOCK *x,
                                         BLOCK_SIZE bsize) {
  const AV1_COMMON *const cm = &cpi->common;
  const SPEED_FEATURES *const sf = &cpi->sf;

  if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION ||
      !sf->rt_sf.short_circuit_low_temp_var ||
      !sf->rt_sf.prune_inter_modes_using_temp_var) {
    return 0;
  }

  const int mi_row = x->e_mbd.mi_row;
  const int mi_col = x->e_mbd.mi_col;
  int is_low_temp_var = 0;

  if (cm->seq_params->sb_size == BLOCK_64X64)
    is_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
        &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
  else
    is_low_temp_var = av1_get_force_skip_low_temp_var(
        &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);

  return is_low_temp_var;
}

// TODO(chiyotsai@google.com): See the todo for av1_rd_pick_intra_mode_sb.
void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
                            struct macroblock *x, struct RD_STATS *rd_cost,
                            BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
                            int64_t best_rd_so_far) {
  AV1_COMMON *const cm = &cpi->common;
  const FeatureFlags *const features = &cm->features;
  const int num_planes = av1_num_planes(cm);
  const SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  TxfmSearchInfo *txfm_info = &x->txfm_search_info;
  int i;
  const ModeCosts *mode_costs = &x->mode_costs;
  const int *comp_inter_cost =
      mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];

  InterModeSearchState search_state;
  init_inter_mode_search_state(&search_state, cpi, x, bsize, best_rd_so_far);
  INTERINTRA_MODE interintra_modes[REF_FRAMES] = {
    INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES,
    INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES
  };
  HandleInterModeArgs args = { { NULL },
                               { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
                               { NULL },
                               { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
                                 MAX_SB_SIZE >> 1 },
                               NULL,
                               NULL,
                               NULL,
                               search_state.modelled_rd,
                               INT_MAX,
                               INT_MAX,
                               search_state.simple_rd,
                               0,
                               false,
                               interintra_modes,
                               { { { 0 }, { { 0 } }, { 0 }, 0, 0, 0, 0 } },
                               { { 0, 0 } },
                               { 0 },
                               0,
                               0,
                               -1,
                               -1,
                               -1,
                               { 0 },
                               { 0 },
                               UINT_MAX };
  // Currently, is_low_temp_var is used in real time encoding.
  const int is_low_temp_var = get_block_temp_var(cpi, x, bsize);

  for (i = 0; i < MODE_CTX_REF_FRAMES; ++i) args.cmp_mode[i] = -1;
  // Indicates the appropriate number of simple translation winner modes for
  // exhaustive motion mode evaluation
  const int max_winner_motion_mode_cand =
      num_winner_motion_modes[sf->winner_mode_sf.motion_mode_for_winner_cand];
  assert(max_winner_motion_mode_cand <= MAX_WINNER_MOTION_MODES);
  motion_mode_candidate motion_mode_cand;
  motion_mode_best_st_candidate best_motion_mode_cands;
  // Initializing the number of motion mode candidates to zero.
  best_motion_mode_cands.num_motion_mode_cand = 0;
  for (i = 0; i < MAX_WINNER_MOTION_MODES; ++i)
    best_motion_mode_cands.motion_mode_cand[i].rd_cost = INT64_MAX;

  for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;

  av1_invalid_rd_stats(rd_cost);

  for (i = 0; i < REF_FRAMES; ++i) {
    x->warp_sample_info[i].num = -1;
  }

  // Ref frames that are selected by square partition blocks.
  int picked_ref_frames_mask = 0;
  if (sf->inter_sf.prune_ref_frame_for_rect_partitions &&
      mbmi->partition != PARTITION_NONE) {
    // prune_ref_frame_for_rect_partitions = 1 implies prune only extended
    // partition blocks. prune_ref_frame_for_rect_partitions >=2
    // implies prune for vert, horiz and extended partition blocks.
    if ((mbmi->partition != PARTITION_VERT &&
         mbmi->partition != PARTITION_HORZ) ||
        sf->inter_sf.prune_ref_frame_for_rect_partitions >= 2) {
      picked_ref_frames_mask =
          fetch_picked_ref_frames_mask(x, bsize, cm->seq_params->mib_size);
    }
  }

