summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/temporal_filter.c
blob: e8cc145030e0ab3c33abf82fbb398d96b46324aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <float.h>
#include <math.h>
#include <limits.h>

#include "config/aom_config.h"
#include "config/aom_scale_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/mathutils.h"
#include "aom_dsp/odintrin.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_scale/aom_scale.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/gop_structure.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/pass2_strategy.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/temporal_filter.h"

/*!\cond */

// NOTE: All `tf` in this file means `temporal filtering`.

// Forward Declaration.
static void tf_determine_block_partition(const MV block_mv, const int block_mse,
                                         MV *subblock_mvs, int *subblock_mses);

// This function returns the minimum and maximum log variances for 4x4 sub
// blocks in the current block.
static INLINE void get_log_var_4x4sub_blk(
    AV1_COMP *cpi, const YV12_BUFFER_CONFIG *const frame_to_filter, int mb_row,
    int mb_col, BLOCK_SIZE block_size, double *blk_4x4_var_min,
    double *blk_4x4_var_max, int is_hbd) {
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  int var_min = INT_MAX;
  int var_max = 0;

  // Derive the source buffer.
  const int src_stride = frame_to_filter->y_stride;
  const int y_offset = mb_row * mb_height * src_stride + mb_col * mb_width;
  const uint8_t *src_buf = frame_to_filter->y_buffer + y_offset;

  for (int i = 0; i < mb_height; i += MI_SIZE) {
    for (int j = 0; j < mb_width; j += MI_SIZE) {
      // Calculate the 4x4 sub-block variance.
      const int var = av1_calc_normalized_variance(
          cpi->ppi->fn_ptr[BLOCK_4X4].vf, src_buf + (i * src_stride) + j,
          src_stride, is_hbd);

      // Record min and max for over-arching block
      var_min = AOMMIN(var_min, var);
      var_max = AOMMAX(var_max, var);
    }
  }

  *blk_4x4_var_min = log1p(var_min / 16.0);
  *blk_4x4_var_max = log1p(var_max / 16.0);
}

/*!\endcond */
/*!\brief Does motion search for blocks in temporal filtering. This is
 *  the first step for temporal filtering. More specifically, given a frame to
 * be filtered and another frame as reference, this function searches the
 * reference frame to find out the most similar block as that from the frame
 * to be filtered. This found block will be further used for weighted
 * averaging.
 *
 * NOTE: Besides doing motion search for the entire block, this function will
 *       also do motion search for each 1/4 sub-block to get more precise
 *       predictions. Then, this function will determines whether to use 4
 *       sub-blocks to replace the entire block. If we do need to split the
 *       entire block, 4 elements in `subblock_mvs` and `subblock_mses` refer to
 *       the searched motion vector and search error (MSE) w.r.t. each sub-block
 *       respectively. Otherwise, the 4 elements will be the same, all of which
 *       are assigned as the searched motion vector and search error (MSE) for
 *       the entire block.
 *
 * \ingroup src_frame_proc
 * \param[in]   cpi                   Top level encoder instance structure
 * \param[in]   mb                    Pointer to macroblock
 * \param[in]   frame_to_filter       Pointer to the frame to be filtered
 * \param[in]   ref_frame             Pointer to the reference frame
 * \param[in]   block_size            Block size used for motion search
 * \param[in]   mb_row                Row index of the block in the frame
 * \param[in]   mb_col                Column index of the block in the frame
 * \param[in]   ref_mv                Reference motion vector, which is commonly
 *                                    inherited from the motion search result of
 *                                    previous frame.
 * \param[in]   allow_me_for_sub_blks Flag to indicate whether motion search at
 *                                    16x16 sub-block level is needed or not.
 * \param[out]  subblock_mvs          Pointer to the motion vectors for
 *                                    4 sub-blocks
 * \param[out]  subblock_mses         Pointer to the search errors (MSE) for
 *                                    4 sub-blocks
 *
 * \remark Nothing will be returned. Results are saved in subblock_mvs and
 *         subblock_mses
 */
static void tf_motion_search(AV1_COMP *cpi, MACROBLOCK *mb,
                             const YV12_BUFFER_CONFIG *frame_to_filter,
                             const YV12_BUFFER_CONFIG *ref_frame,
                             const BLOCK_SIZE block_size, const int mb_row,
                             const int mb_col, MV *ref_mv,
                             bool allow_me_for_sub_blks, MV *subblock_mvs,
                             int *subblock_mses) {
  // Frame information
  const int min_frame_size = AOMMIN(cpi->common.width, cpi->common.height);

  // Block information (ONLY Y-plane is used for motion search).
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int mb_pels = mb_height * mb_width;
  const int y_stride = frame_to_filter->y_stride;
  const int src_width = frame_to_filter->y_width;
  const int ref_width = ref_frame->y_width;
  assert(y_stride == ref_frame->y_stride);
  assert(src_width == ref_width);
  const int y_offset = mb_row * mb_height * y_stride + mb_col * mb_width;

  // Save input state.
  MACROBLOCKD *const mbd = &mb->e_mbd;
  const struct buf_2d ori_src_buf = mb->plane[0].src;
  const struct buf_2d ori_pre_buf = mbd->plane[0].pre[0];

  // Parameters used for motion search.
  FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
  SUBPEL_MOTION_SEARCH_PARAMS ms_params;
  const int step_param = av1_init_search_range(
      AOMMAX(frame_to_filter->y_crop_width, frame_to_filter->y_crop_height));
  const SUBPEL_SEARCH_TYPE subpel_search_type = USE_8_TAPS;
  const int force_integer_mv = cpi->common.features.cur_frame_force_integer_mv;
  const MV_COST_TYPE mv_cost_type =
      min_frame_size >= 720
          ? MV_COST_L1_HDRES
          : (min_frame_size >= 480 ? MV_COST_L1_MIDRES : MV_COST_L1_LOWRES);

  // Starting position for motion search.
  FULLPEL_MV start_mv = get_fullmv_from_mv(ref_mv);
  // Baseline position for motion search (used for rate distortion comparison).
  const MV baseline_mv = kZeroMv;

  // Setup.
  mb->plane[0].src.buf = frame_to_filter->y_buffer + y_offset;
  mb->plane[0].src.stride = y_stride;
  mb->plane[0].src.width = src_width;
  mbd->plane[0].pre[0].buf = ref_frame->y_buffer + y_offset;
  mbd->plane[0].pre[0].stride = y_stride;
  mbd->plane[0].pre[0].width = ref_width;

  const SEARCH_METHODS search_method = NSTEP;
  const search_site_config *search_site_cfg =
      av1_get_search_site_config(cpi, mb, search_method);

  // Unused intermediate results for motion search.
  unsigned int sse, error;
  int distortion;
  int cost_list[5];

  // Do motion search.
  int_mv best_mv;  // Searched motion vector.
  FULLPEL_MV_STATS best_mv_stats;
  int block_mse = INT_MAX;
  MV block_mv = kZeroMv;
  const int q = av1_get_q(cpi);

  av1_make_default_fullpel_ms_params(&full_ms_params, cpi, mb, block_size,
                                     &baseline_mv, start_mv, search_site_cfg,
                                     search_method,
                                     /*fine_search_interval=*/0);
  full_ms_params.run_mesh_search = 1;
  full_ms_params.mv_cost_params.mv_cost_type = mv_cost_type;

  if (cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_1) {
    // Enable prune_mesh_search based on q for PRUNE_MESH_SEARCH_LVL_1.
    full_ms_params.prune_mesh_search = (q <= 20) ? 0 : 1;
    full_ms_params.mesh_search_mv_diff_threshold = 2;
  }

  av1_full_pixel_search(start_mv, &full_ms_params, step_param,
                        cond_cost_list(cpi, cost_list), &best_mv.as_fullmv,
                        &best_mv_stats, NULL);

  if (force_integer_mv == 1) {  // Only do full search on the entire block.
    const int mv_row = best_mv.as_mv.row;
    const int mv_col = best_mv.as_mv.col;
    best_mv.as_mv.row = GET_MV_SUBPEL(mv_row);
    best_mv.as_mv.col = GET_MV_SUBPEL(mv_col);
    const int mv_offset = mv_row * y_stride + mv_col;
    error = cpi->ppi->fn_ptr[block_size].vf(
        ref_frame->y_buffer + y_offset + mv_offset, y_stride,
        frame_to_filter->y_buffer + y_offset, y_stride, &sse);
    block_mse = DIVIDE_AND_ROUND(error, mb_pels);
    block_mv = best_mv.as_mv;
  } else {  // Do fractional search on the entire block and all sub-blocks.
    av1_make_default_subpel_ms_params(&ms_params, cpi, mb, block_size,
                                      &baseline_mv, cost_list);
    ms_params.forced_stop = EIGHTH_PEL;
    ms_params.var_params.subpel_search_type = subpel_search_type;
    // Since we are merely refining the result from full pixel search, we don't
    // need regularization for subpel search
    ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
    best_mv_stats.err_cost = 0;

