summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/tune_butteraugli.c
blob: 4381af6a8b20faccb265ef0b8f77a911ba87fdf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * Copyright (c) 2021, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <math.h>

#include "av1/encoder/tune_butteraugli.h"

#include "aom_dsp/butteraugli.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/var_based_part.h"

static const int resize_factor = 2;

static void set_mb_butteraugli_rdmult_scaling(AV1_COMP *cpi,
                                              const YV12_BUFFER_CONFIG *source,
                                              const YV12_BUFFER_CONFIG *recon,
                                              const double K) {
  AV1_COMMON *const cm = &cpi->common;
  SequenceHeader *const seq_params = cm->seq_params;
  const CommonModeInfoParams *const mi_params = &cm->mi_params;
  const aom_color_range_t color_range =
      seq_params->color_range != 0 ? AOM_CR_FULL_RANGE : AOM_CR_STUDIO_RANGE;
  const int bit_depth = cpi->td.mb.e_mbd.bd;
  const int width = source->y_crop_width;
  const int height = source->y_crop_height;
  const int ss_x = source->subsampling_x;
  const int ss_y = source->subsampling_y;

  float *diffmap;
  CHECK_MEM_ERROR(cm, diffmap, aom_malloc(width * height * sizeof(*diffmap)));
  if (!aom_calc_butteraugli(source, recon, bit_depth,
                            seq_params->matrix_coefficients, color_range,
                            diffmap)) {
    aom_internal_error(cm->error, AOM_CODEC_ERROR,
                       "Failed to calculate Butteraugli distances.");
  }

  const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize] / resize_factor;
  const int num_mi_h = mi_size_high[butteraugli_rdo_bsize] / resize_factor;
  const int num_cols =
      (mi_params->mi_cols / resize_factor + num_mi_w - 1) / num_mi_w;
  const int num_rows =
      (mi_params->mi_rows / resize_factor + num_mi_h - 1) / num_mi_h;
  const int block_w = num_mi_w << 2;
  const int block_h = num_mi_h << 2;
  double log_sum = 0.0;
  double blk_count = 0.0;

  // Loop through each block.
  for (int row = 0; row < num_rows; ++row) {
    for (int col = 0; col < num_cols; ++col) {
      const int index = row * num_cols + col;
      const int y_start = row * block_h;
      const int x_start = col * block_w;
      float dbutteraugli = 0.0f;
      float dmse = 0.0f;
      float px_count = 0.0f;

      // Loop through each pixel.
      for (int y = y_start; y < y_start + block_h && y < height; y++) {
        for (int x = x_start; x < x_start + block_w && x < width; x++) {
          dbutteraugli += powf(diffmap[y * width + x], 12.0f);
          float px_diff = source->y_buffer[y * source->y_stride + x] -
                          recon->y_buffer[y * recon->y_stride + x];
          dmse += px_diff * px_diff;
          px_count += 1.0f;
        }
      }
      const int y_end = AOMMIN((y_start >> ss_y) + (block_h >> ss_y),
                               (height + ss_y) >> ss_y);
      for (int y = y_start >> ss_y; y < y_end; y++) {
        const int x_end = AOMMIN((x_start >> ss_x) + (block_w >> ss_x),
                                 (width + ss_x) >> ss_x);
        for (int x = x_start >> ss_x; x < x_end; x++) {
          const int src_px_index = y * source->uv_stride + x;
          const int recon_px_index = y * recon->uv_stride + x;
          const float px_diff_u = (float)(source->u_buffer[src_px_index] -
                                          recon->u_buffer[recon_px_index]);
          const float px_diff_v = (float)(source->v_buffer[src_px_index] -
                                          recon->v_buffer[recon_px_index]);
          dmse += px_diff_u * px_diff_u + px_diff_v * px_diff_v;
          px_count += 2.0f;
        }
      }