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif
  // Skip ref frames that never selected by square blocks.
  const int skip_ref_frame_mask =
      picked_ref_frames_mask ? ~picked_ref_frames_mask : 0;
  mode_skip_mask_t mode_skip_mask;
  unsigned int ref_costs_single[REF_FRAMES];
  unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
  struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
  // init params, set frame modes, speed features
  set_params_rd_pick_inter_mode(cpi, x, &args, bsize, &mode_skip_mask,
                                skip_ref_frame_mask, ref_costs_single,
                                ref_costs_comp, yv12_mb);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif

  int64_t best_est_rd = INT64_MAX;
  const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
  // If do_tx_search is 0, only estimated RD should be computed.
  // If do_tx_search is 1, all modes have TX search performed.
  const int do_tx_search =
      !((sf->inter_sf.inter_mode_rd_model_estimation == 1 && md->ready) ||
        (sf->inter_sf.inter_mode_rd_model_estimation == 2 &&
         num_pels_log2_lookup[bsize] > 8));
  InterModesInfo *inter_modes_info = x->inter_modes_info;
  inter_modes_info->num = 0;

  // Temporary buffers used by handle_inter_mode().
  uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);

  // The best RD found for the reference frame, among single reference modes.
  // Note that the 0-th element will contain a cut-off that is later used
  // to determine if we should skip a compound mode.
  int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX,
                                       INT64_MAX, INT64_MAX, INT64_MAX,
                                       INT64_MAX, INT64_MAX };

  // Prepared stats used later to check if we could skip intra mode eval.
  int64_t inter_cost = -1;
  int64_t intra_cost = -1;
  // Need to tweak the threshold for hdres speed 0 & 1.
  const int mi_row = xd->mi_row;
  const int mi_col = xd->mi_col;

  // Obtain the relevant tpl stats for pruning inter modes
  PruneInfoFromTpl inter_cost_info_from_tpl;
#if !CONFIG_REALTIME_ONLY
  if (sf->inter_sf.prune_inter_modes_based_on_tpl) {
    // x->tpl_keep_ref_frame[id] = 1 => no pruning in
    // prune_ref_by_selective_ref_frame()
    // x->tpl_keep_ref_frame[id] = 0  => ref frame can be pruned in
    // prune_ref_by_selective_ref_frame()
    // Populating valid_refs[idx] = 1 ensures that
    // 'inter_cost_info_from_tpl.best_inter_cost' does not correspond to a
    // pruned ref frame.
    int valid_refs[INTER_REFS_PER_FRAME];
    for (MV_REFERENCE_FRAME frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
      const MV_REFERENCE_FRAME refs[2] = { frame, NONE_FRAME };
      valid_refs[frame - 1] =
          x->tpl_keep_ref_frame[frame] ||
          !prune_ref_by_selective_ref_frame(
              cpi, x, refs, cm->cur_frame->ref_display_order_hint);
    }
    av1_zero(inter_cost_info_from_tpl);
    get_block_level_tpl_stats(cpi, bsize, mi_row, mi_col, valid_refs,
                              &inter_cost_info_from_tpl);
  }

  const int do_pruning =
      (AOMMIN(cm->width, cm->height) > 480 && cpi->speed <= 1) ? 0 : 1;
  if (do_pruning && sf->intra_sf.skip_intra_in_interframe &&
      cpi->oxcf.algo_cfg.enable_tpl_model)
    calculate_cost_from_tpl_data(cpi, x, bsize, mi_row, mi_col, &inter_cost,
                                 &intra_cost);
#endif  // !CONFIG_REALTIME_ONLY