    MV subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
    assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
    error = cpi->mv_search_params.find_fractional_mv_step(
        &mb->e_mbd, &cpi->common, &ms_params, subpel_start_mv, &best_mv_stats,
        &best_mv.as_mv, &distortion, &sse, NULL);
    block_mse = DIVIDE_AND_ROUND(error, mb_pels);
    block_mv = best_mv.as_mv;
    *ref_mv = best_mv.as_mv;

    if (allow_me_for_sub_blks) {
      // On 4 sub-blocks.
      const BLOCK_SIZE subblock_size = av1_ss_size_lookup[block_size][1][1];
      const int subblock_height = block_size_high[subblock_size];
      const int subblock_width = block_size_wide[subblock_size];
      const int subblock_pels = subblock_height * subblock_width;
      start_mv = get_fullmv_from_mv(ref_mv);

      int subblock_idx = 0;
      for (int i = 0; i < mb_height; i += subblock_height) {
        for (int j = 0; j < mb_width; j += subblock_width) {
          const int offset = i * y_stride + j;
          mb->plane[0].src.buf = frame_to_filter->y_buffer + y_offset + offset;
          mbd->plane[0].pre[0].buf = ref_frame->y_buffer + y_offset + offset;
          av1_make_default_fullpel_ms_params(
              &full_ms_params, cpi, mb, subblock_size, &baseline_mv, start_mv,
              search_site_cfg, search_method,
              /*fine_search_interval=*/0);
          full_ms_params.run_mesh_search = 1;
          full_ms_params.mv_cost_params.mv_cost_type = mv_cost_type;

          if (cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_1) {
            // Enable prune_mesh_search based on q for PRUNE_MESH_SEARCH_LVL_1.
            full_ms_params.prune_mesh_search = (q <= 20) ? 0 : 1;
            full_ms_params.mesh_search_mv_diff_threshold = 2;
          }
          av1_full_pixel_search(start_mv, &full_ms_params, step_param,
                                cond_cost_list(cpi, cost_list),
                                &best_mv.as_fullmv, &best_mv_stats, NULL);

          av1_make_default_subpel_ms_params(&ms_params, cpi, mb, subblock_size,
                                            &baseline_mv, cost_list);
          ms_params.forced_stop = EIGHTH_PEL;
          ms_params.var_params.subpel_search_type = subpel_search_type;
          // Since we are merely refining the result from full pixel search, we
          // don't need regularization for subpel search
          ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE;
          best_mv_stats.err_cost = 0;

          subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
          assert(
              av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv));
          error = cpi->mv_search_params.find_fractional_mv_step(
              &mb->e_mbd, &cpi->common, &ms_params, subpel_start_mv,
              &best_mv_stats, &best_mv.as_mv, &distortion, &sse, NULL);
          subblock_mses[subblock_idx] = DIVIDE_AND_ROUND(error, subblock_pels);
          subblock_mvs[subblock_idx] = best_mv.as_mv;
          ++subblock_idx;
        }
      }
    }
  }

  // Restore input state.
  mb->plane[0].src = ori_src_buf;
  mbd->plane[0].pre[0] = ori_pre_buf;

  // Make partition decision.
  if (allow_me_for_sub_blks) {
    tf_determine_block_partition(block_mv, block_mse, subblock_mvs,
                                 subblock_mses);
  } else {
    // Copy 32X32 block mv and mse values to sub blocks
    for (int i = 0; i < 4; ++i) {
      subblock_mvs[i] = block_mv;
      subblock_mses[i] = block_mse;
    }
  }
  // Do not pass down the reference motion vector if error is too large.
  const int thresh = (min_frame_size >= 720) ? 12 : 3;
  if (block_mse > (thresh << (mbd->bd - 8))) {
    *ref_mv = kZeroMv;
  }
}
/*!\cond */

// Determines whether to split the entire block to 4 sub-blocks for filtering.
// In particular, this decision is made based on the comparison between the
// motion search error of the entire block and the errors of all sub-blocks.
// Inputs:
//   block_mv: Motion vector for the entire block (ONLY as reference).
//   block_mse: Motion search error (MSE) for the entire block (ONLY as
//              reference).
//   subblock_mvs: Pointer to the motion vectors for 4 sub-blocks (will be
//                 modified based on the partition decision).
//   subblock_mses: Pointer to the search errors (MSE) for 4 sub-blocks (will
//                  be modified based on the partition decision).
// Returns:
//   Nothing will be returned. Results are saved in `subblock_mvs` and
//   `subblock_mses`.
static void tf_determine_block_partition(const MV block_mv, const int block_mse,
                                         MV *subblock_mvs, int *subblock_mses) {
  int min_subblock_mse = INT_MAX;
  int max_subblock_mse = INT_MIN;
  int64_t sum_subblock_mse = 0;
  for (int i = 0; i < 4; ++i) {
    sum_subblock_mse += subblock_mses[i];
    min_subblock_mse = AOMMIN(min_subblock_mse, subblock_mses[i]);
    max_subblock_mse = AOMMAX(max_subblock_mse, subblock_mses[i]);
  }

  // TODO(any): The following magic numbers may be tuned to improve the
  // performance OR find a way to get rid of these magic numbers.
  if (((block_mse * 15 < sum_subblock_mse * 4) &&
       max_subblock_mse - min_subblock_mse < 48) ||
      ((block_mse * 14 < sum_subblock_mse * 4) &&
       max_subblock_mse - min_subblock_mse < 24)) {  // No split.
    for (int i = 0; i < 4; ++i) {
      subblock_mvs[i] = block_mv;
      subblock_mses[i] = block_mse;
    }
  }
}

// Helper function to determine whether a frame is encoded with high bit-depth.
static INLINE int is_frame_high_bitdepth(const YV12_BUFFER_CONFIG *frame) {
  return (frame->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
}

/*!\endcond */
/*!\brief Builds predictor for blocks in temporal filtering. This is the
 * second step for temporal filtering, which is to construct predictions from
 * all reference frames INCLUDING the frame to be filtered itself. These
 * predictors are built based on the motion search results (motion vector is
 * set as 0 for the frame to be filtered), and will be futher used for
 * weighted averaging.
 *
 * \ingroup src_frame_proc
 * \param[in]   ref_frame      Pointer to the reference frame (or the frame
 *                             to be filtered)
 * \param[in]   mbd            Pointer to the block for filtering. Besides
 *                             containing the subsampling information of all
 *                             planes, this field also gives the searched
 *                             motion vector for the entire block, i.e.,
 *                             `mbd->mi[0]->mv[0]`. This vector  should be 0
 *                             if the `ref_frame` itself is the frame to be
 *                             filtered.
 * \param[in]   block_size     Size of the block
 * \param[in]   mb_row         Row index of the block in the frame
 * \param[in]   mb_col         Column index of the block in the frame
 * \param[in]   num_planes     Number of planes in the frame
 * \param[in]   scale          Scaling factor
 * \param[in]   subblock_mvs   The motion vectors for each sub-block (row-major
 *                             order)
 * \param[out]  pred           Pointer to the predictor to be built
 *
 * \remark Nothing returned, But the contents of `pred` will be modified
 */
static void tf_build_predictor(const YV12_BUFFER_CONFIG *ref_frame,
                               const MACROBLOCKD *mbd,
                               const BLOCK_SIZE block_size, const int mb_row,
                               const int mb_col, const int num_planes,
                               const struct scale_factors *scale,
                               const MV *subblock_mvs, uint8_t *pred) {
  // Information of the entire block.
  const int mb_height = block_size_high[block_size];  // Height.
  const int mb_width = block_size_wide[block_size];   // Width.
  const int mb_y = mb_height * mb_row;                // Y-coord (Top-left).
  const int mb_x = mb_width * mb_col;                 // X-coord (Top-left).
  const int bit_depth = mbd->bd;                      // Bit depth.
  const int is_intrabc = 0;                           // Is intra-copied?
  const int is_high_bitdepth = is_frame_high_bitdepth(ref_frame);