      dbutteraugli = powf(dbutteraugli, 1.0f / 12.0f);
      dmse = dmse / px_count;
      const float eps = 0.01f;
      double weight;
      if (dbutteraugli < eps || dmse < eps) {
        weight = -1.0;
      } else {
        blk_count += 1.0;
        weight = dmse / dbutteraugli;
        weight = AOMMIN(weight, 5.0);
        weight += K;
        log_sum += log(weight);
      }
      cpi->butteraugli_info.rdmult_scaling_factors[index] = weight;
    }
  }
  // Geometric average of the weights.
  log_sum = exp(log_sum / blk_count);

  for (int row = 0; row < num_rows; ++row) {
    for (int col = 0; col < num_cols; ++col) {
      const int index = row * num_cols + col;
      double *weight = &cpi->butteraugli_info.rdmult_scaling_factors[index];
      if (*weight <= 0.0) {
        *weight = 1.0;
      } else {
        *weight /= log_sum;
      }
      *weight = AOMMIN(*weight, 2.5);
      *weight = AOMMAX(*weight, 0.4);
    }
  }

  aom_free(diffmap);
}

void av1_set_butteraugli_rdmult(const AV1_COMP *cpi, MACROBLOCK *x,
                                BLOCK_SIZE bsize, int mi_row, int mi_col,
                                int *rdmult) {
  assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI);
  if (!cpi->butteraugli_info.recon_set) {
    return;
  }
  const AV1_COMMON *const cm = &cpi->common;

  const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize];
  const int num_mi_h = mi_size_high[butteraugli_rdo_bsize];
  const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
  const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
  const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
  const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
  double num_of_mi = 0.0;
  double geom_mean_of_scale = 0.0;

  for (int row = mi_row / num_mi_w;
       row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
    for (int col = mi_col / num_mi_h;
         col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
      const int index = row * num_cols + col;
      geom_mean_of_scale +=
          log(cpi->butteraugli_info.rdmult_scaling_factors[index]);
      num_of_mi += 1.0;
    }
  }
  geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);

  *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
  *rdmult = AOMMAX(*rdmult, 0);
  av1_set_error_per_bit(&x->errorperbit, *rdmult);
}

static void copy_plane(const uint8_t *src, int src_stride, uint8_t *dst,
                       int dst_stride, int w, int h) {
  for (int row = 0; row < h; row++) {
    memcpy(dst, src, w);
    src += src_stride;
    dst += dst_stride;
  }
}

static void copy_img(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst,
                     int width, int height) {
  copy_plane(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, width,
             height);
  const int width_uv = (width + src->subsampling_x) >> src->subsampling_x;
  const int height_uv = (height + src->subsampling_y) >> src->subsampling_y;
  copy_plane(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride,
             width_uv, height_uv);
  copy_plane(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride,
             width_uv, height_uv);
}

static void zero_plane(uint8_t *dst, int dst_stride, int h) {
  for (int row = 0; row < h; row++) {
    memset(dst, 0, dst_stride);
    dst += dst_stride;
  }
}

static void zero_img(YV12_BUFFER_CONFIG *dst) {
  zero_plane(dst->y_buffer, dst->y_stride, dst->y_height);
  zero_plane(dst->u_buffer, dst->uv_stride, dst->uv_height);
  zero_plane(dst->v_buffer, dst->uv_stride, dst->uv_height);
}

void av1_setup_butteraugli_source(AV1_COMP *cpi) {
  YV12_BUFFER_CONFIG *const dst = &cpi->butteraugli_info.source;
  AV1_COMMON *const cm = &cpi->common;
  const int width = cpi->source->y_crop_width;
  const int height = cpi->source->y_crop_height;
  const int bit_depth = cpi->td.mb.e_mbd.bd;
  const int ss_x = cpi->source->subsampling_x;
  const int ss_y = cpi->source->subsampling_y;
  if (dst->buffer_alloc_sz == 0) {
    aom_alloc_frame_buffer(
        dst, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth,
        cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0);
  }
  av1_copy_and_extend_frame(cpi->source, dst);