  // Initialize best mode stats for winner mode processing.
  const int max_winner_mode_count =
      winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type];
  zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats);
  x->winner_mode_count = 0;
  store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
                          NULL, bsize, best_rd_so_far,
                          sf->winner_mode_sf.multi_winner_mode_type, 0);

  int mode_thresh_mul_fact = (1 << MODE_THRESH_QBITS);
  if (sf->inter_sf.prune_inter_modes_if_skippable) {
    // Higher multiplication factor values for lower quantizers.
    mode_thresh_mul_fact = mode_threshold_mul_factor[x->qindex];
  }

  // Initialize arguments for mode loop speed features
  InterModeSFArgs sf_args = { &args.skip_motion_mode,
                              &mode_skip_mask,
                              &search_state,
                              skip_ref_frame_mask,
                              0,
                              mode_thresh_mul_fact,
                              0,
                              0 };
  int64_t best_inter_yrd = INT64_MAX;

  // This is the main loop of this function. It loops over all possible inter
  // modes and calls handle_inter_mode() to compute the RD for each.
  // Here midx is just an iterator index that should not be used by itself
  // except to keep track of the number of modes searched. It should be used
  // with av1_default_mode_order to get the enum that defines the mode, which
  // can be used with av1_mode_defs to get the prediction mode and the ref
  // frames.
  // TODO(yunqing, any): Setting mode_start and mode_end outside for-loop brings
  // good speedup for real time case. If we decide to use compound mode in real
  // time, maybe we can modify av1_default_mode_order table.
  THR_MODES mode_start = THR_INTER_MODE_START;
  THR_MODES mode_end = THR_INTER_MODE_END;
  const CurrentFrame *const current_frame = &cm->current_frame;
  if (current_frame->reference_mode == SINGLE_REFERENCE) {
    mode_start = SINGLE_REF_MODE_START;
    mode_end = SINGLE_REF_MODE_END;
  }

  for (THR_MODES midx = mode_start; midx < mode_end; ++midx) {
    // Get the actual prediction mode we are trying in this iteration
    const THR_MODES mode_enum = av1_default_mode_order[midx];
    const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
    const PREDICTION_MODE this_mode = mode_def->mode;
    const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;

    const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
    const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
    const int is_single_pred =
        ref_frame > INTRA_FRAME && second_ref_frame == NONE_FRAME;
    const int comp_pred = second_ref_frame > INTRA_FRAME;

    init_mbmi(mbmi, this_mode, ref_frames, cm);

    txfm_info->skip_txfm = 0;
    sf_args.num_single_modes_processed += is_single_pred;
    set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, skip_inter_mode_time);
#endif
    // Apply speed features to decide if this inter mode can be skipped
    const int is_skip_inter_mode = skip_inter_mode(
        cpi, x, bsize, ref_frame_rd, midx, &sf_args, is_low_temp_var);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, skip_inter_mode_time);
#endif
    if (is_skip_inter_mode) continue;

    // Select prediction reference frames.
    for (i = 0; i < num_planes; i++) {
      xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
      if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
    }

    mbmi->angle_delta[PLANE_TYPE_Y] = 0;
    mbmi->angle_delta[PLANE_TYPE_UV] = 0;
    mbmi->filter_intra_mode_info.use_filter_intra = 0;
    mbmi->ref_mv_idx = 0;

    const int64_t ref_best_rd = search_state.best_rd;
    RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
    av1_init_rd_stats(&rd_stats);