  // Default interpolation filters.
  const int_interpfilters interp_filters =
      av1_broadcast_interp_filter(MULTITAP_SHARP2);

  // Handle Y-plane, U-plane and V-plane (if needed) in sequence.
  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const int subsampling_y = mbd->plane[plane].subsampling_y;
    const int subsampling_x = mbd->plane[plane].subsampling_x;
    // Information of each sub-block in current plane.
    const int plane_h = mb_height >> subsampling_y;  // Plane height.
    const int plane_w = mb_width >> subsampling_x;   // Plane width.
    const int plane_y = mb_y >> subsampling_y;       // Y-coord (Top-left).
    const int plane_x = mb_x >> subsampling_x;       // X-coord (Top-left).
    const int h = plane_h >> 1;                      // Sub-block height.
    const int w = plane_w >> 1;                      // Sub-block width.
    const int is_y_plane = (plane == 0);             // Is Y-plane?

    const struct buf_2d ref_buf = { NULL, ref_frame->buffers[plane],
                                    ref_frame->widths[is_y_plane ? 0 : 1],
                                    ref_frame->heights[is_y_plane ? 0 : 1],
                                    ref_frame->strides[is_y_plane ? 0 : 1] };

    // Handle each subblock.
    int subblock_idx = 0;
    for (int i = 0; i < plane_h; i += h) {
      for (int j = 0; j < plane_w; j += w) {
        // Choose proper motion vector.
        const MV mv = subblock_mvs[subblock_idx++];
        assert(mv.row >= INT16_MIN && mv.row <= INT16_MAX &&
               mv.col >= INT16_MIN && mv.col <= INT16_MAX);

        const int y = plane_y + i;
        const int x = plane_x + j;

        // Build predictior for each sub-block on current plane.
        InterPredParams inter_pred_params;
        av1_init_inter_params(&inter_pred_params, w, h, y, x, subsampling_x,
                              subsampling_y, bit_depth, is_high_bitdepth,
                              is_intrabc, scale, &ref_buf, interp_filters);
        inter_pred_params.conv_params = get_conv_params(0, plane, bit_depth);
        av1_enc_build_one_inter_predictor(&pred[plane_offset + i * plane_w + j],
                                          plane_w, &mv, &inter_pred_params);
      }
    }
    plane_offset += plane_h * plane_w;
  }
}
/*!\cond */

// Computes temporal filter weights and accumulators for the frame to be
// filtered. More concretely, the filter weights for all pixels are the same.
// Inputs:
//   mbd: Pointer to the block for filtering, which is ONLY used to get
//        subsampling information of all planes as well as the bit-depth.
//   block_size: Size of the block.
//   num_planes: Number of planes in the frame.
//   pred: Pointer to the well-built predictors.
//   accum: Pointer to the pixel-wise accumulator for filtering.
//   count: Pointer to the pixel-wise counter fot filtering.
// Returns:
//   Nothing will be returned. But the content to which `accum` and `pred`
//   point will be modified.
static void tf_apply_temporal_filter_self(const YV12_BUFFER_CONFIG *ref_frame,
                                          const MACROBLOCKD *mbd,
                                          const BLOCK_SIZE block_size,
                                          const int mb_row, const int mb_col,
                                          const int num_planes, uint32_t *accum,
                                          uint16_t *count) {
  // Block information.
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int is_high_bitdepth = is_cur_buf_hbd(mbd);

  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const int subsampling_y = mbd->plane[plane].subsampling_y;
    const int subsampling_x = mbd->plane[plane].subsampling_x;
    const int h = mb_height >> subsampling_y;  // Plane height.
    const int w = mb_width >> subsampling_x;   // Plane width.

    const int frame_stride = ref_frame->strides[plane == AOM_PLANE_Y ? 0 : 1];
    const uint8_t *buf8 = ref_frame->buffers[plane];
    const uint16_t *buf16 = CONVERT_TO_SHORTPTR(buf8);
    const int frame_offset = mb_row * h * frame_stride + mb_col * w;

    int pred_idx = 0;
    int pixel_idx = 0;
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        const int idx = plane_offset + pred_idx;  // Index with plane shift.
        const int pred_value = is_high_bitdepth
                                   ? buf16[frame_offset + pixel_idx]
                                   : buf8[frame_offset + pixel_idx];
        accum[idx] += TF_WEIGHT_SCALE * pred_value;
        count[idx] += TF_WEIGHT_SCALE;
        ++pred_idx;
        ++pixel_idx;
      }
      pixel_idx += (frame_stride - w);
    }
    plane_offset += h * w;
  }
}

// Function to compute pixel-wise squared difference between two buffers.
// Inputs:
//   ref: Pointer to reference buffer.
//   ref_offset: Start position of reference buffer for computation.
//   ref_stride: Stride for reference buffer.
//   tgt: Pointer to target buffer.
//   tgt_offset: Start position of target buffer for computation.
//   tgt_stride: Stride for target buffer.
//   height: Height of block for computation.
//   width: Width of block for computation.
//   is_high_bitdepth: Whether the two buffers point to high bit-depth frames.
//   square_diff: Pointer to save the squared differces.
// Returns:
//   Nothing will be returned. But the content to which `square_diff` points
//   will be modified.
static INLINE void compute_square_diff(const uint8_t *ref, const int ref_offset,
                                       const int ref_stride, const uint8_t *tgt,
                                       const int tgt_offset,
                                       const int tgt_stride, const int height,
                                       const int width,
                                       const int is_high_bitdepth,
                                       uint32_t *square_diff) {
  const uint16_t *ref16 = CONVERT_TO_SHORTPTR(ref);
  const uint16_t *tgt16 = CONVERT_TO_SHORTPTR(tgt);

  int ref_idx = 0;
  int tgt_idx = 0;
  int idx = 0;
  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const uint16_t ref_value = is_high_bitdepth ? ref16[ref_offset + ref_idx]
                                                  : ref[ref_offset + ref_idx];
      const uint16_t tgt_value = is_high_bitdepth ? tgt16[tgt_offset + tgt_idx]
                                                  : tgt[tgt_offset + tgt_idx];
      const uint32_t diff = (ref_value > tgt_value) ? (ref_value - tgt_value)
                                                    : (tgt_value - ref_value);
      square_diff[idx] = diff * diff;

      ++ref_idx;
      ++tgt_idx;
      ++idx;
    }
    ref_idx += (ref_stride - width);
    tgt_idx += (tgt_stride - width);
  }
}

// Function to accumulate pixel-wise squared difference between two luma buffers
// to be consumed while filtering the chroma planes.
// Inputs:
//   square_diff: Pointer to squared differences from luma plane.
//   luma_sse_sum: Pointer to save the sum of luma squared differences.
//   block_height: Height of block for computation.
//   block_width: Width of block for computation.
//   ss_x_shift: Chroma subsampling shift in 'X' direction
//   ss_y_shift: Chroma subsampling shift in 'Y' direction
// Returns:
//   Nothing will be returned. But the content to which `luma_sse_sum` points
//   will be modified.
static void compute_luma_sq_error_sum(uint32_t *square_diff,
                                      uint32_t *luma_sse_sum, int block_height,
                                      int block_width, int ss_x_shift,
                                      int ss_y_shift) {
  for (int i = 0; i < block_height; ++i) {
    for (int j = 0; j < block_width; ++j) {
      for (int ii = 0; ii < (1 << ss_y_shift); ++ii) {
        for (int jj = 0; jj < (1 << ss_x_shift); ++jj) {
          const int yy = (i << ss_y_shift) + ii;     // Y-coord on Y-plane.
          const int xx = (j << ss_x_shift) + jj;     // X-coord on Y-plane.
          const int ww = block_width << ss_x_shift;  // Width of Y-plane.
          luma_sse_sum[i * block_width + j] += square_diff[yy * ww + xx];
        }
      }
    }
  }
}