  YV12_BUFFER_CONFIG *const resized_dst = &cpi->butteraugli_info.resized_source;
  if (resized_dst->buffer_alloc_sz == 0) {
    aom_alloc_frame_buffer(
        resized_dst, width / resize_factor, height / resize_factor, ss_x, ss_y,
        cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
        cm->features.byte_alignment, false, 0);
  }
  if (!av1_resize_and_extend_frame_nonnormative(
          cpi->source, resized_dst, bit_depth, av1_num_planes(cm))) {
    aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
                       "Error allocating buffers during resize");
  }

  zero_img(cpi->source);
  copy_img(resized_dst, cpi->source, width / resize_factor,
           height / resize_factor);
}

void av1_setup_butteraugli_rdmult_and_restore_source(AV1_COMP *cpi, double K) {
  av1_copy_and_extend_frame(&cpi->butteraugli_info.source, cpi->source);
  AV1_COMMON *const cm = &cpi->common;
  const int width = cpi->source->y_crop_width;
  const int height = cpi->source->y_crop_height;
  const int ss_x = cpi->source->subsampling_x;
  const int ss_y = cpi->source->subsampling_y;

  YV12_BUFFER_CONFIG resized_recon;
  memset(&resized_recon, 0, sizeof(resized_recon));
  aom_alloc_frame_buffer(
      &resized_recon, width / resize_factor, height / resize_factor, ss_x, ss_y,
      cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
      cm->features.byte_alignment, false, 0);
  copy_img(&cpi->common.cur_frame->buf, &resized_recon, width / resize_factor,
           height / resize_factor);

  set_mb_butteraugli_rdmult_scaling(cpi, &cpi->butteraugli_info.resized_source,
                                    &resized_recon, K);
  cpi->butteraugli_info.recon_set = true;
  aom_free_frame_buffer(&resized_recon);
}

void av1_setup_butteraugli_rdmult(AV1_COMP *cpi) {
  AV1_COMMON *const cm = &cpi->common;
  const AV1EncoderConfig *const oxcf = &cpi->oxcf;
  const QuantizationCfg *const q_cfg = &oxcf->q_cfg;
  const int q_index = 96;

  // Setup necessary params for encoding, including frame source, etc.
  if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi);
  av1_set_frame_size(cpi, cm->superres_upscaled_width,
                     cm->superres_upscaled_height);

  cpi->source = av1_realloc_and_scale_if_required(
      cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter,
      0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid);
  if (cpi->unscaled_last_source != NULL) {
    cpi->last_source = av1_realloc_and_scale_if_required(
        cm, cpi->unscaled_last_source, &cpi->scaled_last_source,
        cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels,
        cpi->alloc_pyramid);
  }

  av1_setup_butteraugli_source(cpi);
  av1_setup_frame(cpi);

  if (cm->seg.enabled) {
    if (!cm->seg.update_data && cm->prev_frame) {
      segfeatures_copy(&cm->seg, &cm->prev_frame->seg);
      cm->seg.enabled = cm->prev_frame->seg.enabled;
    } else {
      av1_calculate_segdata(&cm->seg);
    }
  } else {
    memset(&cm->seg, 0, sizeof(cm->seg));
  }
  segfeatures_copy(&cm->cur_frame->seg, &cm->seg);
  cm->cur_frame->seg.enabled = cm->seg.enabled;

  const PARTITION_SEARCH_TYPE partition_search_type =
      cpi->sf.part_sf.partition_search_type;
  const BLOCK_SIZE fixed_partition_size = cpi->sf.part_sf.fixed_partition_size;
  // Enable a quicker pass by uncommenting the following lines:
  // cpi->sf.part_sf.partition_search_type = FIXED_PARTITION;
  // cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32;

  av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q_index,
                    q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq);
  av1_set_speed_features_qindex_dependent(cpi, oxcf->speed);
  av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params,
                     cm->seq_params->bit_depth);

  av1_set_variance_partition_thresholds(cpi, q_index, 0);
  av1_encode_frame(cpi);

  av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.3);
  cpi->sf.part_sf.partition_search_type = partition_search_type;
  cpi->sf.part_sf.fixed_partition_size = fixed_partition_size;
}