    const int ref_frame_cost = comp_pred
                                   ? ref_costs_comp[ref_frame][second_ref_frame]
                                   : ref_costs_single[ref_frame];
    const int compmode_cost =
        is_comp_ref_allowed(mbmi->bsize) ? comp_inter_cost[comp_pred] : 0;
    const int real_compmode_cost =
        cm->current_frame.reference_mode == REFERENCE_MODE_SELECT
            ? compmode_cost
            : 0;
    // Point to variables that are maintained between loop iterations
    args.single_newmv = search_state.single_newmv;
    args.single_newmv_rate = search_state.single_newmv_rate;
    args.single_newmv_valid = search_state.single_newmv_valid;
    args.single_comp_cost = real_compmode_cost;
    args.ref_frame_cost = ref_frame_cost;
    args.best_pred_sse = search_state.best_pred_sse;
    args.skip_ifs = skip_interp_filter_search(cpi, is_single_pred);

    int64_t skip_rd[2] = { search_state.best_skip_rd[0],
                           search_state.best_skip_rd[1] };
    int64_t this_yrd = INT64_MAX;
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, handle_inter_mode_time);
#endif
    int64_t this_rd = handle_inter_mode(
        cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &args,
        ref_best_rd, tmp_buf, &x->comp_rd_buffer, &best_est_rd, do_tx_search,
        inter_modes_info, &motion_mode_cand, skip_rd, &inter_cost_info_from_tpl,
        &this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, handle_inter_mode_time);
#endif
    if (current_frame->reference_mode != SINGLE_REFERENCE) {
      if (!args.skip_ifs &&
          sf->inter_sf.prune_comp_search_by_single_result > 0 &&
          is_inter_singleref_mode(this_mode)) {
        collect_single_states(x, &search_state, mbmi);
      }

      if (sf->inter_sf.prune_comp_using_best_single_mode_ref > 0 &&
          is_inter_singleref_mode(this_mode))
        update_best_single_mode(&search_state, this_mode, ref_frame, this_rd);
    }

    if (this_rd == INT64_MAX) continue;

    if (mbmi->skip_txfm) {
      rd_stats_y.rate = 0;
      rd_stats_uv.rate = 0;
    }

    if (sf->inter_sf.prune_compound_using_single_ref && is_single_pred &&
        this_rd < ref_frame_rd[ref_frame]) {
      ref_frame_rd[ref_frame] = this_rd;
    }

    // Did this mode help, i.e., is it the new best mode
    if (this_rd < search_state.best_rd) {
      assert(IMPLIES(comp_pred,
                     cm->current_frame.reference_mode != SINGLE_REFERENCE));
      search_state.best_pred_sse = x->pred_sse[ref_frame];
      best_inter_yrd = this_yrd;
      update_search_state(&search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
                          &rd_stats_uv, mode_enum, x, do_tx_search);
      if (do_tx_search) search_state.best_skip_rd[0] = skip_rd[0];
      // skip_rd[0] is the best total rd for a skip mode so far.
      // skip_rd[1] is the best total rd for a skip mode so far in luma.
      // When do_tx_search = 1, both skip_rd[0] and skip_rd[1] are updated.
      // When do_tx_search = 0, skip_rd[1] is updated.
      search_state.best_skip_rd[1] = skip_rd[1];
    }
    if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
      // Add this mode to motion mode candidate list for motion mode search
      // if using motion_mode_for_winner_cand speed feature
      handle_winner_cand(mbmi, &best_motion_mode_cands,
                         max_winner_motion_mode_cand, this_rd,
                         &motion_mode_cand, args.skip_motion_mode);
    }

    /* keep record of best compound/single-only prediction */
    record_best_compound(cm->current_frame.reference_mode, &rd_stats, comp_pred,
                         x->rdmult, &search_state, compmode_cost);
  }

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif
  if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
    // For the single ref winner candidates, evaluate other motion modes (non
    // simple translation).
    evaluate_motion_mode_for_winner_candidates(
        cpi, x, rd_cost, &args, tile_data, ctx, yv12_mb,
        &best_motion_mode_cands, do_tx_search, bsize, &best_est_rd,
        &search_state, &best_inter_yrd);
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, do_tx_search_time);
#endif
  if (do_tx_search != 1) {
    // A full tx search has not yet been done, do tx search for
    // top mode candidates
    tx_search_best_inter_candidates(cpi, tile_data, x, best_rd_so_far, bsize,
                                    yv12_mb, mi_row, mi_col, &search_state,
                                    rd_cost, ctx, &best_inter_yrd);
  }
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, do_tx_search_time);
#endif