/*!\endcond */
/*!\brief Applies temporal filtering. NOTE that there are various optimised
 * versions of this function called where the appropriate instruction set is
 * supported.
 *
 * \ingroup src_frame_proc
 * \param[in]   frame_to_filter Pointer to the frame to be filtered, which is
 *                              used as reference to compute squared
 *                              difference from the predictor.
 * \param[in]   mbd             Pointer to the block for filtering, ONLY used
 *                              to get subsampling information for the  planes
 * \param[in]   block_size      Size of the block
 * \param[in]   mb_row          Row index of the block in the frame
 * \param[in]   mb_col          Column index of the block in the frame
 * \param[in]   num_planes      Number of planes in the frame
 * \param[in]   noise_levels    Estimated noise levels for each plane
 *                              in the frame (Y,U,V)
 * \param[in]   subblock_mvs    Pointer to the motion vectors for 4 sub-blocks
 * \param[in]   subblock_mses   Pointer to the search errors (MSE) for 4
 *                              sub-blocks
 * \param[in]   q_factor        Quantization factor. This is actually the `q`
 *                              defined in libaom, converted from `qindex`
 * \param[in]   filter_strength Filtering strength. This value lies in range
 *                              [0, 6] where 6 is the maximum strength.
 * \param[in]   tf_wgt_calc_lvl Controls the weight calculation method during
 *                              temporal filtering
 * \param[out]  pred            Pointer to the well-built predictors
 * \param[out]  accum           Pointer to the pixel-wise accumulator for
 *                              filtering
 * \param[out]  count           Pointer to the pixel-wise counter for
 *                              filtering
 *
 * \remark Nothing returned, But the contents of `accum`, `pred` and 'count'
 *         will be modified
 */
void av1_apply_temporal_filter_c(
    const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
    const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
    const int num_planes, const double *noise_levels, const MV *subblock_mvs,
    const int *subblock_mses, const int q_factor, const int filter_strength,
    int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
    uint16_t *count) {
  // Block information.
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int mb_pels = mb_height * mb_width;
  const int is_high_bitdepth = is_frame_high_bitdepth(frame_to_filter);
  const uint16_t *pred16 = CONVERT_TO_SHORTPTR(pred);
  // Frame information.
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  const int min_frame_size = AOMMIN(frame_height, frame_width);
  // Variables to simplify combined error calculation.
  const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) *
                                   TF_SEARCH_ERROR_NORM_WEIGHT);
  const double weight_factor =
      (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor;
  // Decay factors for non-local mean approach.
  double decay_factor[MAX_MB_PLANE] = { 0 };
  // Adjust filtering based on q.
  // Larger q -> stronger filtering -> larger weight.
  // Smaller q -> weaker filtering -> smaller weight.
  double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2);
  q_decay = CLIP(q_decay, 1e-5, 1);
  if (q_factor >= TF_QINDEX_CUTOFF) {
    // Max q_factor is 255, therefore the upper bound of q_decay is 8.
    // We do not need a clip here.
    q_decay = 0.5 * pow((double)q_factor / 64, 2);
  }
  // Smaller strength -> smaller filtering weight.
  double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2);
  s_decay = CLIP(s_decay, 1e-5, 1);
  for (int plane = 0; plane < num_planes; plane++) {
    // Larger noise -> larger filtering weight.
    const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0);
    decay_factor[plane] = 1 / (n_decay * q_decay * s_decay);
  }
  double d_factor[4] = { 0 };
  for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) {
    // Larger motion vector -> smaller filtering weight.
    const MV mv = subblock_mvs[subblock_idx];
    const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2));
    double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD;
    distance_threshold = AOMMAX(distance_threshold, 1);
    d_factor[subblock_idx] = distance / distance_threshold;
    d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1);
  }

  // Allocate memory for pixel-wise squared differences. They,
  // regardless of the subsampling, are assigned with memory of size `mb_pels`.
  uint32_t *square_diff = aom_memalign(16, mb_pels * sizeof(uint32_t));
  if (!square_diff) {
    aom_internal_error(mbd->error_info, AOM_CODEC_MEM_ERROR,
                       "Error allocating temporal filter data");
  }
  memset(square_diff, 0, mb_pels * sizeof(square_diff[0]));

  // Allocate memory for accumulated luma squared error. This value will be
  // consumed while filtering the chroma planes.
  uint32_t *luma_sse_sum = aom_memalign(32, mb_pels * sizeof(uint32_t));
  if (!luma_sse_sum) {
    aom_free(square_diff);
    aom_internal_error(mbd->error_info, AOM_CODEC_MEM_ERROR,
                       "Error allocating temporal filter data");
  }
  memset(luma_sse_sum, 0, mb_pels * sizeof(luma_sse_sum[0]));

  // Get window size for pixel-wise filtering.
  assert(TF_WINDOW_LENGTH % 2 == 1);
  const int half_window = TF_WINDOW_LENGTH >> 1;

  // Handle planes in sequence.
  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    // Locate pixel on reference frame.
    const int subsampling_y = mbd->plane[plane].subsampling_y;
    const int subsampling_x = mbd->plane[plane].subsampling_x;
    const int h = mb_height >> subsampling_y;  // Plane height.
    const int w = mb_width >> subsampling_x;   // Plane width.
    const int frame_stride =
        frame_to_filter->strides[plane == AOM_PLANE_Y ? 0 : 1];
    const int frame_offset = mb_row * h * frame_stride + mb_col * w;
    const uint8_t *ref = frame_to_filter->buffers[plane];
    const int ss_y_shift =
        subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y;
    const int ss_x_shift =
        subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x;
    const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH +
                               ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0);
    const double inv_num_ref_pixels = 1.0 / num_ref_pixels;

    // Filter U-plane and V-plane using Y-plane. This is because motion
    // search is only done on Y-plane, so the information from Y-plane will
    // be more accurate. The luma sse sum is reused in both chroma planes.
    if (plane == AOM_PLANE_U)
      compute_luma_sq_error_sum(square_diff, luma_sse_sum, h, w, ss_x_shift,
                                ss_y_shift);
    compute_square_diff(ref, frame_offset, frame_stride, pred, plane_offset, w,
                        h, w, is_high_bitdepth, square_diff);

    // Perform filtering.
    int pred_idx = 0;
    for (int i = 0; i < h; ++i) {
      for (int j = 0; j < w; ++j) {
        // non-local mean approach
        uint64_t sum_square_diff = 0;

        for (int wi = -half_window; wi <= half_window; ++wi) {
          for (int wj = -half_window; wj <= half_window; ++wj) {
            const int y = CLIP(i + wi, 0, h - 1);  // Y-coord on current plane.
            const int x = CLIP(j + wj, 0, w - 1);  // X-coord on current plane.
            sum_square_diff += square_diff[y * w + x];
          }
        }

        sum_square_diff += luma_sse_sum[i * w + j];

        // Scale down the difference for high bit depth input.
        if (mbd->bd > 8) sum_square_diff >>= ((mbd->bd - 8) * 2);

        // Combine window error and block error, and normalize it.
        const double window_error = sum_square_diff * inv_num_ref_pixels;
        const int subblock_idx = (i >= h / 2) * 2 + (j >= w / 2);
        const double block_error = (double)subblock_mses[subblock_idx];
        const double combined_error =
            weight_factor * window_error + block_error * inv_factor;

        // Compute filter weight.
        double scaled_error =
            combined_error * d_factor[subblock_idx] * decay_factor[plane];
        scaled_error = AOMMIN(scaled_error, 7);
        int weight;
        if (tf_wgt_calc_lvl == 0) {
          weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE);
        } else {
          const float fweight =
              approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE;
          weight = iroundpf(fweight);
        }

        const int idx = plane_offset + pred_idx;  // Index with plane shift.
        const int pred_value = is_high_bitdepth ? pred16[idx] : pred[idx];
        accum[idx] += weight * pred_value;
        count[idx] += weight;

        ++pred_idx;
      }
    }
    plane_offset += h * w;
  }

  aom_free(square_diff);
  aom_free(luma_sse_sum);
}
#if CONFIG_AV1_HIGHBITDEPTH
// Calls High bit-depth temporal filter
void av1_highbd_apply_temporal_filter_c(
    const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd,
    const BLOCK_SIZE block_size, const int mb_row, const int mb_col,
    const int num_planes, const double *noise_levels, const MV *subblock_mvs,
    const int *subblock_mses, const int q_factor, const int filter_strength,
    int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum,
    uint16_t *count) {
  av1_apply_temporal_filter_c(frame_to_filter, mbd, block_size, mb_row, mb_col,
                              num_planes, noise_levels, subblock_mvs,
                              subblock_mses, q_factor, filter_strength,
                              tf_wgt_calc_lvl, pred, accum, count);
}
#endif  // CONFIG_AV1_HIGHBITDEPTH
/*!\brief Normalizes the accumulated filtering result to produce the filtered
 *        frame
 *
 * \ingroup src_frame_proc
 * \param[in]   mbd            Pointer to the block for filtering, which is
 *                             ONLY used to get subsampling information for
 *                             all the planes
 * \param[in]   block_size     Size of the block
 * \param[in]   mb_row         Row index of the block in the frame
 * \param[in]   mb_col         Column index of the block in the frame
 * \param[in]   num_planes     Number of planes in the frame
 * \param[in]   accum          Pointer to the pre-computed accumulator
 * \param[in]   count          Pointer to the pre-computed count
 * \param[out]  result_buffer  Pointer to result buffer
 *
 * \remark Nothing returned, but the content to which `result_buffer` pointer
 *         will be modified
 */
static void tf_normalize_filtered_frame(
    const MACROBLOCKD *mbd, const BLOCK_SIZE block_size, const int mb_row,
    const int mb_col, const int num_planes, const uint32_t *accum,
    const uint16_t *count, YV12_BUFFER_CONFIG *result_buffer) {
  // Block information.
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int is_high_bitdepth = is_frame_high_bitdepth(result_buffer);