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, handle_intra_mode_time);
#endif
  // Gate intra mode evaluation if best of inter is skip except when source
  // variance is extremely low and also based on max intra bsize.
  skip_intra_modes_in_interframe(cm, x, bsize, &search_state, sf, inter_cost,
                                 intra_cost);

  const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME];
  search_intra_modes_in_interframe(&search_state, cpi, x, rd_cost, bsize, ctx,
                                   &sf_args, intra_ref_frame_cost,
                                   best_inter_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, handle_intra_mode_time);
#endif

#if CONFIG_COLLECT_COMPONENT_TIMING
  start_timing(cpi, refine_winner_mode_tx_time);
#endif
  int winner_mode_count =
      sf->winner_mode_sf.multi_winner_mode_type ? x->winner_mode_count : 1;
  // In effect only when fast tx search speed features are enabled.
  refine_winner_mode_tx(
      cpi, x, rd_cost, bsize, ctx, &search_state.best_mode_index,
      &search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
      search_state.best_rate_uv, &search_state.best_skip2, winner_mode_count);
#if CONFIG_COLLECT_COMPONENT_TIMING
  end_timing(cpi, refine_winner_mode_tx_time);
#endif

  // Initialize default mode evaluation params
  set_mode_eval_params(cpi, x, DEFAULT_EVAL);

  // Only try palette mode when the best mode so far is an intra mode.
  const int try_palette =
      cpi->oxcf.tool_cfg.enable_palette &&
      av1_allow_palette(features->allow_screen_content_tools, mbmi->bsize) &&
      !is_inter_mode(search_state.best_mbmode.mode) && rd_cost->rate != INT_MAX;
  RD_STATS this_rd_cost;
  int this_skippable = 0;
  if (try_palette) {
#if CONFIG_COLLECT_COMPONENT_TIMING
    start_timing(cpi, av1_search_palette_mode_time);
#endif
    this_skippable = av1_search_palette_mode(
        &search_state.intra_search_state, cpi, x, bsize, intra_ref_frame_cost,
        ctx, &this_rd_cost, search_state.best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
    end_timing(cpi, av1_search_palette_mode_time);
#endif
    if (this_rd_cost.rdcost < search_state.best_rd) {
      search_state.best_mode_index = THR_DC;
      mbmi->mv[0].as_int = 0;
      rd_cost->rate = this_rd_cost.rate;
      rd_cost->dist = this_rd_cost.dist;
      rd_cost->rdcost = this_rd_cost.rdcost;
      search_state.best_rd = rd_cost->rdcost;
      search_state.best_mbmode = *mbmi;
      search_state.best_skip2 = 0;
      search_state.best_mode_skippable = this_skippable;
      memcpy(ctx->blk_skip, txfm_info->blk_skip,
             sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
      av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
    }
  }

  search_state.best_mbmode.skip_mode = 0;
  if (cm->current_frame.skip_mode_info.skip_mode_flag &&
      is_comp_ref_allowed(bsize)) {
    const struct segmentation *const seg = &cm->seg;
    unsigned char segment_id = mbmi->segment_id;
    if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
      rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, yv12_mb);
    }
  }