  int plane_offset = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const int plane_h = mb_height >> mbd->plane[plane].subsampling_y;
    const int plane_w = mb_width >> mbd->plane[plane].subsampling_x;
    const int frame_stride = result_buffer->strides[plane == 0 ? 0 : 1];
    const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w;
    uint8_t *const buf = result_buffer->buffers[plane];
    uint16_t *const buf16 = CONVERT_TO_SHORTPTR(buf);

    int plane_idx = 0;             // Pixel index on current plane (block-base).
    int frame_idx = frame_offset;  // Pixel index on the entire frame.
    for (int i = 0; i < plane_h; ++i) {
      for (int j = 0; j < plane_w; ++j) {
        const int idx = plane_idx + plane_offset;
        const uint16_t rounding = count[idx] >> 1;
        if (is_high_bitdepth) {
          buf16[frame_idx] =
              (uint16_t)OD_DIVU(accum[idx] + rounding, count[idx]);
        } else {
          buf[frame_idx] = (uint8_t)OD_DIVU(accum[idx] + rounding, count[idx]);
        }
        ++plane_idx;
        ++frame_idx;
      }
      frame_idx += (frame_stride - plane_w);
    }
    plane_offset += plane_h * plane_w;
  }
}

int av1_get_q(const AV1_COMP *cpi) {
  const GF_GROUP *gf_group = &cpi->ppi->gf_group;
  const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index];
  const int q =
      (int)av1_convert_qindex_to_q(cpi->ppi->p_rc.avg_frame_qindex[frame_type],
                                   cpi->common.seq_params->bit_depth);
  return q;
}

void av1_tf_do_filtering_row(AV1_COMP *cpi, ThreadData *td, int mb_row) {
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
  const int num_frames = tf_ctx->num_frames;
  const int filter_frame_idx = tf_ctx->filter_frame_idx;
  const int compute_frame_diff = tf_ctx->compute_frame_diff;
  const struct scale_factors *scale = &tf_ctx->sf;
  const double *noise_levels = tf_ctx->noise_levels;
  const int num_pels = tf_ctx->num_pels;
  const int q_factor = tf_ctx->q_factor;
  const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
  const YV12_BUFFER_CONFIG *const frame_to_filter = frames[filter_frame_idx];
  MACROBLOCK *const mb = &td->mb;
  MACROBLOCKD *const mbd = &mb->e_mbd;
  TemporalFilterData *const tf_data = &td->tf_data;
  const int mb_height = block_size_high[block_size];
  const int mb_width = block_size_wide[block_size];
  const int mi_h = mi_size_high_log2[block_size];
  const int mi_w = mi_size_wide_log2[block_size];
  const int num_planes = av1_num_planes(&cpi->common);
  const int weight_calc_level_in_tf = cpi->sf.hl_sf.weight_calc_level_in_tf;
  uint32_t *accum = tf_data->accum;
  uint16_t *count = tf_data->count;
  uint8_t *pred = tf_data->pred;

  // Factor to control the filering strength.
  const int filter_strength = cpi->oxcf.algo_cfg.arnr_strength;

  // Do filtering.
  FRAME_DIFF *diff = &td->tf_data.diff;
  av1_set_mv_row_limits(&cpi->common.mi_params, &mb->mv_limits,
                        (mb_row << mi_h), (mb_height >> MI_SIZE_LOG2),
                        cpi->oxcf.border_in_pixels);
  for (int mb_col = 0; mb_col < tf_ctx->mb_cols; mb_col++) {
    av1_set_mv_col_limits(&cpi->common.mi_params, &mb->mv_limits,
                          (mb_col << mi_w), (mb_width >> MI_SIZE_LOG2),
                          cpi->oxcf.border_in_pixels);
    memset(accum, 0, num_pels * sizeof(accum[0]));
    memset(count, 0, num_pels * sizeof(count[0]));
    MV ref_mv = kZeroMv;  // Reference motion vector passed down along frames.
                          // Perform temporal filtering frame by frame.

    // Decide whether to perform motion search at 16x16 sub-block level or not
    // based on 4x4 sub-blocks source variance. Allow motion search for split
    // partition only if the difference between max and min source variance of
    // 4x4 blocks is greater than a threshold (which is derived empirically).
    bool allow_me_for_sub_blks = true;
    if (cpi->sf.hl_sf.allow_sub_blk_me_in_tf) {
      const int is_hbd = is_frame_high_bitdepth(frame_to_filter);
      // Initialize minimum variance to a large value and maximum variance to 0.
      double blk_4x4_var_min = DBL_MAX;
      double blk_4x4_var_max = 0;
      get_log_var_4x4sub_blk(cpi, frame_to_filter, mb_row, mb_col,
                             TF_BLOCK_SIZE, &blk_4x4_var_min, &blk_4x4_var_max,
                             is_hbd);
      // TODO(sanampudi.venkatarao@ittiam.com): Experiment and adjust the
      // threshold for high bit depth.
      if ((blk_4x4_var_max - blk_4x4_var_min) <= 4.0)
        allow_me_for_sub_blks = false;
    }

    for (int frame = 0; frame < num_frames; frame++) {
      if (frames[frame] == NULL) continue;

      // Motion search.
      MV subblock_mvs[4] = { kZeroMv, kZeroMv, kZeroMv, kZeroMv };
      int subblock_mses[4] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX };
      if (frame ==
          filter_frame_idx) {  // Frame to be filtered.
                               // Change ref_mv sign for following frames.
        ref_mv.row *= -1;
        ref_mv.col *= -1;
      } else {  // Other reference frames.
        tf_motion_search(cpi, mb, frame_to_filter, frames[frame], block_size,
                         mb_row, mb_col, &ref_mv, allow_me_for_sub_blks,
                         subblock_mvs, subblock_mses);
      }

      // Perform weighted averaging.
      if (frame == filter_frame_idx) {  // Frame to be filtered.
        tf_apply_temporal_filter_self(frames[frame], mbd, block_size, mb_row,
                                      mb_col, num_planes, accum, count);
      } else {  // Other reference frames.
        tf_build_predictor(frames[frame], mbd, block_size, mb_row, mb_col,
                           num_planes, scale, subblock_mvs, pred);

        // All variants of av1_apply_temporal_filter() contain floating point
        // operations. Hence, clear the system state.

        // TODO(any): avx2/sse2 version should be changed to align with C
        // function before using. In particular, current avx2/sse2 function
        // only supports 32x32 block size and 5x5 filtering window.
        if (is_frame_high_bitdepth(frame_to_filter)) {  // for high bit-depth
#if CONFIG_AV1_HIGHBITDEPTH
          if (TF_BLOCK_SIZE == BLOCK_32X32 && TF_WINDOW_LENGTH == 5) {
            av1_highbd_apply_temporal_filter(
                frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
                noise_levels, subblock_mvs, subblock_mses, q_factor,
                filter_strength, weight_calc_level_in_tf, pred, accum, count);
          } else {
#endif  // CONFIG_AV1_HIGHBITDEPTH
            av1_apply_temporal_filter_c(
                frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
                noise_levels, subblock_mvs, subblock_mses, q_factor,
                filter_strength, weight_calc_level_in_tf, pred, accum, count);
#if CONFIG_AV1_HIGHBITDEPTH
          }
#endif  // CONFIG_AV1_HIGHBITDEPTH
        } else {
          // for 8-bit
          if (TF_BLOCK_SIZE == BLOCK_32X32 && TF_WINDOW_LENGTH == 5) {
            av1_apply_temporal_filter(
                frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
                noise_levels, subblock_mvs, subblock_mses, q_factor,
                filter_strength, weight_calc_level_in_tf, pred, accum, count);
          } else {
            av1_apply_temporal_filter_c(
                frame_to_filter, mbd, block_size, mb_row, mb_col, num_planes,
                noise_levels, subblock_mvs, subblock_mses, q_factor,
                filter_strength, weight_calc_level_in_tf, pred, accum, count);
          }
        }
      }
    }
    tf_normalize_filtered_frame(mbd, block_size, mb_row, mb_col, num_planes,
                                accum, count, tf_ctx->output_frame);

    if (compute_frame_diff) {
      const int y_height = mb_height >> mbd->plane[0].subsampling_y;
      const int y_width = mb_width >> mbd->plane[0].subsampling_x;
      const int source_y_stride = frame_to_filter->y_stride;
      const int filter_y_stride = tf_ctx->output_frame->y_stride;
      const int source_offset =
          mb_row * y_height * source_y_stride + mb_col * y_width;
      const int filter_offset =
          mb_row * y_height * filter_y_stride + mb_col * y_width;
      unsigned int sse = 0;
      cpi->ppi->fn_ptr[block_size].vf(
          frame_to_filter->y_buffer + source_offset, source_y_stride,
          tf_ctx->output_frame->y_buffer + filter_offset, filter_y_stride,
          &sse);
      diff->sum += sse;
      diff->sse += sse * (int64_t)sse;
    }
  }
}