  // Make sure that the ref_mv_idx is only nonzero when we're
  // using a mode which can support ref_mv_idx
  if (search_state.best_mbmode.ref_mv_idx != 0 &&
      !(search_state.best_mbmode.mode == NEWMV ||
        search_state.best_mbmode.mode == NEW_NEWMV ||
        have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
    search_state.best_mbmode.ref_mv_idx = 0;
  }

  if (search_state.best_mode_index == THR_INVALID ||
      search_state.best_rd >= best_rd_so_far) {
    rd_cost->rate = INT_MAX;
    rd_cost->rdcost = INT64_MAX;
    return;
  }

  const InterpFilter interp_filter = features->interp_filter;
  assert((interp_filter == SWITCHABLE) ||
         (interp_filter ==
          search_state.best_mbmode.interp_filters.as_filters.y_filter) ||
         !is_inter_block(&search_state.best_mbmode));
  assert((interp_filter == SWITCHABLE) ||
         (interp_filter ==
          search_state.best_mbmode.interp_filters.as_filters.x_filter) ||
         !is_inter_block(&search_state.best_mbmode));

  if (!cpi->rc.is_src_frame_alt_ref && sf->inter_sf.adaptive_rd_thresh) {
    av1_update_rd_thresh_fact(
        cm, x->thresh_freq_fact, sf->inter_sf.adaptive_rd_thresh, bsize,
        search_state.best_mode_index, mode_start, mode_end, THR_DC, MAX_MODES);
  }

  // macroblock modes
  *mbmi = search_state.best_mbmode;
  txfm_info->skip_txfm |= search_state.best_skip2;

  // Note: this section is needed since the mode may have been forced to
  // GLOBALMV by the all-zero mode handling of ref-mv.
  if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
    // Correct the interp filters for GLOBALMV
    if (is_nontrans_global_motion(xd, xd->mi[0])) {
      int_interpfilters filters =
          av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
      assert(mbmi->interp_filters.as_int == filters.as_int);
      (void)filters;
    }
  }

  txfm_info->skip_txfm |= search_state.best_mode_skippable;

  assert(search_state.best_mode_index != THR_INVALID);

#if CONFIG_INTERNAL_STATS
  store_coding_context(x, ctx, search_state.best_mode_index,
                       search_state.best_mode_skippable);
#else
  store_coding_context(x, ctx, search_state.best_mode_skippable);
#endif  // CONFIG_INTERNAL_STATS

  if (mbmi->palette_mode_info.palette_size[1] > 0) {
    assert(try_palette);
    av1_restore_uv_color_map(cpi, x);
  }
}

void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
                                        TileDataEnc *tile_data, MACROBLOCK *x,
                                        int mi_row, int mi_col,
                                        RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                        PICK_MODE_CONTEXT *ctx,
                                        int64_t best_rd_so_far) {
  const AV1_COMMON *const cm = &cpi->common;
  const FeatureFlags *const features = &cm->features;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  unsigned char segment_id = mbmi->segment_id;
  const int comp_pred = 0;
  int i;
  unsigned int ref_costs_single[REF_FRAMES];
  unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
  const ModeCosts *mode_costs = &x->mode_costs;
  const int *comp_inter_cost =
      mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
  InterpFilter best_filter = SWITCHABLE;
  int64_t this_rd = INT64_MAX;
  int rate2 = 0;
  const int64_t distortion2 = 0;
  (void)mi_row;
  (void)mi_col;
  (void)tile_data;

  av1_collect_neighbors_ref_counts(xd);

  estimate_ref_frame_costs(cm, xd, mode_costs, segment_id, ref_costs_single,
                           ref_costs_comp);

  for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
  for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;

  rd_cost->rate = INT_MAX;

  assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));

  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;
  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->mode = GLOBALMV;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->uv_mode = UV_DC_PRED;
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
    mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
  else
    mbmi->ref_frame[0] = LAST_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->mv[0].as_int =
      gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
                           features->allow_high_precision_mv, bsize, mi_col,
                           mi_row, features->cur_frame_force_integer_mv)
          .as_int;
  mbmi->tx_size = max_txsize_lookup[bsize];
  x->txfm_search_info.skip_txfm = 1;

  mbmi->ref_mv_idx = 0;

  mbmi->motion_mode = SIMPLE_TRANSLATION;
  av1_count_overlappable_neighbors(cm, xd);
  if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
    int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
    mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
    // Select the samples according to motion vector difference
    if (mbmi->num_proj_ref > 1) {
      mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
                                             mbmi->num_proj_ref, bsize);
    }
  }

  const InterpFilter interp_filter = features->interp_filter;
  set_default_interp_filters(mbmi, interp_filter);

  if (interp_filter != SWITCHABLE) {
    best_filter = interp_filter;
  } else {
    best_filter = EIGHTTAP_REGULAR;
    if (av1_is_interp_needed(xd)) {
      int rs;
      int best_rs = INT_MAX;
      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
        mbmi->interp_filters = av1_broadcast_interp_filter(i);
        rs = av1_get_switchable_rate(x, xd, interp_filter,
                                     cm->seq_params->enable_dual_filter);
        if (rs < best_rs) {
          best_rs = rs;
          best_filter = mbmi->interp_filters.as_filters.y_filter;
        }
      }
    }
  }
  // Set the appropriate filter
  mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
  rate2 += av1_get_switchable_rate(x, xd, interp_filter,
                                   cm->seq_params->enable_dual_filter);

  if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT)
    rate2 += comp_inter_cost[comp_pred];

  // Estimate the reference frame signaling cost and add it
  // to the rolling cost variable.
  rate2 += ref_costs_single[LAST_FRAME];
  this_rd = RDCOST(x->rdmult, rate2, distortion2);

  rd_cost->rate = rate2;
  rd_cost->dist = distortion2;
  rd_cost->rdcost = this_rd;

  if (this_rd >= best_rd_so_far) {
    rd_cost->rate = INT_MAX;
    rd_cost->rdcost = INT64_MAX;
    return;
  }

  assert((interp_filter == SWITCHABLE) ||
         (interp_filter == mbmi->interp_filters.as_filters.y_filter));

  if (cpi->sf.inter_sf.adaptive_rd_thresh) {
    av1_update_rd_thresh_fact(cm, x->thresh_freq_fact,
                              cpi->sf.inter_sf.adaptive_rd_thresh, bsize,
                              THR_GLOBALMV, THR_INTER_MODE_START,
                              THR_INTER_MODE_END, THR_DC, MAX_MODES);
  }

#if CONFIG_INTERNAL_STATS
  store_coding_context(x, ctx, THR_GLOBALMV, 0);
#else
  store_coding_context(x, ctx, 0);
#endif  // CONFIG_INTERNAL_STATS
}

/*!\cond */
struct calc_target_weighted_pred_ctxt {
  const OBMCBuffer *obmc_buffer;
  const uint8_t *tmp;
  int tmp_stride;
  int overlap;
};
/*!\endcond */

static INLINE void calc_target_weighted_pred_above(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
  (void)nb_mi;
  (void)num_planes;
  (void)rel_mi_row;
  (void)dir;

  struct calc_target_weighted_pred_ctxt *ctxt =
      (struct calc_target_weighted_pred_ctxt *)fun_ctxt;

  const int bw = xd->width << MI_SIZE_LOG2;
  const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);

  int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_col * MI_SIZE);
  int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_col * MI_SIZE);
  const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
  const int is_hbd = is_cur_buf_hbd(xd);

  if (!is_hbd) {
    for (int row = 0; row < ctxt->overlap; ++row) {
      const uint8_t m0 = mask1d[row];
      const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
      for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
        wsrc[col] = m1 * tmp[col];
        mask[col] = m0;
      }
      wsrc += bw;
      mask += bw;
      tmp += ctxt->tmp_stride;
    }
  } else {
    const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);

    for (int row = 0; row < ctxt->overlap; ++row) {
      const uint8_t m0 = mask1d[row];
      const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
      for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
        wsrc[col] = m1 * tmp16[col];
        mask[col] = m0;
      }
      wsrc += bw;
      mask += bw;
      tmp16 += ctxt->tmp_stride;
    }
  }
}