/*!\brief Does temporal filter for a given frame.
 *
 * \ingroup src_frame_proc
 * \param[in]   cpi                   Top level encoder instance structure
 *
 * \remark Nothing will be returned, but the contents of td->diff will be
 modified.
 */
static void tf_do_filtering(AV1_COMP *cpi) {
  // Basic information.
  ThreadData *td = &cpi->td;
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  const struct scale_factors *scale = &tf_ctx->sf;
  const int num_planes = av1_num_planes(&cpi->common);
  assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE);

  MACROBLOCKD *mbd = &td->mb.e_mbd;
  uint8_t *input_buffer[MAX_MB_PLANE];
  MB_MODE_INFO **input_mb_mode_info;
  tf_save_state(mbd, &input_mb_mode_info, input_buffer, num_planes);
  tf_setup_macroblockd(mbd, &td->tf_data, scale);

  // Perform temporal filtering for each row.
  for (int mb_row = 0; mb_row < tf_ctx->mb_rows; mb_row++)
    av1_tf_do_filtering_row(cpi, td, mb_row);

  tf_restore_state(mbd, input_mb_mode_info, input_buffer, num_planes);
}

/*!\brief Setups the frame buffer for temporal filtering. This fuction
 * determines how many frames will be used for temporal filtering and then
 * groups them into a buffer. This function will also estimate the noise level
 * of the to-filter frame.
 *
 * \ingroup src_frame_proc
 * \param[in]   cpi             Top level encoder instance structure
 * \param[in]   filter_frame_lookahead_idx  The index of the to-filter frame
 *                              in the lookahead buffer cpi->lookahead
 * \param[in]   gf_frame_index  GOP index
 *
 * \remark Nothing will be returned. But the fields `frames`, `num_frames`,
 *         `filter_frame_idx` and `noise_levels` will be updated in cpi->tf_ctx.
 */
static void tf_setup_filtering_buffer(AV1_COMP *cpi,
                                      int filter_frame_lookahead_idx,
                                      int gf_frame_index) {
  const GF_GROUP *gf_group = &cpi->ppi->gf_group;
  const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index];
  const FRAME_TYPE frame_type = gf_group->frame_type[gf_frame_index];
  const int is_forward_keyframe =
      av1_gop_check_forward_keyframe(gf_group, gf_frame_index);

  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
  // Number of frames used for filtering. Set `arnr_max_frames` as 1 to disable
  // temporal filtering.
  int num_frames = AOMMAX(cpi->oxcf.algo_cfg.arnr_max_frames, 1);
  int num_before = 0;  // Number of filtering frames before the to-filter frame.
  int num_after = 0;   // Number of filtering frames after the to-filer frame.
  const int lookahead_depth =
      av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage);

  // Temporal filtering should not go beyond key frames
  const int key_to_curframe =
      AOMMAX(cpi->rc.frames_since_key + filter_frame_lookahead_idx, 0);
  const int curframe_to_key =
      AOMMAX(cpi->rc.frames_to_key - filter_frame_lookahead_idx - 1, 0);

  // Number of buffered frames before the to-filter frame.
  int max_before = AOMMIN(filter_frame_lookahead_idx, key_to_curframe);

  // Number of buffered frames after the to-filter frame.
  int max_after =
      AOMMIN(lookahead_depth - filter_frame_lookahead_idx - 1, curframe_to_key);

  // Estimate noises for each plane.
  const struct lookahead_entry *to_filter_buf = av1_lookahead_peek(
      cpi->ppi->lookahead, filter_frame_lookahead_idx, cpi->compressor_stage);
  assert(to_filter_buf != NULL);
  const YV12_BUFFER_CONFIG *to_filter_frame = &to_filter_buf->img;
  const int num_planes = av1_num_planes(&cpi->common);
  double *noise_levels = tf_ctx->noise_levels;
  av1_estimate_noise_level(to_filter_frame, noise_levels, AOM_PLANE_Y,
                           num_planes - 1, cpi->common.seq_params->bit_depth,
                           NOISE_ESTIMATION_EDGE_THRESHOLD);
  // Get quantization factor.
  const int q = av1_get_q(cpi);
  // Get correlation estimates from first-pass;
  const FIRSTPASS_STATS *stats =
      cpi->twopass_frame.stats_in - (cpi->rc.frames_since_key == 0);
  double accu_coeff0 = 1.0, accu_coeff1 = 1.0;
  for (int i = 1; i <= max_after; i++) {
    if (stats + filter_frame_lookahead_idx + i >=
        cpi->ppi->twopass.stats_buf_ctx->stats_in_end) {
      max_after = i - 1;
      break;
    }
    accu_coeff1 *=
        AOMMAX(stats[filter_frame_lookahead_idx + i].cor_coeff, 0.001);
  }
  if (max_after >= 1) {
    accu_coeff1 = pow(accu_coeff1, 1.0 / (double)max_after);
  }
  for (int i = 1; i <= max_before; i++) {
    if (stats + filter_frame_lookahead_idx - i + 1 <=
        cpi->ppi->twopass.stats_buf_ctx->stats_in_start) {
      max_before = i - 1;
      break;
    }
    accu_coeff0 *=
        AOMMAX(stats[filter_frame_lookahead_idx - i + 1].cor_coeff, 0.001);
  }
  if (max_before >= 1) {
    accu_coeff0 = pow(accu_coeff0, 1.0 / (double)max_before);
  }

  // Adjust number of filtering frames based on quantization factor. When the
  // quantization factor is small enough (lossless compression), we will not
  // change the number of frames for key frame filtering, which is to avoid
  // visual quality drop.
  int adjust_num = 6;
  const int adjust_num_frames_for_arf_filtering =
      cpi->sf.hl_sf.adjust_num_frames_for_arf_filtering;
  if (num_frames == 1) {  // `arnr_max_frames = 1` is used to disable filtering.
    adjust_num = 0;
  } else if ((update_type == KF_UPDATE) && q <= 10) {
    adjust_num = 0;
  } else if (adjust_num_frames_for_arf_filtering > 0 &&
             update_type != KF_UPDATE && (cpi->rc.frames_since_key > 0)) {
    // Since screen content detection happens after temporal filtering,
    // 'frames_since_key' check is added to ensure the sf is disabled for the
    // first alt-ref frame.
    // Adjust number of frames to be considered for filtering based on noise
    // level of the current frame. For low-noise frame, use more frames to
    // filter such that the filtered frame can provide better predictions for
    // subsequent frames and vice versa.
    const uint8_t av1_adjust_num_using_noise_lvl[2][3] = { { 6, 4, 2 },
                                                           { 4, 2, 0 } };
    const uint8_t *adjust_num_frames =
        av1_adjust_num_using_noise_lvl[adjust_num_frames_for_arf_filtering - 1];

    if (noise_levels[AOM_PLANE_Y] < 0.5)
      adjust_num = adjust_num_frames[0];
    else if (noise_levels[AOM_PLANE_Y] < 1.0)
      adjust_num = adjust_num_frames[1];
    else
      adjust_num = adjust_num_frames[2];
  }
  num_frames = AOMMIN(num_frames + adjust_num, lookahead_depth);

  if (frame_type == KEY_FRAME) {
    num_before = AOMMIN(is_forward_keyframe ? num_frames / 2 : 0, max_before);
    num_after = AOMMIN(num_frames - 1, max_after);
  } else {
    int gfu_boost = av1_calc_arf_boost(&cpi->ppi->twopass, &cpi->twopass_frame,
                                       &cpi->ppi->p_rc, &cpi->frame_info,
                                       filter_frame_lookahead_idx, max_before,
                                       max_after, NULL, NULL, 0);

    num_frames = AOMMIN(num_frames, gfu_boost / 150);
    num_frames += !(num_frames & 1);  // Make the number odd.