static INLINE void calc_target_weighted_pred_left(
    MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
    int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
  (void)nb_mi;
  (void)num_planes;
  (void)rel_mi_col;
  (void)dir;

  struct calc_target_weighted_pred_ctxt *ctxt =
      (struct calc_target_weighted_pred_ctxt *)fun_ctxt;

  const int bw = xd->width << MI_SIZE_LOG2;
  const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);

  int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_row * MI_SIZE * bw);
  int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_row * MI_SIZE * bw);
  const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
  const int is_hbd = is_cur_buf_hbd(xd);

  if (!is_hbd) {
    for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
      for (int col = 0; col < ctxt->overlap; ++col) {
        const uint8_t m0 = mask1d[col];
        const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
        wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
                    (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
        mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
      }
      wsrc += bw;
      mask += bw;
      tmp += ctxt->tmp_stride;
    }
  } else {
    const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);

    for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
      for (int col = 0; col < ctxt->overlap; ++col) {
        const uint8_t m0 = mask1d[col];
        const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
        wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
                    (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
        mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
      }
      wsrc += bw;
      mask += bw;
      tmp16 += ctxt->tmp_stride;
    }
  }
}

// This function has a structure similar to av1_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
//  PObmc(x,y) =
//    AOM_BLEND_A64(Mh(x),
//                  AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
//                  PLeft(x, y))
//
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
//  AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
//    Mh(x) * Mv(y) * P(x,y) +
//      Mh(x) * Cv(y) * Pabove(x,y) +
//      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
//  Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
//  Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
//  wsrc(x, y) =
//    AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
//      Mh(x) * Cv(y) * Pabove(x,y) +
//      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
//  mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
//  error(x, y) =
//    wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
//
static AOM_INLINE void calc_target_weighted_pred(
    const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
    const uint8_t *above, int above_stride, const uint8_t *left,
    int left_stride) {
  const BLOCK_SIZE bsize = xd->mi[0]->bsize;
  const int bw = xd->width << MI_SIZE_LOG2;
  const int bh = xd->height << MI_SIZE_LOG2;
  const OBMCBuffer *obmc_buffer = &x->obmc_buffer;
  int32_t *mask_buf = obmc_buffer->mask;
  int32_t *wsrc_buf = obmc_buffer->wsrc;

  const int is_hbd = is_cur_buf_hbd(xd);
  const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;

  // plane 0 should not be sub-sampled
  assert(xd->plane[0].subsampling_x == 0);
  assert(xd->plane[0].subsampling_y == 0);

  av1_zero_array(wsrc_buf, bw * bh);
  for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;

  // handle above row
  if (xd->up_available) {
    const int overlap =
        AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
    struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, above,
                                                   above_stride, overlap };
    foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd,
                                  max_neighbor_obmc[mi_size_wide_log2[bsize]],
                                  calc_target_weighted_pred_above, &ctxt);
  }

  for (int i = 0; i < bw * bh; ++i) {
    wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
    mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
  }

  // handle left column
  if (xd->left_available) {
    const int overlap =
        AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
    struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, left,
                                                   left_stride, overlap };
    foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd,
                                 max_neighbor_obmc[mi_size_high_log2[bsize]],
                                 calc_target_weighted_pred_left, &ctxt);
  }

  if (!is_hbd) {
    const uint8_t *src = x->plane[0].src.buf;

    for (int row = 0; row < bh; ++row) {
      for (int col = 0; col < bw; ++col) {
        wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
      }
      wsrc_buf += bw;
      src += x->plane[0].src.stride;
    }
  } else {
    const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);

    for (int row = 0; row < bh; ++row) {
      for (int col = 0; col < bw; ++col) {
        wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
      }
      wsrc_buf += bw;
      src += x->plane[0].src.stride;
    }
  }
}