    // Only use 2 neighbours for the second ARF.
    if (update_type == INTNL_ARF_UPDATE) num_frames = AOMMIN(num_frames, 3);
    if (AOMMIN(max_after, max_before) >= num_frames / 2) {
      // just use half half
      num_before = num_frames / 2;
      num_after = num_frames / 2;
    } else {
      if (max_after < num_frames / 2) {
        num_after = max_after;
        num_before = AOMMIN(num_frames - 1 - num_after, max_before);
      } else {
        num_before = max_before;
        num_after = AOMMIN(num_frames - 1 - num_before, max_after);
      }
      // Adjust insymmetry based on frame-level correlation
      if (max_after > 0 && max_before > 0) {
        if (num_after < num_before) {
          const int insym = (int)(0.4 / AOMMAX(1 - accu_coeff1, 0.01));
          num_before = AOMMIN(num_before, num_after + insym);
        } else {
          const int insym = (int)(0.4 / AOMMAX(1 - accu_coeff0, 0.01));
          num_after = AOMMIN(num_after, num_before + insym);
        }
      }
    }
  }
  num_frames = num_before + 1 + num_after;

  // Setup the frame buffer.
  for (int frame = 0; frame < num_frames; ++frame) {
    const int lookahead_idx = frame - num_before + filter_frame_lookahead_idx;
    struct lookahead_entry *buf = av1_lookahead_peek(
        cpi->ppi->lookahead, lookahead_idx, cpi->compressor_stage);
    assert(buf != NULL);
    frames[frame] = &buf->img;
  }
  tf_ctx->num_frames = num_frames;
  tf_ctx->filter_frame_idx = num_before;
  assert(frames[tf_ctx->filter_frame_idx] == to_filter_frame);

  av1_setup_src_planes(&cpi->td.mb, &to_filter_buf->img, 0, 0, num_planes,
                       cpi->common.seq_params->sb_size);
  av1_setup_block_planes(&cpi->td.mb.e_mbd,
                         cpi->common.seq_params->subsampling_x,
                         cpi->common.seq_params->subsampling_y, num_planes);
}

/*!\cond */

double av1_estimate_noise_from_single_plane_c(const uint8_t *src, int height,
                                              int width, int stride,
                                              int edge_thresh) {
  int64_t accum = 0;
  int count = 0;

  for (int i = 1; i < height - 1; ++i) {
    for (int j = 1; j < width - 1; ++j) {
      // Setup a small 3x3 matrix.
      const int center_idx = i * stride + j;
      int mat[3][3];
      for (int ii = -1; ii <= 1; ++ii) {
        for (int jj = -1; jj <= 1; ++jj) {
          const int idx = center_idx + ii * stride + jj;
          mat[ii + 1][jj + 1] = src[idx];
        }
      }
      // Compute sobel gradients.
      const int Gx = (mat[0][0] - mat[0][2]) + (mat[2][0] - mat[2][2]) +
                     2 * (mat[1][0] - mat[1][2]);
      const int Gy = (mat[0][0] - mat[2][0]) + (mat[0][2] - mat[2][2]) +
                     2 * (mat[0][1] - mat[2][1]);
      const int Ga = ROUND_POWER_OF_TWO(abs(Gx) + abs(Gy), 0);
      // Accumulate Laplacian.
      if (Ga < edge_thresh) {  // Only count smooth pixels.
        const int v = 4 * mat[1][1] -
                      2 * (mat[0][1] + mat[2][1] + mat[1][0] + mat[1][2]) +
                      (mat[0][0] + mat[0][2] + mat[2][0] + mat[2][2]);
        accum += ROUND_POWER_OF_TWO(abs(v), 0);
        ++count;
      }
    }
  }

  // Return -1.0 (unreliable estimation) if there are too few smooth pixels.
  return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2;
}

#if CONFIG_AV1_HIGHBITDEPTH
double av1_highbd_estimate_noise_from_single_plane_c(const uint16_t *src16,
                                                     int height, int width,
                                                     const int stride,
                                                     int bit_depth,
                                                     int edge_thresh) {
  int64_t accum = 0;
  int count = 0;
  for (int i = 1; i < height - 1; ++i) {
    for (int j = 1; j < width - 1; ++j) {
      // Setup a small 3x3 matrix.
      const int center_idx = i * stride + j;
      int mat[3][3];
      for (int ii = -1; ii <= 1; ++ii) {
        for (int jj = -1; jj <= 1; ++jj) {
          const int idx = center_idx + ii * stride + jj;
          mat[ii + 1][jj + 1] = src16[idx];
        }
      }
      // Compute sobel gradients.
      const int Gx = (mat[0][0] - mat[0][2]) + (mat[2][0] - mat[2][2]) +
                     2 * (mat[1][0] - mat[1][2]);
      const int Gy = (mat[0][0] - mat[2][0]) + (mat[0][2] - mat[2][2]) +
                     2 * (mat[0][1] - mat[2][1]);
      const int Ga = ROUND_POWER_OF_TWO(abs(Gx) + abs(Gy), bit_depth - 8);
      // Accumulate Laplacian.
      if (Ga < edge_thresh) {  // Only count smooth pixels.
        const int v = 4 * mat[1][1] -
                      2 * (mat[0][1] + mat[2][1] + mat[1][0] + mat[1][2]) +
                      (mat[0][0] + mat[0][2] + mat[2][0] + mat[2][2]);
        accum += ROUND_POWER_OF_TWO(abs(v), bit_depth - 8);
        ++count;
      }
    }
  }

  // Return -1.0 (unreliable estimation) if there are too few smooth pixels.
  return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2;
}
#endif

void av1_estimate_noise_level(const YV12_BUFFER_CONFIG *frame,
                              double *noise_level, int plane_from, int plane_to,
                              int bit_depth, int edge_thresh) {
  for (int plane = plane_from; plane <= plane_to; plane++) {
    const bool is_uv_plane = (plane != AOM_PLANE_Y);
    const int height = frame->crop_heights[is_uv_plane];
    const int width = frame->crop_widths[is_uv_plane];
    const int stride = frame->strides[is_uv_plane];
    const uint8_t *src = frame->buffers[plane];

#if CONFIG_AV1_HIGHBITDEPTH
    const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
    const int is_high_bitdepth = is_frame_high_bitdepth(frame);
    if (is_high_bitdepth) {
      noise_level[plane] = av1_highbd_estimate_noise_from_single_plane(
          src16, height, width, stride, bit_depth, edge_thresh);
    } else {
      noise_level[plane] = av1_estimate_noise_from_single_plane(
          src, height, width, stride, edge_thresh);
    }
#else
    (void)bit_depth;
    noise_level[plane] = av1_estimate_noise_from_single_plane(
        src, height, width, stride, edge_thresh);
#endif
  }
}

// Initializes the members of TemporalFilterCtx
// Inputs:
//   cpi: Top level encoder instance structure
//   check_show_existing: If 1, check whether the filtered frame is similar
//                        to the original frame.
//   filter_frame_lookahead_idx: The index of the frame to be filtered in the
//                               lookahead buffer cpi->lookahead.
// Returns:
//   Nothing will be returned. But the contents of cpi->tf_ctx will be modified.
static void init_tf_ctx(AV1_COMP *cpi, int filter_frame_lookahead_idx,
                        int gf_frame_index, int compute_frame_diff,
                        YV12_BUFFER_CONFIG *output_frame) {
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  // Setup frame buffer for filtering.
  YV12_BUFFER_CONFIG **frames = tf_ctx->frames;
  tf_ctx->num_frames = 0;
  tf_ctx->filter_frame_idx = -1;
  tf_ctx->output_frame = output_frame;
  tf_ctx->compute_frame_diff = compute_frame_diff;
  tf_setup_filtering_buffer(cpi, filter_frame_lookahead_idx, gf_frame_index);
  assert(tf_ctx->num_frames > 0);
  assert(tf_ctx->filter_frame_idx < tf_ctx->num_frames);

  // Setup scaling factors. Scaling on each of the arnr frames is not
  // supported.
  // ARF is produced at the native frame size and resized when coded.
  struct scale_factors *sf = &tf_ctx->sf;
  av1_setup_scale_factors_for_frame(
      sf, frames[0]->y_crop_width, frames[0]->y_crop_height,
      frames[0]->y_crop_width, frames[0]->y_crop_height);

  // Initialize temporal filter parameters.
  MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
  const int filter_frame_idx = tf_ctx->filter_frame_idx;
  const YV12_BUFFER_CONFIG *const frame_to_filter = frames[filter_frame_idx];
  const BLOCK_SIZE block_size = TF_BLOCK_SIZE;
  const int frame_height = frame_to_filter->y_crop_height;
  const int frame_width = frame_to_filter->y_crop_width;
  const int mb_width = block_size_wide[block_size];
  const int mb_height = block_size_high[block_size];
  const int mb_rows = get_num_blocks(frame_height, mb_height);
  const int mb_cols = get_num_blocks(frame_width, mb_width);
  const int mb_pels = mb_width * mb_height;
  const int is_highbitdepth = is_frame_high_bitdepth(frame_to_filter);
  const int num_planes = av1_num_planes(&cpi->common);
  int num_pels = 0;
  for (int i = 0; i < num_planes; i++) {
    const int subsampling_x = mbd->plane[i].subsampling_x;
    const int subsampling_y = mbd->plane[i].subsampling_y;
    num_pels += mb_pels >> (subsampling_x + subsampling_y);
  }
  tf_ctx->num_pels = num_pels;
  tf_ctx->mb_rows = mb_rows;
  tf_ctx->mb_cols = mb_cols;
  tf_ctx->is_highbitdepth = is_highbitdepth;
  tf_ctx->q_factor = av1_get_q(cpi);
}

int av1_check_show_filtered_frame(const YV12_BUFFER_CONFIG *frame,
                                  const FRAME_DIFF *frame_diff, int q_index,
                                  aom_bit_depth_t bit_depth) {
  const int frame_height = frame->y_crop_height;
  const int frame_width = frame->y_crop_width;
  const int block_height = block_size_high[TF_BLOCK_SIZE];
  const int block_width = block_size_wide[TF_BLOCK_SIZE];
  const int mb_rows = get_num_blocks(frame_height, block_height);
  const int mb_cols = get_num_blocks(frame_width, block_width);
  const int num_mbs = AOMMAX(1, mb_rows * mb_cols);
  const float mean = (float)frame_diff->sum / num_mbs;
  const float std = (float)sqrt((float)frame_diff->sse / num_mbs - mean * mean);

  const int ac_q_step = av1_ac_quant_QTX(q_index, 0, bit_depth);
  const float threshold = 0.7f * ac_q_step * ac_q_step;

  if (mean < threshold && std < mean * 1.2) {
    return 1;
  }
  return 0;
}

void av1_temporal_filter(AV1_COMP *cpi, const int filter_frame_lookahead_idx,
                         int gf_frame_index, FRAME_DIFF *frame_diff,
                         YV12_BUFFER_CONFIG *output_frame) {
  MultiThreadInfo *const mt_info = &cpi->mt_info;
  // Basic informaton of the current frame.
  TemporalFilterCtx *tf_ctx = &cpi->tf_ctx;
  TemporalFilterData *tf_data = &cpi->td.tf_data;
  const int compute_frame_diff = frame_diff != NULL;
  // TODO(anyone): Currently, we enforce the filtering strength on internal
  // ARFs except the second ARF to be zero. We should investigate in which case
  // it is more beneficial to use non-zero strength filtering.
  // Only parallel level 0 frames go through temporal filtering.
  assert(cpi->ppi->gf_group.frame_parallel_level[gf_frame_index] == 0);

  // Initialize temporal filter context structure.
  init_tf_ctx(cpi, filter_frame_lookahead_idx, gf_frame_index,
              compute_frame_diff, output_frame);

  // Allocate and reset temporal filter buffers.
  const int is_highbitdepth = tf_ctx->is_highbitdepth;
  if (!tf_alloc_and_reset_data(tf_data, tf_ctx->num_pels, is_highbitdepth)) {
    aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR,
                       "Error allocating temporal filter data");
  }

  // Perform temporal filtering process.
  if (mt_info->num_workers > 1)
    av1_tf_do_filtering_mt(cpi);
  else
    tf_do_filtering(cpi);

  if (compute_frame_diff) {
    *frame_diff = tf_data->diff;
  }
  // Deallocate temporal filter buffers.
  tf_dealloc_data(tf_data, is_highbitdepth);
}

int av1_is_temporal_filter_on(const AV1EncoderConfig *oxcf) {
  return oxcf->algo_cfg.arnr_max_frames > 0 && oxcf->gf_cfg.lag_in_frames > 1;
}

bool av1_tf_info_alloc(TEMPORAL_FILTER_INFO *tf_info, const AV1_COMP *cpi) {
  const AV1EncoderConfig *oxcf = &cpi->oxcf;
  tf_info->is_temporal_filter_on = av1_is_temporal_filter_on(oxcf);
  if (tf_info->is_temporal_filter_on == 0) return true;

  const AV1_COMMON *cm = &cpi->common;
  const SequenceHeader *const seq_params = cm->seq_params;
  for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
    if (aom_realloc_frame_buffer(
            &tf_info->tf_buf[i], oxcf->frm_dim_cfg.width,
            oxcf->frm_dim_cfg.height, seq_params->subsampling_x,
            seq_params->subsampling_y, seq_params->use_highbitdepth,
            cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL,
            NULL, cpi->alloc_pyramid, 0)) {
      return false;
    }
  }
  return true;
}

void av1_tf_info_free(TEMPORAL_FILTER_INFO *tf_info) {
  if (tf_info->is_temporal_filter_on == 0) return;
  for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
    aom_free_frame_buffer(&tf_info->tf_buf[i]);
  }
  aom_free_frame_buffer(&tf_info->tf_buf_second_arf);
}

void av1_tf_info_reset(TEMPORAL_FILTER_INFO *tf_info) {
  av1_zero(tf_info->tf_buf_valid);
  av1_zero(tf_info->tf_buf_gf_index);
  av1_zero(tf_info->tf_buf_display_index_offset);
}

void av1_tf_info_filtering(TEMPORAL_FILTER_INFO *tf_info, AV1_COMP *cpi,
                           const GF_GROUP *gf_group) {
  if (tf_info->is_temporal_filter_on == 0) return;
  const AV1_COMMON *const cm = &cpi->common;
  for (int gf_index = 0; gf_index < gf_group->size; ++gf_index) {
    int update_type = gf_group->update_type[gf_index];
    if (update_type == KF_UPDATE || update_type == ARF_UPDATE) {
      int buf_idx = gf_group->frame_type[gf_index] == INTER_FRAME;
      int lookahead_idx = gf_group->arf_src_offset[gf_index] +
                          gf_group->cur_frame_idx[gf_index];
      // This function is designed to be called multiple times after
      // av1_tf_info_reset(). It will only generate the filtered frame that does
      // not exist yet.
      if (tf_info->tf_buf_valid[buf_idx] == 0 ||
          tf_info->tf_buf_display_index_offset[buf_idx] != lookahead_idx) {
        YV12_BUFFER_CONFIG *out_buf = &tf_info->tf_buf[buf_idx];
        av1_temporal_filter(cpi, lookahead_idx, gf_index,
                            &tf_info->frame_diff[buf_idx], out_buf);
        aom_extend_frame_borders(out_buf, av1_num_planes(cm));
        tf_info->tf_buf_gf_index[buf_idx] = gf_index;
        tf_info->tf_buf_display_index_offset[buf_idx] = lookahead_idx;
        tf_info->tf_buf_valid[buf_idx] = 1;
      }
    }
  }
}

YV12_BUFFER_CONFIG *av1_tf_info_get_filtered_buf(TEMPORAL_FILTER_INFO *tf_info,
                                                 int gf_index,
                                                 FRAME_DIFF *frame_diff) {
  if (tf_info->is_temporal_filter_on == 0) return NULL;
  YV12_BUFFER_CONFIG *out_buf = NULL;
  for (int i = 0; i < TF_INFO_BUF_COUNT; ++i) {
    if (tf_info->tf_buf_valid[i] && tf_info->tf_buf_gf_index[i] == gf_index) {
      out_buf = &tf_info->tf_buf[i];
      *frame_diff = tf_info->frame_diff[i];
    }
  }
  return out_buf;
}
/*!\endcond */